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Class Note-4 

6. Continued from Class Note-3 Laplace's Equation in spherical polar coordinate 

systems: Solution of Radial Equation and Some Problems involving application of 

solution of Laplace equation in Polar coordinates. 

Radial Equation 

Radial equation obtained from Laplace equation through separation of variables is: 

1

𝑟ଶ

𝑑

𝑑𝑟
ቆ𝑟ଶ

𝑑𝑅(𝑟)

𝑑𝑟
ቇ −

𝜆

𝑟ଶ
𝑅(𝑟) = 0 … … … (6.4) [𝐑𝐚𝐝𝐢𝐚𝐥 𝐨𝐫 𝒓 𝐞𝐪𝐧. ] 

⇒     𝑟ଶ
𝑑ଶ𝑅(𝑟)

𝑑𝑟ଶ
+ 2𝑟

𝑑𝑅(𝑟)

𝑑𝑟
− 𝜆𝑅(𝑟) = 0 … … … (6.24) 

Let  

𝑅(𝑟) = 𝑟ఈ , where α is a constant … … . (6.25) 

is a trial solution. Then: 

  𝑟ଶ𝛼(𝛼 − 1)𝑟ఈିଶ + 2𝑟𝛼𝑟ఈିଵ − 𝜆𝑟ఈ = 0 

⇒    [𝛼(𝛼 − 1) + 2𝛼 − 𝜆]𝑟ఈ = 0 

Since 𝑟 is not always zero, therefore: 

𝛼(𝛼 − 1) + 2𝛼 − 𝜆 = 0 

𝛼ଶ + 𝛼 − 𝜆 = 0 … … … (6.26) 

If the roots of this quadratic equation are 𝛼ଵ and  𝛼ଶ, then:  

𝛼ଵ =
−1 + √1 + 4𝜆

2
  𝑎𝑛𝑑   𝛼ଶ =

−1 − √1 + 4𝜆

2
 

i.e. both of 𝛼ଵ and  𝛼ଶ are real. 

Also from (6.26) we have: 

𝜆 = 𝛼ଶ + 𝛼 = 𝛼(𝛼 + 1) = 𝛼ଵ(𝛼ଵ + 1) = 𝛼ଶ(𝛼ଶ + 1) 
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Starting from (6.4) we obtain that 𝜆 should have the form 𝛼(𝛼 + 1), where 𝛼 is a real 

number. We have obtained similar condition during the solution of 𝜃 equation, where we 

have seen that for physically meaningful solution we require the extra restriction: 𝛼 =

𝑙 = zero or positive integer i.e. 𝑙 = 0,1,2 … . 

Thus equation (6.24) should be written as: 

𝑟ଶ
𝑑ଶ𝑅(𝑟)

𝑑𝑟ଶ
+ 2𝑟

𝑑𝑅(𝑟)

𝑑𝑟
− 𝑙(𝑙 + 1)𝑅(𝑟) = 0 … … … (6.24𝐴)  

And equation (6.26) will become: 

𝛼ଶ + 𝛼 − 𝑙(𝑙 + 1) = 0 

𝛼ଶ + 𝛼 − 𝑙ଶ − 𝑙 = 0 

(𝛼 + 𝑙)(𝛼 − 𝑙) + 𝛼 − 𝑙 = 0 

(𝛼 + 𝑙 + 1)(𝛼 − 𝑙) = 0 

𝜶 = 𝒍  𝒐𝒓 𝜶 = −(𝒍 + 𝟏) 

Therefore the solution of the radial equation will be: 

𝑹𝒍(𝒓) = 𝑨𝒍𝒓
𝒍 + 𝑩𝒍𝒓

ି(𝒍ା𝟏), 𝑙 = 0,1,2 … … … … (𝟔. 𝟐𝟓) 

Where 𝐴  and 𝐵  are constants to be determined from boundary conditions. 

Now we can write the complete solution of Laplace equation in spherical polar 

coordinates as: 

𝑢(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌(𝜃, 𝜑) = 𝑅(𝑟)Θ(𝜃)Φ(𝜑) … … … (6.26) 

And the general solution will be: 

𝑢(𝑟, 𝜃, 𝜑) =  𝑢(𝑟, 𝜃, 𝜑)

,

=  𝑅(𝑟)Θ(𝜃)Φ(𝜑)

,

 

= ൫𝑨𝒍𝒓𝒍 + 𝑩𝒍𝒓
ି(𝒍ା𝟏)൯𝑷𝒍

𝒎(𝐜𝐨𝐬 𝜽)𝒆𝒊𝒎𝝋

,

… (6.27) 
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Problem: 6.1  

An uncharged conducting sphere of radius a is placed at the origin in an initially uniform 

electrostatic field E. Obtain the expression of potential at an external point and show that it 

behaves as an electric dipole. 

Solution:  

Let the initially (before introducing the conducting sphere) uniform electrostatic field is 

directed along the Z-axis and its magnitude is 𝐸. Then 

𝐸ሬ⃗  =  𝐸𝑘 … … … (𝑃6.1.1) 

In a charge free region the electrostatic field is conservative and can be derived from 

electrostatic potential, say 𝑢. i.e.: 

𝐸ሬ⃗ = −∇ሬሬ⃗ 𝑢 

Thus, if 𝑢 = 𝑢 represent the potential of the initial field, then: 

−∇ሬሬ⃗ 𝑢  =  𝐸𝑘 

− ൬
𝜕

𝜕𝑥
𝚤̇መ +

𝜕

𝜕𝑧
𝚥መ̇ +

𝜕

𝜕𝑧
𝑘൰ 𝑢  =  𝐸𝑘 

−
𝜕𝑢

𝜕𝑧
 =  𝐸 

𝑢 = −𝐸𝑧 + 𝐶 = −𝐸𝑟 cos 𝜃 + 𝐶;   (𝐶 is arbitrary till now) … … (𝑃6.1.2) 

In a charge free region, here outside the sphere (𝑟 ≥ 𝑎), the electrostatic potential 𝑢 satisfies 

Laplace equation: 

∇ଶ𝑢 = 0 

The symmetry of the present problem suggests that we should use the solution of Laplace 

equation in spherical polar coordinates. i.e.: 

𝑢(𝑟, 𝜃, 𝜑) =
൫𝐴𝑟 + 𝐵𝑟ି(ାଵ)൯𝑃

(cos 𝜃)𝑒ఝ

,

𝑤𝑖𝑡ℎ 𝑙 = 0,1,2 … ; 𝑚 = 0, ±1 … … ± 𝑙

ൢ … … … (6.27) 

The problem has axial or azimuthal symmetry. i.e. the potential does not depend on 𝜑. 

Therefore the acceptable value of 𝑚 is: 

𝑚 = 0 
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Then: 

𝑢(𝑟, 𝜃, 𝜑) = ൫𝐴𝑟 + 𝐵𝑟ି(ାଵ)൯𝑃
(cos 𝜃)

ஶ

ୀ

 

= ൫𝐴𝑟 + 𝐵𝑟ି(ାଵ)൯𝑃(cos 𝜃)

ஶ

ୀ

… … (𝑃6.1.3) 

ቈ𝑠𝑖𝑛𝑐𝑒   𝑃
(𝑤) =  (1 − 𝑤ଶ)

||
ଶ ൬

𝑑

𝑑𝑤
൰

||

[𝑃(𝑤)] = 𝑃(𝑤) 

Now, after introduction of the conducting sphere in the initially uniform electric field, the field 

and potential at infinite distance from the sphere should not be affected and should remain as 

before. i.e.: 

𝑢(𝑟 → ∞, 𝜃, 𝜑) = 𝑢(𝑟 → ∞, 𝜃, 𝜑) = −𝐸𝑧 + 𝐶 = −𝐸𝑟 cos 𝜃 + 𝐶 

From (P6.1.2) and (P6.1.3):   

lim
→ஶ

൫𝐴𝑟 + 𝐵𝑟ି(ାଵ)൯𝑃(cos 𝜃)

ஶ

ୀ

= −𝐸𝑟 cos 𝜃 + 𝐶 

lim
→ஶ

 𝐴𝑟𝑃(cos 𝜃)

ஶ

ୀ

= −𝐸𝑟 cos 𝜃 + 𝐶 

𝐴𝑃(cos 𝜃) + 𝐴ଵ𝑟𝑃ଵ(cos 𝜃) + 𝐴ଶ𝑟ଶ𝑃ଶ(cos 𝜃) + ⋯ … = −𝐸𝑟 cos 𝜃 + 𝐶 

𝐴 + 𝐴ଵ𝑟𝑃ଵ(cos 𝜃) + 𝐴ଶ𝑟ଶ𝑃ଶ(cos 𝜃) + ⋯ … = −𝐸𝑟𝑃ଵ(cos 𝜃) + 𝐶 

[𝐴𝑠 𝑃(cos 𝜃) = 1 & 𝑃ଵ(cos 𝜃) = cos 𝜃] 

Equating the coefficients of 𝑃(cos 𝜃) from the two sides we can write: 

𝐴ଵ = −𝐸, 𝐴 = 𝐶    and     𝐴 = 0 for 𝑙 ≥ 2 

Then from (P6.1.3): 

𝑢(𝑟, 𝜃, 𝜑) = 𝐶 − 𝐸𝑟 cos 𝜃 +  𝐵𝑟ି(ାଵ)𝑃(cos 𝜃)

ஶ

ୀ

… … (𝑃6.1.4) 

Now, it is well known that the surface of a conductor is an equipotential surface. Then the 

potential on the surface of the sphere will be constant, say 𝑽. Therefore, if 𝑎 is the radius of 

the sphere, then: 
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𝑢(𝑎, 𝜃, 𝜑) = 𝐶 − 𝐸𝑎 cos 𝜃 +  𝐵𝑎ି(ାଵ)𝑃(cos 𝜃)

ஶ

ୀ

= 𝑉 

𝐶 − 𝐸𝑎𝑃ଵ(cos 𝜃) +
𝐵

𝑎
+

𝐵ଵ

𝑎ଶ
𝑃ଵ(cos 𝜃) +

𝐵ଶ

𝑎ଷ
𝑃ଶ(cos 𝜃) +

𝐵ଷ

𝑎ସ
𝑃ଷ(cos 𝜃) + ⋯ = 𝑉 

𝐶 +
𝐵

𝑎
+ ൬

𝐵ଵ

𝑎ଶ
− 𝐸𝑎൰ 𝑃ଵ(cos 𝜃) +

𝐵ଶ

𝑎ଷ
𝑃ଶ(cos 𝜃) +

𝐵ଷ

𝑎ସ
𝑃ଷ(cos 𝜃) + ⋯ = 𝑉 

Equating the coefficients of 𝑃(cos 𝜃) from the two sides we can write: 

𝐵ଵ

𝑎ଶ
− 𝐸𝑎 = 0 ⇒

𝐵ଵ

𝑎ଶ
= 𝐸𝑎 ⇒ 𝐵ଵ = 𝐸𝑎ଷ 

𝐵ଶ ⇒ 𝐵ଷ = 0 … ;  𝐵 = 0 for 𝑙 ≥ 2 

𝐶 +
𝐵

𝑎
= 𝑉 ⇒ 𝐶 = 𝑉 −

𝐵

𝑎
 

Then (P6.1.4) reduces to: 

𝑢(𝑟, 𝜃, 𝜑) = 𝐶 − 𝐸𝑟 cos 𝜃 +  𝐵𝑟ି(ାଵ)𝑃(cos 𝜃)

ஶ

ୀ

 

= 𝑉 −
𝐵

𝑎
− 𝐸𝑟 cos 𝜃 +

𝐵

𝑟
+

𝐸𝑎ଷ

𝑟ଶ
cos 𝜃 

= 𝑉 + 𝐵 ൬
1

𝑟
−

1

𝑎
൰ − 𝐸 ቆ𝑟 −

𝑎ଷ

𝑟ଶ
ቇ cos 𝜃           … … … (𝑃6.1.5) 

To determine the constant 𝐵 we would utilize the fact that the total charge on the surface of 

the initially uncharged sphere will remain zero even after placing it in the external electric field. 

Charge density on the surface of the sphere is given by:  

𝜎(𝑟, 𝜃) = −𝜖
𝜕𝑢

𝜕𝑟
ฬ

ୀ
= −

𝐵

𝑟ଶ
− 𝐸 ቆ1 +

2𝑎ଷ

𝑟ଷ
ቇ cos 𝜃 

Charge density at every point on an annular ring like portion of the surface between 𝜃 and 𝜃 +

𝑑𝜃 will be same and equal to: 

𝜎(𝑎, 𝜃) = −
𝐵

𝑎ଶ
− 𝐸 ቆ1 +

2𝑎ଷ

𝑎ଷ
ቇ cos 𝜃 = −

𝐵

𝑎ଶ
− 3𝐸 cos 𝜃 
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Total charge on that annular ring-like portion of the surface between 𝜃 and 𝜃 + 𝑑𝜃 is zero. 

Therefore   

𝑑𝑄 = ൬−
𝐵

𝑎ଶ
− 3𝐸 cos 𝜃൰ 2𝜋𝑎 sin 𝜃 𝑎 𝑑𝜃 = 2𝜋 ൬−

𝐵

𝑎ଶ
− 3𝐸 cos 𝜃൰ 𝑎ଶ sin 𝜃  𝑑𝜃 

= −2𝜋𝐵 sin 𝜃  𝑑𝜃 − 6𝜋𝐸𝑎ଶ cos 𝜃 sin 𝜃  𝑑𝜃 

Total charge on the surface is zero. Therefore   

0 = 𝑄 = න 𝑑𝑄 = −2𝜋𝐵 න sin 𝜃  𝑑𝜃

గ

ఏୀ

− 6𝜋𝐸𝑎ଶ න cos 𝜃 sin 𝜃  𝑑𝜃

గ

ఏୀ

 

= −4𝜋𝐵 

⇒ 𝐵 = 0 

Then finally we can write:   

𝑢(𝑟 ≥ 𝑎, 𝜃, 𝜑) = 𝑉 − 𝐸 ቆ𝑟 −
𝑎ଷ

𝑟ଶ
ቇ cos 𝜃 

And:  

𝐸ሬ⃗ (𝑟 ≥ 𝑎, 𝜃, 𝜑) = −∇ሬሬ⃗ 𝑢ห
ஹ

= −
𝜕𝑢

𝜕𝑟
�̂� −

1

𝑟

𝜕𝑢

𝜕𝜃
𝜃 −

1

𝑟 sin 𝜃

𝜕𝑢

𝜕𝜑
𝜑ො  

𝐸ሬ⃗ (𝑟 ≥ 𝑎, 𝜃, 𝜑) = 𝐸 ቆ1 +
2𝑎ଷ

𝑟ଷ
ቇ cos 𝜃 �̂� − 𝐸 ቆ1 −

𝑎ଷ

𝑟ଷ
ቇ sin 𝜃 𝜃 

 

Note: Potential everywhere in a conductor is same. Therefore the potential inside the sphere is 

constant and equal to 𝑉. i.e.: 

𝑢(𝑟 ≤ 𝑎, 𝜃, 𝜑) = 𝑉 

𝐸ሬ⃗ (𝑟 ≤ 𝑎, 𝜃, 𝜑) = −∇ሬሬ⃗ 𝑢ห
ஸ

= −∇ሬሬ⃗ 𝑉 = 0 

i.e. the electric field intensity inside the conducting sphere is zero.  
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Problem: 6.2 

Calculate the gravitational potential at a general point in space due to a uniform ring of 

radius 𝑎 and total mass 𝑀. 

Solution: 

The gravitational potential 𝑢(�⃗�) obeys Laplace equation in a region, where mass density 

is zero. Therefore in the present problem, 𝑢(�⃗�) satisfies Laplace equation (∇ଶ𝑢 = 0) 

everywhere except on the ring. The symmetry of the problem suggests that cylindrical or 

spherical polar coordinates should be used. However, we here use the solution of Laplace 

equation in spherical polar coordinates: 

𝑢(𝑟, 𝜃, 𝜑) =
൫𝐴𝑟 + 𝐵𝑟ି(ାଵ)൯𝑃

(cos 𝜃)𝑒ఝ

,

𝑤𝑖𝑡ℎ 𝑙 = 0,1,2 … ; 𝑚 = 0, ±1 … … ± 𝑙

ൢ … … … (6.27) 

Let the Z axis is along the symmetry axis of the ring. Due to azimuthal symmetry of the 

present problem, the solution should not depend on 𝜑, and we must have: 

𝑚 = 0 

And therefore: 

𝑢(𝑟, 𝜃, 𝜑) = ൫𝐴𝑟 + 𝐵𝑟ି(ାଵ)൯𝑃
(cos 𝜃)

ஶ

ୀ

= ൫𝐴𝑟 + 𝐵𝑟ି(ାଵ)൯𝑃(cos 𝜃)

ஶ

ୀ

… (𝑃6.2.1) 

The solution is valid everywhere including 𝑟 = 0 and 𝑟 → ∞, except on the ring i.e. for 

𝑟, 𝜃 = 𝑎,
గ

ଶ
  , where 𝑎 is the radius of the ring. Therefore we should expect (i) 𝑢 to be finite 

at 𝑟 = 0 and (ii) 𝑢 → 0 for 𝑟 → ∞. To satisfy the conditions at 𝑟 = 0 and 𝑟 → ∞ it seems 

that both of 𝐴  and 𝐵  should be zero. But then 𝑢(𝑟, 𝜃, 𝜑) becomes zero everywhere which 

is not an acceptable result. Since Laplace equation Laplace equation ∇ଶ𝑢 = 0 is not 

satisfied on the ring (𝑟 = 𝑎), therefore the solution P6.2.1 is not valid on the ring and the 

expression of 𝑢(𝑟, 𝜃, 𝜑) changes at 𝑟 = 𝑎. Therefore let us take two regions: 

(i) 𝑟 < 𝑎. In this region we must have 𝐵 = 0, since otherwise 𝑢(𝑟, 𝜃, 𝜑) becomes 

infinite at 𝑟 = 0 for the term 𝐵𝑟ି(ାଵ). 

Therefore: 

𝑢(𝑟, 𝜃, 𝜑) =  𝐴𝑟𝑃(cos 𝜃)

ஶ

ୀ

  for 𝑟 < 𝑎  … (𝑃6.2.2) 
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(ii) 𝑟 > 𝑎. In this region we must have 𝐴 = 0, since otherwise 𝑢(𝑟, 𝜃, 𝜑) becomes 

infinite at 𝑟 → ∞ for the term 𝐴𝑟 . 𝑖.e. 

𝑢(𝑟, 𝜃, 𝜑) =  𝐵𝑟ି(ାଵ)𝑃(cos 𝜃)

ஶ

ୀ

 for 𝑟 > 𝑎  … (𝑃6.2.3) 

𝐴  and 𝐵  are to be determined using known expressions of 𝑢(𝑟, 𝜃, 𝜑) for particular values 

of 𝑟, 𝜃 and 𝜑.  We can easily obtain the expression of 𝑢(𝑟, 𝜃, 𝜑) for axial points i.e. at (𝑧, 0): 

𝑢(𝑟, 𝜃, 𝜑) = 𝑢(𝑟, 0, 𝜑) = 𝑢(𝑧, 0) = −
𝐺𝑚

√𝑎ଶ + 𝑧ଶ
… … … (𝑃6.2.4) 

From (P6.2.2), at (𝑧, 0) with 𝑟 < 𝑎, 

𝑢(𝑟, 0, 𝜑) = 𝑢(𝑧, 0) =  𝐴𝑧𝑃(cos 0)



 

=  𝐴𝑧

ஶ

ୀ

;   [as 𝑃(cos 0) = 𝑃(1) = 1] … … … (𝑃6.2.2𝐴) 

From 𝑃6.2.4:  

𝑢(𝑧, 0) = −
𝐺𝑚

√𝑎ଶ + 𝑧ଶ
= −

𝐺𝑚

𝑎
ቆ1 +

𝑧ଶ

𝑎ଶ
ቇ

ିଵ ଶ⁄

= −
𝐺𝑚

𝑎
ቆ1 +

𝑧ଶ

𝑎ଶ
ቇ

ିଵ ଶ⁄

 

= −
𝐺𝑚

𝑎


ቀ−
1
2

ቁ ቀ−
1
2

− 1ቁ ቀ−
1
2

− 2ቁ ∙∙∙ ቆቀ−
1
2

ቁ − 𝑙 + 1ቇ

𝑙!

ஶ

ୀ

ቆ
𝑧ଶ

𝑎ଶ
ቇ



 

= −
𝐺𝑚

𝑎


ቀ−
1
2

ቁ ቀ−
3
2

ቁ ቀ−
5
2

ቁ ∙∙∙ ቀ
1 − 2𝑙

2
ቁ

𝑙!

ஶ

ୀ

ቀ
𝑧

𝑎
ቁ

ଶ

= −𝐺𝑚 (−1)
1 ∙ 3 ∙ 5 ∙∙∙ (1 − 2𝑙)

2𝑙! 𝑎ଶାଵ
𝑧ଶ

ஶ

ୀ

 

= −𝐺𝑚 
1

𝑎
−

1 ∙ 3

2𝑎ଷ
𝑧ଶ +

1 ∙ 3 ∙ 5

2ଶ2! 𝑎ସାଵ
𝑧ସ − ⋯ ൨ … … … (𝑃6.2.5) 

Comparing (𝑃6.2.2𝐴) and (𝑃6.2.5) we have: 

𝐴ଶ = −(−1)𝐺𝑚
1 ∙ 3 ∙ 5 ∙∙∙ (1 − 2𝑙)

2𝑙! 𝑎ଶାଵ

𝐴ଶାଵ = 0                                                  
ൡ … … … (𝑃6.2.6) 
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Therefore from (𝑃6.2.2) and (𝑃6.2.6) we can write: 

𝑢(𝑟, 𝜃, 𝜑) =
−𝐺𝑚

𝑎
(−1)

1 ∙ 3 ∙ 5 ∙∙∙ (1 − 2𝑙)

2𝑙!
ቀ

𝑟

𝑎
ቁ

ଶ

𝑃ଶ(cos 𝜃)

ஶ

ୀ

  for 𝑟 < 𝑎 

From (P6.2.3), at (𝑧, 0) with 𝑟 < 𝑎, 

𝑢(𝑟, 0, 𝜑) = 𝑢(𝑧, 0) =  𝐵𝑧ି(ାଵ)

ஶ

ୀ

=
1

𝑧
 𝐵𝑧ି

ஶ

ୀ

… … … (𝑃6.2.3𝐴) 

From 𝑃6.2.4:  

𝑢(𝑧, 0) = −
𝐺𝑚

√𝑎ଶ + 𝑧ଶ
= −

𝐺𝑚

𝑧
ቆ1 +

𝑎ଶ

𝑧ଶ
ቇ

ିଵ ଶ⁄

= −
𝐺𝑚

𝑧
ቆ1 +

𝑎ଶ

𝑧ଶ
ቇ

ିଵ ଶ⁄

 

= −
𝐺𝑚

𝑧
(−1)

1 ∙ 3 ∙ 5 ∙∙∙ (1 − 2𝑙)𝑎ଶ

2𝑙!

ஶ

ୀ

1

𝑧ଶ
… … … (𝑃6.2.7) 

Comparing (𝑃6.2.3𝐴) and (𝑃6.2.7) we have: 

𝐵ଶ = −(−1)𝐺𝑚
1 ∙ 3 ∙ 5 ∙∙∙ (1 − 2𝑙)𝑎ଶ

2𝑙!
𝐵ଶାଵ = 0                                                        

ቑ … … … (6.2.8) 

Therefore (𝑃6.2.3) and (𝑃6.2.7) we can write: 

𝑢(𝑟, 𝜃, 𝜑) =
−𝐺𝑚

𝑟
(−1)

1 ∙ 3 ∙ 5 ∙∙∙ (1 − 2𝑙)

2𝑙!
ቀ

𝑎

𝑟
ቁ

ଶ

𝑃ଶ(cos 𝜃)

ஶ

ୀ

 for 𝑟 > 𝑎 

Therefore finally we have: 

𝑢(𝑟, 𝜃, 𝜑) =
−𝐺𝑚

𝑎
1 + (−1)

1 ∙ 3 ∙ 5 ∙∙∙ (1 − 2𝑙)

2𝑙!
ቀ

𝑟

𝑎
ቁ

ଶ

𝑃ଶ(cos 𝜃)

ஶ

ୀଵ

൩   for 𝑟 < 𝑎

𝑢(𝑟, 𝜃, 𝜑) =
−𝐺𝑚

𝑟
1 + (−1)

1 ∙ 3 ∙ 5 ∙∙∙ (1 − 2𝑙)

2𝑙!
ቀ

𝑎

𝑟
ቁ

ଶ

𝑃ଶ(cos 𝜃)

ஶ

ୀଵ

൩  for 𝑟 > 𝑎
⎭
⎪
⎬

⎪
⎫

… (𝑃6.2.8) 

Any of these two relations are valid at 𝑟 = 𝑎 for all values of 𝜃 except for 𝜃 = 𝜋 2⁄ , since 

𝑟 = 𝑎, 𝜃 = 𝜋 2⁄  means the material of the ring, where Laplace equation is not applicable. 

 


