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C11T  

Quantum Mechanics and Applications # Credits 04 

Syllabus Chapter: 3. Quantum theory of hydrogen-like atoms 

3.1 Angular momentum operators:  

In classical mechanics the angular momentum of a particle having position �⃗� and linear momentum 

𝑝 is given by:  

𝐿ሬ⃗ = 𝑟 × 𝑝 … … … (3.1) 

[Note that 𝐿ሬ⃗  is described with respect to a point, from which the position vector is measured, i.e. 

with respect to the origin. Thus 𝐿ሬ⃗  depends on the choice of origin.] 

In quantum mechanics, position and momentum are represented by operators �⃗�መ  and 𝑝መ, given by: 

𝑟መ = �⃗�   and 𝑝መ = −𝑖ℏ∇ሬሬ⃗ . 

And therefore the angular momentum operator  𝐿ሬ⃗ is given by: 

𝐿ሬ⃗


= 𝑟መ ×  𝑝መ = �⃗� × −𝑖ℏ∇ሬሬ⃗  = −𝑖ℏ �⃗� × ∇ሬሬ⃗ . 

However, quantum mechanical particles have another type of angular momentum called spin 

angular momentum ൫𝑆൯ which has no classical analogy with the classical angular momentum. The 

operator, representing the spin angular momentum, is called spin angular momentum operator ቀ𝑆
መ
ቁ. 

[We shall discuss about the spin angular momentum in a little detail later.] To differentiate from 

spin angular momentum, in quantum mechanics 𝐿ሬ⃗  is called orbital angular momentum and 𝐿ሬ⃗ is 

called orbital angular momentum operator.  

In quantum mechanics, the most frequently used operators related to orbital angular momentum, 

are 𝐿ଶ and 𝐿௭ representing respectively the square and Z-component of orbital angular momentum.  

Components of orbital angular momentum operator 

𝐿ሬ⃗


= 𝑟መ ×  𝑝መ  

𝐿௫ = 𝑦ො�̂�௭ − �̂��̂�௬ ,   𝐿௬ = �̂��̂�௫ − 𝑥ො�̂�௭,   𝐿௭ = 𝑥ො�̂�௬ − 𝑦ො�̂�௫ 

𝐿ሬ⃗


= −𝑖ℏ �⃗� × ∇ሬሬ⃗ . 

𝐿௫ = −𝑖ℏ ൬𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
൰ ;     𝐿௬ = −𝑖ℏ ൬𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
൰ ;     𝐿௭ = −𝑖ℏ ൬𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
൰ … … (3.2)  
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Commutation relation among  𝑳𝒙, 𝑳𝒚, 𝑳𝒛 

ൣ𝐿௫, 𝐿௬൧ = ൣ𝑦ො�̂�௭ − �̂��̂�௬, �̂��̂�௫ − 𝑥ො�̂�௭൧ = [𝑦ො�̂�௭, �̂��̂�௫] − [𝑦ො�̂�௭, 𝑥ො�̂�௭] − ൣ�̂��̂�௬, �̂��̂�௫൧ + ൣ�̂��̂�௬, 𝑥ො�̂�௭൧ 

Now   �̂�௫ = −𝑖ℏ
డ

డ௫
  and 𝑥ො = 𝑥 and so on. 

Therefore, only pairs among  𝑥ො, 𝑦ො, �̂�, �̂�௫, �̂�௬, �̂�௭, which do not commute, are 𝑥ො and �̂�௫,  𝑦ො and �̂�௬,  

�̂� and �̂�௭.  

Also   [𝑥ො, �̂�௫] = ൣ𝑦ො, �̂�௬൧ = [�̂�, �̂�௭] = 𝑖ℏ. 

Therefore:  ൣ𝐿௫, 𝐿௬൧ = [𝑦�̂�௭, 𝑧�̂�௫] − [𝑦ො�̂�௭, 𝑥ො�̂�௭] − ൣ�̂��̂�௬, �̂��̂�௫൧ + ൣ�̂��̂�௬, 𝑥ො�̂�௭൧  

= [𝑦�̂�௭, �̂�௫𝑧] + ൣ�̂�௬𝑧, 𝑥�̂�௭൧         = 𝑦�̂�௫[�̂�௭, 𝑧] + �̂�௬𝑥[𝑧, �̂�௭]           = 𝑦�̂�௫(−𝑖ℏ) + �̂�௬𝑥(𝑖ℏ) 

= 𝑖ℏ൫𝑥�̂�௬ − 𝑦�̂�௫൯ 

i. e.   ൣ𝐿௫, 𝐿௬൧ = 𝑖ℏ 𝐿௭.   Similarly  ൣ𝐿௬, 𝐿௭൧ = 𝑖ℏ 𝐿௫;     and    ൣ𝐿௭, 𝐿௫൧ = 𝑖ℏ 𝐿௬ … … … (3.3) 

Spin Angular Momentum ൫ 𝑺ሬሬ⃗  ൯ 

Like every small particle, electron also has spin angular momentum ൫ 𝑺ሬሬ⃗  ൯ which is different from 

orbital angular momentum. Spin angular momentum of an electron is its intrinsic angular 

momentum. Orbital angular momentum can change due to transition of the electron from one 

quantum state to another, but spin angular momentum of an electron never changes. Electron 

spin is a quantum mechanical phenomenon and is different from the classical spin of a body 

which is the sum of the orbital motions of its constituent particles about the spin axis. Corresponding 

to its spin motion, electron has spin magnetic moment also. Existence of electron spin was first 

suggested by and its theoretical basis was first given by Goudsmit & Uhlenbeck in 1925 to explain 

anomalous Zeeman effect. They also explained the result of Stern-Gerlach Experiment (1922) with 

the concept of electron spin. The concept of electron spin has been developed by Pauli (1927) and 

further, with the development of relativistic quantum mechanics, by Paul Dirac (1928). 

To understand that spin is not a classical concept, you may do the following problem:  

 
Griffiths, Introduction to Quantum Mechanics, 2nd Edition, Page-172, Problem: 4.25. 
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3.1.1 General theory of angular momentum 

Spin angular momentum has no expression similar to that of orbital angular momentum as 

expressed by equation (3.1). But both spin and orbital angular momentum operators satisfy the 

common relations given below. Representing both spin and orbital angular momentum operators 

by �⃗�
 and their components by  𝐽መ௫, 𝐽መ௬ , 𝐽መ௭ these relations can be written as: 

�⃗�


= 𝐽መ௫𝚤መ̇ + 𝐽መ௬𝚥መ̇ +  𝐽መ௭𝑘  ൣwhere 𝚤መ̇, 𝚥̇መ, 𝑘 are unit vectors along X, Y & Z axes൧ … … … (3.4𝐴)  

𝐽መଶ = 𝐽መ௫
ଶ

+ 𝐽መ௬
ଶ

+ 𝐽መ௭
ଶ

… … … (3.4𝐵)  

ൣ𝐽መ௫, 𝐽መ௬൧ = 𝑖ℏ 𝐽መ௭,   ൣ𝐽መ௬ , 𝐽መ௭൧ = 𝑖ℏ 𝐽መ௫ ,   ൣ𝐽መ௭, 𝐽መ௫൧ = 𝑖ℏ 𝐽መ௬ … … … (3.4𝐶)  

Based on these relations the theory of angular momentum was developed. 

Commutation relation among  𝐽መଶ  𝑎𝑛𝑑  𝐽መ௫, 𝐽መ௬ , 𝐽መ௭:  

ൣ𝐽መଶ, 𝐽መ௫൧ 

= ቂ𝐽መ௫
ଶ

+ 𝐽መ௬
ଶ

+ 𝐽መ௭
ଶ

, 𝐽መ௫ቃ 

= ቂ𝐽መ௫
ଶ

, 𝐽መ௫ቃ + ቂ𝐽መ௬
ଶ

, 𝐽መ௫ቃ + ቂ𝐽መ௭
ଶ

, 𝐽መ௫ቃ 

= ൣ𝐽መ௫𝐽መ௫ , 𝐽መ௫൧ + ൣ𝐽መ௬𝐽መ௬ , 𝐽መ௫൧ + ൣ𝐽መ௭𝐽መ௭, 𝐽መ௫൧ 

= 𝐽መ௫ൣ𝐽መ௫ , 𝐽መ௫൧ + ൣ𝐽መ௫ , 𝐽መ௫൧𝐽መ௫ + 𝐽መ௬ൣ𝐽መ௬ , 𝐽መ௫൧ + ൣ𝐽መ௬ , 𝐽መ௫൧𝐽መ௬ + 𝐽መ௭ൣ𝐽መ௭, 𝐽መ௫൧ + ൣ𝐽መ௭, 𝐽መ௫൧𝐽መ௭ 

= 𝐽መ௬൫−𝑖ℏ 𝐽መ௭൯ + ൫−𝑖ℏ 𝐽መ௭൯𝐽መ௬ + 𝐽መ௭൫𝑖ℏ 𝐽መ௬൯ + ൫𝑖ℏ 𝐽መ௬൯𝐽መ௭ 

= 0 

Thus ൣ𝐽መଶ, 𝐽መ௫൧ = 0.  Similarly,  ൣ𝐽መଶ, 𝐽መ௬൧ = 0  and ൣ𝐽መଶ, 𝐽መ௭൧ = 0. …….. (3.5) 

i.e. 𝐽መଶcommute with the components of 𝐽መ. 

Or, compactly: ቂ𝐽መଶ, 𝐽
መ
ቃ = 0……… (3.5A) 

𝐽መଶand any component of 𝐽መ, say 𝐽መ௭, can have simultaneous eigen function, say 𝑓. If 𝜆ℏଶ and 𝜇ℏ are 

eigenvalues of 𝐽መଶ and 𝐽መ௭ for their simultaneous eigen function 𝑓, then we should have:  

𝐽መଶ𝑓 = 𝜆ℏଶ𝑓  … … … (3.6𝐴)  and  𝐽መ௭𝑓 = 𝜇ℏ𝑓 … … … (3.6𝐵). 

3.1.1.1 ‘Ladder operators’ 

𝐽መ± = 𝐽መ௫ ± 𝑖𝐽መ௬ are called ladder operators for reason to be clear in the following discussions. Note 

that 𝐽መ±
ற

= 𝐽መ∓. 



 

C11T Ch-3 Quantum theory of H atom # Debasish Aich, Dept. of Physics, Kharagpur College          4 

 

# Commutation relation of 𝐽መ𝟐 with ladder operators  

ൣ𝐽መଶ, 𝐽መ±൧ = ൣ𝐽መଶ, 𝐽መ௫൧ ± 𝑖ൣ𝐽መଶ, 𝐽መ௬൧ = 0,  since 𝐽መଶ commutes with 𝐽መ௫, 𝐽መ௬ and 𝐽መ௭. ……… (3.7) 

# Commutation relation of 𝐽መ𝒛 with ladder operators 

ൣ𝐽መ௭, 𝐽መ±൧ = ൣ𝐽መ௭ , 𝐽መ௫൧ ± 𝑖ൣ𝐽መ௭, 𝐽መ௬൧ = 𝑖ℏ 𝐽መ௬ ± ℏ 𝐽መ௫ = ±ℏ൫𝐽መ௫ ± 𝑖𝐽መ௬൯ = ±ℏ𝐽መ± …….. (3.8A) 

ൣ𝐽መ௫, 𝐽መ±൧ = ൣ𝐽መ௫, 𝐽መ௫൧ ± 𝑖ൣ𝐽መ௫ , 𝐽መ௬൧ = ∓ℏ𝐽መ௭  ……… (3.8B) 

ൣ𝐽መ௬ , 𝐽መ±൧ = ൣ𝐽መ௬ , 𝐽መ௫൧ ± 𝑖ൣ𝐽መ௬ , 𝐽መ௬൧ = −𝑖ℏ𝐽መ௭  ……… (3.8C) 

# Let 𝐽መ𝟐and 𝐽መ𝒛 have the simultaneous 𝒇. Show that  𝐽መ±𝒇 will also be the simultaneous eigen 

function of 𝐽መ𝟐and 𝐽መ𝒛. 

𝐽መଶ൫𝐽መ±𝑓൯ = 𝐽መ±𝐽መଶ𝑓 = 𝐽መ±𝜆ℏଶ𝑓 = 𝜆ℏଶ൫𝐽መ±𝑓൯   ൣsince 𝐽መଶcommute with 𝐽መ±൧  

i.e.  𝐽መ±𝑓 is the eigen function of 𝐽መଶ. 

𝐽መ௭൫𝐽መ±𝑓൯ = ൣ𝐽መ௭, 𝐽መ±൧𝑓 + 𝐽መ±𝐽መ௭𝑓 = ±ℏ𝐽መ±𝑓 + 𝐽መ±𝜇ℏ𝑓 = ±ℏ𝐽መ±𝑓 + 𝜇ℏ𝐽መ±𝑓 = (𝜇ℏ ± ℏ)൫𝐽መ±𝑓൯ 

Thus 𝐽መ±𝑓 is the eigen function of 𝐽መ௭.  

Therefore 𝐽±𝑓 is the simultaneous eigen function of 𝐽መଶand  𝐽መ௭. 

# Home Task: 𝐈𝐟   𝑱𝒛𝒇 = 𝝁ℏ𝒇, 𝐚𝐧𝐝        𝑱𝟐𝒇 = 𝝀ℏ𝟐𝒇, then show that:   

𝑱𝒛൫𝑱±𝒇൯ = (𝝁ℏ ± ℏ)൫𝑱±𝒇൯,   

𝑱𝒛 ቀ𝑱±
𝟐

𝒇ቁ = (𝝁ℏ ± 𝟐ℏ) ቀ𝑱±
𝟐

𝒇ቁ,   

𝑱𝒛 ቀ𝑱±
𝟑

𝒇ቁ = (𝝁ℏ ± 𝟑ℏ) ቀ𝑱±
𝟑

𝒇ቁ … 

𝐚𝐧𝐝  𝑱𝟐൫𝑱±𝒇൯ = 𝝀ℏ𝟐൫𝑱±𝒇൯,        𝑱𝟐 ቀ𝑱±
𝟐

𝒇ቁ = 𝝀ℏ𝟐 ቀ𝑱±
𝟐

𝒇ቁ ,            𝑱𝟐 ቀ𝑱±
𝟑

𝒇ቁ = 𝝀ℏ𝟐 ቀ𝑱±
𝟑

𝒇ቁ … … … 

# Ladder operators: 

We have: 

𝐽መ௭𝑓 = 𝜇ℏ𝑓 

𝐽መ௭൫𝐽መା𝑓൯ = (𝜇ℏ + ℏ)൫𝐽መା𝑓൯            &           𝐽መ௭൫𝐽መି 𝑓൯ = (𝜇ℏ − ℏ)൫𝐽መି 𝑓൯ 

𝐽መ௭ ቀ𝐽መା
ଶ

𝑓ቁ = (𝜇ℏ + 2ℏ) ቀ𝐽መା
ଶ

𝑓ቁ      &      𝐽መ௭ ቀ𝐽መି
ଶ

𝑓ቁ = (𝜇ℏ − 2ℏ) ቀ𝐽መା
ଶ

𝑓ቁ 

𝐽መ௭ ቀ𝐽መା
ଷ

𝑓ቁ = (𝜇ℏ + 3ℏ) ቀ𝐽መା
ଷ

𝑓ቁ     &      𝐽መ௭ ቀ𝐽መି
ଷ

𝑓ቁ = (𝜇ℏ − 3ℏ) ቀ𝐽መି
ଷ

𝑓ቁ 

……. …… …… …… …… 

𝐽መ௭൫𝐽መା


𝑓൯ = (𝜇ℏ + 𝑛ℏ)൫𝐽መା


𝑓൯    &      𝐽መ௭൫𝐽መି


𝑓൯ = (𝜇ℏ − 𝑛ℏ)൫𝐽መି


𝑓൯ 
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Thus by each operation of 𝐽መା on 𝑓, we obtain a function for which the eigen value of 𝐽መ௭ is raised by 

ℏ. Similarly by each operation of 𝐽መି  on 𝑓, we obtain a function for which the eigen value of 𝐽መ௭ is 

lowered by ℏ. Therefore 𝐽መା is called raising operator and 𝐽መି  is called lowering operator. Or in 

general  𝐽መ± are called ladder operators.  

However it should be noted that, by operating on any eigen function 𝑓,  𝐽መ± cannot raise or lower the 

eigen value of  𝐽መଶ.  

# Show that: 𝑱𝟐 = 𝑱±𝑱∓ + 𝑱𝒛
𝟐

∓ ℏ𝑱𝒛 

𝐏𝐫𝐨𝐨𝐟:    Jመ±Jመ∓ = ൫Jመ୶ ± iJመ୷൯൫Jመ୶ ∓ iJመ୷൯ = Jመ୶
ଶ

+ Jመ୷
ଶ

∓ i(Jመ୶Jመ୷ − Jመ୷Jመ୶) 

= 𝐽መଶ − 𝐽መ௭
ଶ

∓ 𝑖ൣ𝐽መ௫ , 𝐽መ௬൧ = 𝐽መଶ − 𝐽መ௭
ଶ

∓ 𝑖(𝑖ℏ) 

Therefore, 𝐽መ±𝐽መ∓ = 𝐽መଶ − 𝐽መ௭
ଶ

± ℏ𝐽መ௭ 

⇒ 𝐽መଶ = 𝐽መ±𝐽መ∓ + 𝐽መ௭
ଶ

∓ ℏ𝐽መ௭ 

# Limit on the number of operation of the eigen function by raising or lowering operator 

We have,    if       𝐽መ௭𝑓 = 𝜇ℏ𝑓,       and        𝐽መଶ𝑓 = 𝜆ℏଶ𝑓,       then:  

𝐽መ௭൫𝐽መା𝑓൯ = ℏ(𝜇 + 1)൫𝐽መା𝑓൯            &           𝐽መ௭൫𝐽መି 𝑓൯ = ℏ(𝜇 − 1)൫𝐽መି 𝑓൯ 

𝐽መ௭ ቀ𝐽መା
ଶ

𝑓ቁ = ℏ(𝜇 + 2) ቀ𝐽መା
ଶ

𝑓ቁ      &      𝐽መ௭ ቀ𝐽መି
ଶ

𝑓ቁ = ℏ(𝜇 − 2) ቀ𝐽መା
ଶ

𝑓ቁ 

𝐽መ௭ ቀ𝐽መା
ଷ

𝑓ቁ = ℏ(𝜇 + 3) ቀ𝐽መା
ଷ

𝑓ቁ     &      𝐽መ௭ ቀ𝐽መି
ଷ

𝑓ቁ = ℏ(𝜇 − 3) ቀ𝐽መି
ଷ

𝑓ቁ 

……. 

𝐽መ௭൫𝐽መା


𝑓൯ = ℏ(𝜇 + 𝑛)൫𝐽መା


𝑓൯    &      𝐽መ௭൫𝐽መି


𝑓൯ = ℏ(𝜇 − 𝑛)൫𝐽መି


𝑓൯ 

And 

𝐽መଶ൫𝐽መ±𝑓൯ = 𝜆ℏଶ൫𝐽መ±𝑓൯,     𝐽መଶ ቀ𝐽መ±
ଶ

𝑓ቁ = 𝜆ℏଶ ቀ𝐽መ±
ଶ

𝑓ቁ,    𝐽መଶ ቀ𝐽መ±
ଷ

𝑓ቁ = 𝜆ℏଶ ቀ𝐽መ±
ଷ

𝑓ቁ, 

 …     

𝐽መଶ൫𝐽መ±


𝑓൯ = 𝜆ℏଶ൫𝐽መ±


𝑓൯ 

Thus for the eigen functions obtained by multiple operations of 𝐽መ± on 𝑓, the eigen value of 𝐽መ௭ 

changes in each step by ±ℏ but the eigen value of 𝐽መଶ remains constant.  

Now, we have, 〈𝐽ଶ〉 = 〈𝐽௫
ଶ〉 + 〈𝐽௬

ଶ〉 + 〈𝐽௭
ଶ〉 
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Also the expectation value of the square of an observable is always positive. i.e.  

〈𝐽௫
ଶ〉 ≥ 0    &     〈𝐽௬

ଶ〉  ≥ 0 

Therefore   〈𝐽ଶ〉 ≥ 〈𝐽௭
ଶ〉 and hence the eigen value of 𝐽መଶ is greater than the eigen value of 𝐽መ௭

ଶ
. 

Now each operation by 𝐽መା on the eigen function raises the eigen value of 𝐽መ௭ by ℏ, but the eigen value 

of  𝐽መଶ remains the same i.e. 𝜆ℏ. This operation cannot continue infinitely and there must be some 

upper limit of the number of this operation, since eigen value of  𝐽መ௭
ଶ
 must not exceed that of 𝐽መଶ. If 

𝑓௨ be the eigen function obtained by maximum number of allowed operation by 𝐽መା then further 

operation by 𝐽መା will produce null result.  

Thus  𝐽መା𝑓௨ = 0.  

On the other hand, by each operation of the eigen function by the lowering operator, the eigen value 

of 𝐽መ௭ decreases by ℏ. After n times of operation by the lowering operator, we obtain an eigen 

function, for which the eigen value of  𝐽መ௭ is ℏ(𝜇 − 𝑛). With the increase of 𝑛, initially the magnitude 

of ℏ(𝜇 − 𝑛) decreases and as 𝑛 exceeds 𝜇,  ℏ(𝜇 − 𝑛) becomes negative and its magnitude starts to 

increase. Consequently, the eigen value of 𝐽መ௭
ଶ
, i.e.  ℏଶ(𝜇 − 𝑛)ଶ will increase and may exceed  𝜆ℏଶ, 

which is unacceptable. Thus there must be some upper limit of the number of allowed operation of 

the lowering operator on 𝑓.  

Thus, if 𝑓 be the eigen function obtained by maximum number of allowed operation of 𝐽መି  on 𝑓, 

then 𝐽መି 𝑓 = 0. 

# Allowed eigen values of 𝑱𝒛 and 𝑱𝟐: 

From 5. We can write  

𝐽መଶ𝑓 = ቀ𝐽መି 𝐽መା + 𝐽መ௭
ଶ

+ ℏ𝐽መ௭ቁ 𝑓 = 𝐽መି 𝐽መା𝑓 + 𝐽መ௭
ଶ

𝑓 + ℏ𝐽መ௭𝑓 = 𝐽መି 𝐽መା𝑓 + 𝜇ଶℏଶ𝑓 + 𝜇ℏଶ𝑓 …..(i) 

and 

𝐽መଶ𝑓 = ቀ𝐽መା𝐽መି + 𝐽መ௭
ଶ

− ℏ𝐽መ௭ቁ 𝑓 = 𝐽መା𝐽መି 𝑓 + 𝐽መ௭
ଶ

𝑓 − ℏ𝐽መ௭𝑓 = 𝐽መା𝐽መି 𝑓 + 𝜇ଶℏଶ𝑓 − 𝜇ℏଶ𝑓……..(ii) 

Let ℏ𝑗 and ℏ𝑗ᇱ be the eigen values of 𝐽መ௭ for eigen functions 𝑓௨ and 𝑓 respectively. i.e. these are the 

highest and lowest eigen values of 𝐽መ௭. 

Then using (i): 

𝐽መଶ𝑓௨ = 𝐽መି 𝐽መା𝑓௨ + 𝐽መ௭
ଶ

𝑓௨ + ℏ𝐽መ௭𝑓௨ = 0 + ℏଶ𝑗ଶ𝑓௨ + ℏଶ𝑗𝑓௨ = ℏଶ𝑗(𝑗 + 1)𝑓௨. 

And using (ii): 
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𝐽መଶ𝑓 = 𝐽መା𝐽መି 𝑓 + 𝐽መ௭
ଶ

𝑓 − ℏ𝐽መ௭𝑓 = 0 + ℏଶ𝑗ᇱଶ
𝑓 − ℏଶ𝑗ᇱ𝑓 = ℏଶ𝑗ᇱ(𝑗ᇱ − 1)𝑓.  

Since 𝐽መଶ have same eigen value  𝜆 for raised or lowered eigen function, therefore:  

𝜆 = ℏଶ𝑗(𝑗 + 1) = ℏଶ𝑗ᇱ(𝑗ᇱ − 1)  

⇒ 𝑗ᇱ = −𝑗 𝑜𝑟 𝑗ᇱ = 𝑗 + 1.  

But 𝑗ᇱ = 𝑗 + 1 gives eigen value of 𝐽መ௭ for 𝑓  to be  (𝑗 + 1)ℏ which is greater than the eigen value 

of 𝐽መ௭ for 𝑓௨  i.e. greater than 𝑗ℏ. This is impossible.  

Therefore 𝑗ᇱ ≠ 𝑗 + 1 and we must have 𝑗ᇱ = −𝑗 only.  

Thus the highest and the lowest eigen values of 𝐽መ௭ are 𝑗ℏ and −𝑗ℏ.  

And since the eigen values of 𝐽መ௭ are raised or lowered by ℏ in each step of operation of the eigen 

function by 𝐽መା or 𝐽መି  ,  the eigen values of 𝐽መ௭ will be:   

 −𝑗ℏ, −(𝑗 − 1)ℏ, … … … , (𝑗 − 1)ℏ, 𝑗ℏ. 

Or in general, eigen values of 𝐽መ௭ are given by:  

𝐽௭ = 𝑚ℏ, where 𝑚 = −𝑗 𝑡𝑜 + 𝑗 in integer steps. 

Also eigen values of 𝐽መଶ are given by:      𝜆ℏଶ = 𝑗(𝑗 + 1)ℏଶ.  

# Restrictions on the values of  𝒋. 

Since 𝑚 changes from−𝑗 to+𝑗 in integer steps, so we must have: 

𝑗 = −𝑗 +  𝑁,    [where 𝑁 is an integer] 

⟹ 2𝑗 = 𝑁,   ⟹ 𝑗 = 𝑁 2⁄  

Thus 𝑗 is an integer (for 𝑁 = even) or half integer (for 𝑁 = odd). Thus: 

𝑗 = 0, 1 2⁄ , 1, 3 2⁄ , 2, 5 2⁄ , 3, 7 2⁄ , … … 𝑒𝑡𝑐. 

For each value of 𝑗, 

𝑚 =  −𝑗, −𝑗 + 1, … ..  … …  𝑗 − 1, 𝑗, total  2𝑗 + 1 number of values 

Example: if 𝑗 = 3,  then  𝑚 = −3, −2, −1, 0, 1, 2, 3  

i.e. if 𝑗 is integer, then 𝑚 = 0, ±1, … … ± 𝑗. 

And if 𝑗 =
ହ

ଶ
,  then  𝑚 = −

ହ

ଶ
, −

ଷ

ଶ
, −

ଵ

ଶ
,

ଵ

ଶ
,

ଷ

ଶ
,

ହ

ଶ
  

i.e. if 𝑗 is half integer, then 𝑚 = ±
ଵ

ଶ
, ±

ଷ

ଶ
… … ± 𝑗     
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3.1.1.2 Eigen functions suffixed by 𝒋 and 𝒎: 

Now the eigen functions should be suffixed by 𝑗 and 𝑚 as 𝑓. They can also be represented by the 

ket |𝑗𝑚⟩. 

Thus 𝐽ଶ𝑓 = 𝐽ଶ|𝑗𝑚⟩ = 𝑗(𝑗 + 1)ℏଶ|𝑗𝑚⟩ = 𝑗(𝑗 + 1)ℏଶ𝑓,  

And  𝐽௭𝑓 = 𝐽௭|𝑗𝑚⟩ = 𝑚ℏ|𝑗𝑚⟩ = 𝑚ℏ𝑓,  

with 𝑗 = 0, 1 2⁄ , 1, 3 2⁄ , 2, 5 2⁄ , 3, 7 2⁄ , … … 𝑒𝑡𝑐. and  𝑚 = −𝑗, −𝑗 + 1, … , … 𝑗 − 1, 𝑗. 

𝒋 and 𝒎  are called angular momentum quantum number and magnetic quantum number. 

Note that all the above relations for components 𝐽መ can be proved and are applicable for components 

of 𝐿ሬ⃗ (orbital angular momentum) and 𝑆መ (spin angular momentum). And all the relations for 𝐽መଶ can 

be proved and are applicable for  𝐿ଶ and 𝑆መଶ also. 

*However there is some extra restriction on the orbital angular momentum quantum number 

and orbital magnetic quantum number as we shall see later.  

3.1.2 Orbital Angular Momentum:  

3.1.2.1 Expressions of 𝑳𝒙, 𝑳𝒚, 𝑳𝒛 in spherical polar coordinates: 

𝐿ሬ⃗


= 𝑟መ ×  𝑝መ 

= 𝑟 × −𝑖ℏ∇ሬሬ⃗   

= −𝑖ℏ𝑟�̂� × ൬�̂�
𝜕

𝜕𝑟
+ 𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕

𝜕𝜑
൰ 

= −𝑖ℏ ൬𝑟�̂� × �̂�
𝜕

𝜕𝑟
+ 𝑟�̂� × 𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝑟�̂� × 𝜑ො

1

𝑟 sin 𝜃

𝜕

𝜕𝜑
൰ 

= −𝑖ℏ ൬𝜑ො
𝜕

𝜕𝜃
− 𝜃

1

sin 𝜃

𝜕

𝜕𝜑
൰ 

Using the expressions: 

𝜃 = cos 𝜃 cos 𝜑 𝚤̂ + cos 𝜃 sin 𝜑 𝚥̂ − sin 𝜃 𝑘     and    𝜑ො = − sin 𝜑 𝚤̂ + cos 𝜑 𝚥̂ 

We get: 

𝐿ሬ⃗


= −𝑖ℏ ൭(− sin 𝜑 𝚤̂ + cos 𝜑 𝚥̂)
𝜕

𝜕𝜃
− ൫cos 𝜃 cos 𝜑 𝚤̂ + cos 𝜃 sin 𝜑 𝚥̂ − sin 𝜃 𝑘൯

1

sin 𝜃

𝜕

𝜕𝜑
൱ 

Thus: 
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𝑳𝒙 = −𝒊ℏ ൬− 𝐬𝐢𝐧 𝝋
𝝏

𝝏𝜽
− 𝐜𝐨𝐭 𝜽 𝐜𝐨𝐬 𝝋

𝝏

𝝏𝝋
൰

𝑳𝒚 = −𝒊ℏ ൬𝐜𝐨𝐬 𝝋
𝝏

𝝏𝜽
− 𝐜𝐨𝐭 𝜽 𝐬𝐢𝐧 𝝋

𝝏

𝝏𝝋
൰    

𝑳𝒛 = −𝒊ℏ
𝝏

𝝏𝝋
                                                     

⎭
⎪⎪
⎬

⎪⎪
⎫

… … … (3.9) 

3.1.2.2 𝐏𝐫𝐨𝐯𝐞 𝐭𝐡𝐞 𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧:  𝑳± = ±𝒆±𝒊𝝋ℏ ቀ
𝝏

𝝏𝜽
± 𝒊 𝐜𝐨𝐭 𝜽

𝝏

𝝏𝝋
ቁ. 

Ans.: We have 

𝐿௫ = −𝑖ℏ ൬− sin 𝜑
𝜕

𝜕𝜃
− cot 𝜃 cos 𝜑

𝜕

𝜕𝜑
൰ 

𝐿௬ = −𝑖ℏ ൬cos 𝜑
𝜕

𝜕𝜃
− cot 𝜃 sin 𝜑

𝜕

𝜕𝜑
൰ 

Then 

𝐿ା = 𝐿௫ + 𝑖𝐿௬ = −𝑖ℏ ൭(− sin 𝜑 + 𝑖 cos 𝜑)
𝜕

𝜕𝜃
− cot 𝜃 (cos 𝜑 + 𝑖 sin 𝜑)

𝜕

𝜕𝜑
൱ 

= −𝑖ℏ ൬𝑖𝑒ఝ
𝜕

𝜕𝜃
− cot 𝜃 𝑒ఝ

𝜕

𝜕𝜑
൰ = 𝑒ఝℏ ൬

𝜕

𝜕𝜃
+ 𝑖 cot 𝜃

𝜕

𝜕𝜑
൰ 

𝐿ି = 𝐿௫ − 𝑖𝐿௬ = −𝑖ℏ ൭(− sin 𝜑 − 𝑖 cos 𝜑)
𝜕

𝜕𝜃
− cot 𝜃 (cos 𝜑 − 𝑖 sin 𝜑)

𝜕

𝜕𝜑
൱ 

= −𝑖ℏ ൬−𝑖𝑒ି
𝜕

𝜕𝜃
− cot 𝜃 𝑒ିఝ

𝜕

𝜕𝜑
൰ = −𝑒ିఝℏ ൬

𝜕

𝜕𝜃
− 𝑖 cot 𝜃

𝜕

𝜕𝜑
൰ 

Hence: 

𝐿± = ±𝑒±ఝℏ ൬
𝜕

𝜕𝜃
± 𝑖 cot 𝜃

𝜕

𝜕𝜑
൰ … … … (2) 

3.1.2.3 Prove the relation: 𝐿ା𝐿ି = −ℏଶ ቀ
డమ

డఏమ
+ cot 𝜃

డ

డఏ
+ cotଶ 𝜃

డమ

డఝమ
+ 𝑖

డ

డఝ
ቁ 

Ans.: We have 

𝐿ା = 𝑒ఝℏ ൬
𝜕

𝜕𝜃
+ 𝑖 cot 𝜃

𝜕

𝜕𝜑
൰    𝑎𝑛𝑑  𝐿ି = −𝑒ିఝℏ ൬

𝜕

𝜕𝜃
− 𝑖 cot 𝜃

𝜕

𝜕𝜑
൰ 

Therefore, 𝐿ା𝐿ି𝜓 = −ℏଶ𝑒ఝ ൬
𝜕

𝜕𝜃
+ 𝑖 cot 𝜃

𝜕

𝜕𝜑
൰ 𝑒ିఝ ൬

𝜕

𝜕𝜃
− 𝑖 cot 𝜃

𝜕

𝜕𝜑
൰ 𝜓 

= −ℏଶ𝑒ఝ ൬
𝜕

𝜕𝜃
+ 𝑖 cot 𝜃

𝜕

𝜕𝜑
൰ ൬𝑒ିఝ

𝜕𝜓

𝜕𝜃
− 𝑖 cot 𝜃 𝑒ିఝ

𝜕𝜓

𝜕𝜑
൰ 
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= −ℏଶ𝑒ఝ ൬
𝜕

𝜕𝜃
+ 𝑖 cot 𝜃

𝜕

𝜕𝜑
൰ ൬𝑒ି

𝜕𝜓

𝜕𝜃
൰ − ൬

𝜕

𝜕𝜃
+ 𝑖 cot 𝜃

𝜕

𝜕𝜑
൰ ൬𝑖 cot 𝜃 𝑒ି

𝜕𝜓

𝜕𝜑
൰൨ 

= −ℏଶ𝑒ఝ 
𝜕

𝜕𝜃
൬𝑒ିఝ

𝜕𝜓

𝜕𝜃
൰ + 𝑖 cot 𝜃

𝜕

𝜕𝜑
൬𝑒ି

𝜕𝜓

𝜕𝜃
൰ 

−
𝜕

𝜕𝜃
൬𝑖 cot 𝜃 𝑒ିఝ

𝜕𝜓

𝜕𝜑
൰ − 𝑖 cot 𝜃

𝜕

𝜕𝜑
൬𝑖 cot 𝜃 𝑒ି

𝜕𝜓

𝜕𝜑
൰൨ 

= −ℏଶ𝑒ఝ ቈ𝑒ି
𝜕ଶ𝜓

𝜕𝜃ଶ
+ 𝑖 cot 𝜃 ൫−𝑖𝑒ିఝ൯

𝜕𝜓

𝜕𝜃
+ 𝑖 cot 𝜃 𝑒ିఝ

𝜕ଶ𝜓

𝜕𝜑𝜕𝜃
 

−𝑖(− cosecଶ 𝜃)𝑒ିఝ
𝜕𝜓

𝜕𝜑
− 𝑖 cot 𝜃 𝑒ିఝ

𝜕ଶ𝜓

𝜕𝜃𝜕𝜑
− 𝑖ଶ cotଶ 𝜃 ቆ−𝑖𝑒ିఝ

𝜕𝜓

𝜕𝜑
+ 𝑒ି

𝜕ଶ𝜓

𝜕𝜑ଶ
ቇ 

= −ℏଶ𝑒ఝ ቈ𝑒ି
𝜕ଶ𝜓

𝜕𝜃ଶ
+ cot 𝜃 𝑒ିఝ

𝜕𝜓

𝜕𝜃
+ 𝒊 𝐜𝐨𝐭 𝜽 𝒆ି𝒊𝝋

𝝏𝟐𝝍

𝝏𝝋𝝏𝜽
 

+𝒊 𝐜𝐨𝐬𝐞𝐜𝟐 𝜽 𝒆ି𝒊𝝋
𝝏𝝍

𝝏𝝋
− 𝒊 𝐜𝐨𝐭 𝜽 𝒆ି𝒊𝝋

𝝏𝟐𝝍

𝝏𝜽𝝏𝝋
− 𝒊 𝐜𝐨𝐭𝟐 𝜽 𝒆ି𝒊𝝋

𝝏𝝍

𝝏𝝋
+ cotଶ 𝜃 𝑒ିఝ

𝜕ଶ𝜓

𝜕𝜑ଶ
 

= −ℏଶ ቈ
𝜕ଶ𝜓

𝜕𝜃ଶ
+ cot 𝜃

𝜕𝜓

𝜕𝜃
+𝑖(cosecଶ 𝜃 − cotଶ 𝜃)

𝜕𝜓

𝜕𝜑
+ cotଶ 𝜃

𝜕ଶ𝜓

𝜕𝜑ଶ
 

𝐿ା𝐿ି𝜓 = −ℏଶ ቈ
𝜕ଶ

𝜕𝜃ଶ
+ cot 𝜃

𝜕

𝜕𝜃
+ cotଶ 𝜃

𝜕ଶ

𝜕𝜑ଶ
+𝑖

𝜕

𝜕𝜑
൨ 𝜓 

𝐿ା𝐿ି = −ℏଶ ቈ
𝜕ଶ

𝜕𝜃ଶ
+ cot 𝜃

𝜕

𝜕𝜃
+ cotଶ 𝜃

𝜕ଶ

𝜕𝜑ଶ
+𝑖

𝜕

𝜕𝜑
൨ 

3.1.2.4 Express the operator 𝐿𝟐 in spherical polar coordinates. 

Ans.: We have 

𝐿ଶ = 𝐿±𝐿∓ + 𝐿௭
ଶ

∓ ℏ𝐿௭      

ቂ𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝐽መ = 𝐿 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛  𝐽መଶ = 𝐽መ±𝐽መ∓ + 𝐽መ௭
ଶ

∓ ℏ𝐽መ௭ቃ 

Taking the 1st relation   𝐿ଶ = 𝐿ା𝐿ି + 𝐿௭
ଶ

− ℏ𝐿௭   

And substituting expressions of 𝐿ା𝐿ି  and 𝐿௭
ଶ
 we get: 

𝐿ଶ = −ℏଶ ቆ
𝜕ଶ

𝜕𝜃ଶ
+ cot 𝜃

𝜕

𝜕𝜃
+ cotଶ 𝜃

𝜕ଶ

𝜕𝜑ଶ
+ 𝑖

𝜕

𝜕𝜑
ቇ − ℏଶ

𝜕ଶ

𝜕𝜑ଶ
+ 𝑖ℏଶ

𝜕

𝜕𝜑
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= −ℏଶ ቆ
𝜕ଶ

𝜕𝜃ଶ
+ cot 𝜃

𝜕

𝜕𝜃
+ cotଶ 𝜃

𝜕ଶ

𝜕𝜑ଶ
+ 𝑖

𝜕

𝜕𝜑
+

𝜕ଶ

𝜕𝜑ଶ
− 𝑖

𝜕

𝜕𝜑
ቇ 

= −ℏଶ ቆ
𝜕ଶ

𝜕𝜃ଶ
+ cot 𝜃

𝜕

𝜕𝜃
+ 𝑐𝑜𝑠𝑒𝑐ଶ𝜃

𝜕ଶ

𝜕𝜑ଶ
ቇ 

Or,    𝑳𝟐 = −ℏ𝟐 ቆ
𝟏

𝒔𝒊𝒏𝜽

𝝏

𝝏𝜽
൬𝐬𝐢𝐧 𝜽

𝝏

𝝏𝜽
൰ +

𝟏

𝒔𝒊𝒏𝟐𝜽

𝝏𝟐

𝝏𝝋𝟐
ቇ … … … (3.10)        

Remember:      𝑳𝒛 = −𝒊ℏ
𝝏

𝝏𝝋
… … … (𝟑. 𝟗) 
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3.2 Hydrogen Atom: 

Hydrogen atom is a two body problem consisting of the nucleus and the electron revolving about 

their common centre of mass. The problem can be converted to a one body problem in which the 

nucleus can be considered fixed and the electron moving around the nucleus will have the effective 

mass 𝜇 =
ெಿ

ାெಿ
, 𝑚 and  𝑀ே being the mass of the electron and the nucleus respectively.  

3.2.1 Motion in Spherically Symmetric Potential: 

Potential of the electron in hydrogen atom is:  𝑉(𝑟) = −
మ

ସగఢబ
 ………………….(3.11) 

Nature of the potential is spherically symmetric (central potential) and this suggests that spherical 

polar coordinates will be suitable for the treatment of hydrogen atom problem.  

The potential is time independent. Therefore it is possible to write time independent Schrodinger 

equation for hydrogen atom:     

−
ℏଶ

2𝑚
∇ଶ𝜓(𝑟, 𝜃, 𝜑) + 𝑉(𝑟)𝜓(𝑟, 𝜃, 𝜑) = 𝐸𝜓(𝑟, 𝜃, 𝜑) 

In spherical polar coordinates  

∇ଶ=
1

𝑟ଶ

𝜕

𝜕𝑟
൬𝑟ଶ

𝜕

𝜕𝑟
൰ +

1

𝑟ଶ sin 𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕

𝜕𝜃
൰ +

1

𝑟ଶ sinଶ 𝜃

𝜕ଶ

𝜕𝜑ଶ
 

Therefore the Schrodinger equation becomes:  

−
ℏଶ

2𝜇
ቈ

1

𝑟ଶ

𝜕

𝜕𝑟
൬𝑟ଶ

𝜕

𝜕𝑟
൰ +

1

𝑟ଶ sin 𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕

𝜕𝜃
൰ +

1

𝑟ଶ sinଶ 𝜃

𝜕ଶ

𝜕𝜑ଶ
 𝜓(𝑟, 𝜃, 𝜑) + 𝑉(𝑟)𝜓(𝑟, 𝜃, 𝜑) = 𝐸𝜓(𝑟, 𝜃, 𝜑) 

Or, ቈ
𝜕

𝜕𝑟
൬𝑟ଶ

𝜕

𝜕𝑟
൰ +

1

sin 𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕

𝜕𝜃
൰ +

1

sinଶ 𝜃

𝜕ଶ

𝜕𝜑ଶ
 𝜓(𝑟, 𝜃, 𝜑) +

2𝜇𝑟ଶ

ℏଶ
[𝐸 − 𝑉(𝑟)]𝜓(𝑟, 𝜃, 𝜑) = 0 

… (3.12) 

3.2.2 Separation of variables: 

To solve the differential eqn. we use method of separation of variables by assuming:   

𝜓(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌(𝜃, 𝜑). 

Then Schrodinger eqn. becomes, after some rearrangements:  

1

𝑅

𝑑

𝑑𝑟
ቆ𝑟ଶ

𝜕𝑅(𝑟)

𝜕𝑟
ቇ +

2𝜇𝑟ଶ

ℏଶ
[𝐸 − 𝑉(𝑟)] = −

1

𝑌

1

sin 𝜃

𝜕

𝜕𝜃
ቆsin 𝜃

𝜕𝑌(𝜃, 𝜑)

𝜕𝜃
ቇ −

1

𝑌

1

sinଶ 𝜃

𝜕ଶ𝑌(𝜃, 𝜑)

𝜕𝜑ଶ
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Since two sides of the equation are functions of different variables, they are independent of each 

other. Therefore both of them are equal to a constant, say, 𝜆. Thus the above equation gives two 

equations, one angular and other radial:  

sin 𝜃
𝜕

𝜕𝜃
ቆsin 𝜃

𝜕𝑌(𝜃, 𝜑)

𝜕𝜃
ቇ +

𝜕ଶ𝑌(𝜃, 𝜑)

𝜕𝜑ଶ
+ 𝜆 sinଶ 𝜃 𝑌(𝜃, 𝜑) = 0 … … … (3.13) [𝐀𝐧𝐠𝐮𝐥𝐚𝐫 𝐞𝐪𝐧. ] 

And    
1

𝑟ଶ

𝑑

𝑑𝑟
ቆ𝑟ଶ

𝑑𝑅(𝑟)

𝑑𝑟
ቇ + 

2𝜇

ℏଶ
[𝐸 − 𝑉(𝑟)] −

𝜆

𝑟ଶ
൨ 𝑅(𝑟) = 0 … … … (3.14) [𝐑𝐚𝐝𝐢𝐚𝐥 𝐨𝐫 𝒓 𝐞𝐪𝐧. ] 

 

To solve eqn. (3.13) again we apply the method of separation of variables by assuming:  

𝑌(𝜃, 𝜑) = 𝛩(𝜃)𝛷(𝜑) 

Then this eqn. becomes, after rearrangements: 

𝑠𝑖𝑛 𝜃

𝛩(𝜃)

𝑑

𝑑𝜃
ቆ𝑠𝑖𝑛 𝜃

𝑑𝛩(𝜃)

𝑑𝜃
ቇ + 𝜆 𝑠𝑖𝑛ଶ 𝜃 = −

1

𝛷(𝜑)

𝑑ଶ𝛷(𝜑)

𝑑𝜑ଶ
. 

As before, the two sides of the equation are functions of different variables. So they are independent 

of each other and so are equal to a constant, say, 𝑚ଶ. Thus the above equation gives two equations: 

sin 𝜃

Θ(𝜃)

𝑑

𝑑𝜃
ቆsin 𝜃

𝑑Θ(𝜃)

𝑑𝜃
ቇ + 𝜆 sinଶ 𝜃 = 𝑚ଶ 

Note: The angular part i.e. equation (3.13) can be written as 

−
1

sin 𝜃

𝜕

𝜕𝜃
ቆsin 𝜃

𝜕𝑌(𝜃, 𝜑)

𝜕𝜃
ቇ −

1

sinଶ 𝜃

𝜕ଶ𝑌(𝜃, 𝜑)

𝜕𝜑ଶ
= 𝜆𝑌(𝜃, 𝜑) … … … (3.13A)  

But the angular momentum operator 𝐿ଶ is given by:  

𝐿ଶ = −ℏଶ ቆ
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕

𝜕𝜃
൰ +

1

𝑠𝑖𝑛ଶ𝜃

𝜕ଶ

𝜕𝜑ଶ
ቇ 

Therefore Eqn. (3.13A) can be written as: 

𝐿ଶ𝑌(𝜃, 𝜑) = −ℏଶ ቆ
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕

𝜕𝜃
൰ +

1

𝑠𝑖𝑛ଶ𝜃

𝜕ଶ

𝜕𝜑ଶ
ቇ 𝑌(𝜃, 𝜑) = 𝜆ℏଶ𝑌(𝜃, 𝜑) … (3.13B) 

Therefore Eqn. (B) is the eigen value equation of the operator 𝐿ଶ and 𝜆ℏଶ is the eigen value 

of 𝐿ଶ. We will see shortly more interesting things related to this.   
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Or,
1

sin 𝜃

𝑑

𝑑𝜃
ቆsin 𝜃

𝑑Θ(𝜃)

𝑑𝜃
ቇ + ቆ𝜆 −

𝑚ଶ

sinଶ 𝜃
ቇ Θ(𝜃) = 0 … … … (3.15) [𝜽 𝐞𝐪𝐧. ] 

And     
𝑑ଶ𝛷(𝜑)

𝑑𝜑ଶ
+ 𝑚ଶ𝛷(𝜑) = 0 … … … (3.16) [𝝋 𝐞𝐪𝐧. ] 

To solve the 𝜽 𝐞𝐪𝐧. and the 𝝋 𝐞𝐪𝐧. we don’t need the expression or functional form of the 

potential 𝑽(𝒓). It will be required to solve the radial equation.  

3.2.2.1 Solution of the 𝝋 𝐞𝐪𝐧.: 

Equation (3.16) has solutions: 

𝛷(𝜑) = 𝐵𝑒±ఝ 𝑓𝑜𝑟 𝑚 ≠ 0      𝑎𝑛𝑑,           𝛷(𝜑) = 𝐶 + 𝐷𝜑     𝑓𝑜𝑟 𝑚 = 0. 

𝛷 and it’s derivative must be continuous within 0 ≤ 𝜑 ≤ 2𝜋.  Also for 𝛷 to be single valued, one 

must have 𝛷(𝜑 + 2𝜋) = 𝛷(𝜑).  

Therefore:  

(𝑖)          𝐵𝑒±(ఝାଶగ) = 𝐵𝑒±ఝ   ⇒ 𝑒±ଶగ = 1    ⇒  𝑚 = 0, ±1, ±2, ±3. 

(𝑖𝑖)        𝐷 = 0.  

Then, for all possible values of 𝑚, the normalised solutions can be written as: 

𝛷(𝜑) = 𝑁ఝ𝑒ఝ,      with  𝑚 = 0, ±1, ±2, ±3 … … … 

Where 𝑁ఝ is the normalisation constant which can be obtained from the normalisation condition:  

න 𝛷∗𝛷𝑑𝜑

ଶగ



=  න 𝑁ఝ
∗𝑒ିఝ𝑁ఝ𝑒ఝ𝑑𝜑

ଶగ



= 1 ⇒ ห𝑁ఝห
ଶ

=  2𝜋 

⇒ 𝑁ఝ =
ଵ

√ଶగ
 ,  assuming 𝑁ఝ to be real. 

Thus the discrete solutions of eqn. (3.16) are given by:  

𝚽𝒎(𝝋) =
𝟏

√𝟐𝝅
𝒆𝒊𝒎𝝋, 𝐰𝐢𝐭𝐡 𝒎 = 𝟎, ±𝟏, ±𝟐, ±𝟑 … … … ; … … … (𝟑. 𝟏𝟕) . 
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## Extra restriction on orbital angular momentum quantum number and orbital magnetic 

quantum number: 

In general angular momentum quantum number 𝑗 can be zero, positive integer and netative half 

integer. 

Magnetic quantum number 𝑚 can be zero, positive and negative integer if 𝑗 is an integer and 

positive and negative half integer if 𝑗 is a half integer: 

𝑚 = 0, ±1, … … ± 𝑗     if 𝑗 is integer. 

𝑚 = ±
ଵ

ଶ
, ±

ଷ

ଶ
… … ± 𝑗   if 𝑗 is half integer. 

Note: The 𝜑 eqn i.e. equation (3.16) can be modified as: 

𝑑ଶ𝛷(𝜑)

𝑑𝜑ଶ
+ 𝑚ଶ𝛷(𝜑) = 0  ⇒     −ℏଶ

𝜕ଶ𝛷(𝜑)

𝜕𝜑ଶ
= 𝑚ଶℏଶ𝛷(𝜑)     

Since 𝛷(𝜑) is single variable function, therefore 
𝑑

𝑑𝜑
 can be replaced by 

𝜕

𝜕𝜑
 ൨ 

⇒ ൬−𝑖ℏ
𝜕

𝜕𝜑
൰

ଶ

𝛷(𝜑) = (𝑚ℏ)ଶ𝛷(𝜑) … … … (3.16A) 

But the 𝑍 component of angular momentum operator, i.e. 𝐿௭ is given by:  

𝐿௭ = −𝑖ℏ
𝜕

𝜕𝜑
… … … (3.9) 

Therefore Eqn. (3.16A) can be written as: 

𝐿௭
ଶ𝛷(𝜑) = (𝑚ℏ)ଶ𝛷(𝜑) … … (3.16B) 

Therefore Eqn. (3.16B) is the eigen value equation of the operator 𝐿௭
ଶ for eigen function 

Φ(𝜑) and (𝑚ℏ)ଶ is the eigen value of 𝐿௭
ଶ.  

Also: 

𝐿௭𝛷(𝜑) = −𝑖ℏ
డ

డఝ
ቀ

ଵ

√ଶగ
𝑒ఝቁ = 𝑚ℏ ቀ

ଵ

√ଶగ
𝑒ఝቁ = 𝑚ℏ𝛷(𝜑)     [using (3.17)] 

Thus we see that the eigen values of the Z component of orbital angular momentum 

operator are 𝑚ℏ, where 𝑚 is zero or integer (positive or negative) but cannot have any 

half integer value. 𝒎 is called orbital magnetic quantum number. 
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But, as we have seen above, the orbital magnetic quantum number can be zero and positive and 

negative integer only: 

𝑚 = 0, ±1, ±2, … . 

If 𝑙 is orbital angular momentum quantum number then from the general theory of angular 

momentum we can say that the limiting values of magnetic orbital quantum number 𝑚 are related 

to 𝑙 as: 

𝑚 = 0, ±1, … ± 𝑙. 

Since 𝑚 cannot be a half integer, therefore 𝑙 also cannot be a half integer. Thus though in general 

the angular momentum quantum number 𝑗 can be a positive integer or a positive half integer, the 

orbital angular momentum quantum number 𝑙 can only be a positive integer. 

3.2.2.1 Solution of the 𝜽 𝐞𝐪𝐧.: 

In Eqn. (3.15), let cos 𝜃 = 𝑤 and Θ(𝜃) = 𝑃(𝑤).  [Since 0 ≤ 𝜃 ≤ 𝜋, so −1 ≤ 𝑤(= cos 𝜃) ≤ +1] 

Then     
𝑑

𝑑𝜃
=

𝑑

𝑑𝑤

𝑑𝑤

𝑑𝜃
= − sin 𝜃

𝑑

𝑑𝑤
= −ඥ1 − 𝑤ଶ

𝑑

𝑑𝑤
;      and eqn. (3.15) becomes: 

−(1 − 𝑤ଶ)
𝑑

𝑑𝑤
ቆ−(1 − 𝑤ଶ)

𝑑𝑃(𝑤)

𝑑𝑤
ቇ + 𝜆(1 − 𝑤ଶ)𝑃(𝑤) − 𝑚ଶ𝑃(𝑤) = 0 

Or,
ௗ

ௗ௪
൬(1 − 𝑤ଶ)

ௗ(௪)

ௗ௪
൰ + ቀ𝜆 −

మ

ଵି௪మቁ 𝑃(𝑤) = 0 … … … … (3.18)  

The 2nd order differential equation (3.18) has two linearly independent solutions, each of which is 

an infinite series (Frobenius method) with recurrence relation: 

𝑎ఔାଶ =
𝜈(𝜈 + 1) − 𝜆

(𝜈 + 1)(𝜈 + 2)
𝑎ఔ … … . . (3.19) 

𝐿𝑖𝑚
𝜈 → ∞

𝑎ఔାଶ

𝑎ఔ
𝑤ଶ =

𝐿𝑖𝑚
𝜈 → ∞

𝜈(𝜈 + 1) − 𝜆

(𝜈 + 1)(𝜈 + 2)
𝑤ଶ = 𝑤ଶ  … … … (3.19𝐴) 

Thus the infinite series converge for   𝑤ଶ < 1, but they become indeterminate at |𝑤| = 1 or 𝑤 =

±1 (Note: 𝑤 = ±1, for 𝜃 = 0 & 𝜋 ).  

To be physically meaningful solutions the series should be finite everywhere not only between  

−1 < 𝑤 < +1 but also 𝑤 = ±1.  

Now, for 𝜆 = 𝑙(𝑙 + 1), where  𝑙 = 0, 1, 2, 3, … … …, any one of the two series terminates for 𝜈 = 𝑙 

and becomes a polynomial in 𝑤, which remains finite at 𝑤 = ±1 and this finite series or polynomial 

is acceptable as a physically meaningful solution for all values of 𝜃, including 0 and 𝜋. 
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Thus eqn. (3.18) has physically meaningful solutions if:  

𝝀 = 𝒍(𝒍 + 𝟏), where  𝒍 = 𝟎, 𝟏, 𝟐, 𝟑, … … … i.e. 𝟎 or any positive integer …….. (3.20)   

Then eqn. (3.17) becomes: 

𝑑

𝑑𝑤
൭(1 − 𝑤ଶ)

𝑑𝑃(𝑤)

𝑑𝑤
൱ + ቆ𝑙(𝑙 + 1) −

𝑚ଶ

1 − 𝑤ଶ
ቇ 𝑃(𝑤) = 0 … … … … (3.21) 

Which is the well-known ‘associated Legendre differential eqn.’ with solutions: 

𝑃(𝑤) = 𝑃
(𝑤) = 𝑃

(cos 𝜃) 

𝑃
(𝑤) or  𝑃

(cos 𝜃) are called associated Legendre functions and can be given by the Rodrigues’s 

formula: 

𝑃
(𝑤) = (1 − 𝑤ଶ)

||
ଶ ൬

𝑑

𝑑𝑤
൰

||

[𝑃(𝑤)] … … … … … … (3.22) 

There are different conventions of defining 𝑃
(𝑤) and eqn. (8) is one of them*. In the convention 

followed here, we see that:  𝑃
ି(𝑤) = 𝑃

(𝑤). 

If 𝑚 = 0 then eqn. (3.21) becomes Legendre differential equation with solutions:  

𝑃(𝑤) =
1

2  𝑙!
൬

𝑑

𝑑𝑤
൰



(𝑤ଶ − 1) … … … … … (3.23) 

In (𝑤ଶ − 1) maximum power of 𝑤 is 2𝑙. So it is clear from eqn. (3.23), that in 𝑃(𝑤), maximum 

power of 𝑤 is 𝑙. Therefore 𝑃(𝑤) can be differentiable ≤ 𝑙 times for non-zero result. Thus, as seen 

from eqn. (3.22), to get non-zero 𝑃
(𝑤) we must restrict 𝑚 as:  

|𝒎| ≤ 𝒍    𝐨𝐫,   𝒎 = −𝒍, −𝒍 + 𝟏, … − 𝟏, 𝟎, 𝟏, … 𝒍 − 𝟏, 𝒍  ……… (3.24) 

 

 

Note 1: With 𝜆 = 𝑙(𝑙 + 1) eqn. (3.13A) becomes: 

𝐿ଶ𝑌(𝜃, 𝜑) = −ℏଶ ቆ
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕

𝜕𝜃
൰ +

1

𝑠𝑖𝑛ଶ𝜃

𝜕ଶ

𝜕𝜑ଶ
ቇ 𝑌(𝜃, 𝜑) = 𝑙(𝑙 + 1)ℏଶ𝑌(𝜃, 𝜑)  

… (3.13C) 

Therefore eigen value of 𝐿ଶ is 𝑙(𝑙 + 1)ℏଶ. Thus the orbital angular momentum 𝐿 has the 

values: 

Note 2: 𝐿௭ = 𝑚ℏ and  𝑚 = −𝑙, −𝑙 + 1, … − 1, 0, 1, … 𝑙 − 1, 𝑙. Thus 𝑚 has 2𝑙 + 1 number of 

values.  Extreme of 𝑚 are restricted by 𝑙. Therefore 𝑚 is often written as 𝑚. 
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Table-3.1 

𝑷𝒍(𝒘) and 𝑷𝒍
𝒎(𝒘) for few small values of 𝒍 and 𝒎 

𝒍  𝑷𝒍(𝒘) =
ଵ

ଶ !
ቀ

ௗ

ௗ௪
ቁ


(𝑤ଶ − 1) 𝒎  𝑷𝒍

𝒎(𝒘) = (1 − 𝑤ଶ)
||

మ ቀ
ௗ

ௗ௪
ቁ

||
[𝑃(𝑤)] 

 𝟎 𝑷𝟎 =
1

2 0!
൬

𝑑

𝑑𝑤
൰



(𝑤ଶ − 1) = 𝟏 𝟎 𝑷𝟎
𝟎 = (1 − 𝑤ଶ) ൬

𝑑

𝑑𝑤
൰



[𝑃(𝑤)] = 𝟏 

𝟏 

𝑷𝟏 

=
1

2ଵ 1!
൬

𝑑

𝑑𝑤
൰

ଵ

(𝑤ଶ − 1)ଵ 

=
1

2
∙ 2𝑤 

= 𝑤 

= 𝐜𝐨𝐬 𝜽 

𝟎 

𝑷𝟏
𝟎 = (1 − 𝑤ଶ) ൬

𝑑

𝑑𝑤
൰



[𝑃ଵ(𝑤)] 

= 𝑃ଵ(𝑤) 

= 𝑤 = 𝐜𝐨𝐬 𝜽 

±𝟏 

 𝑷𝟏
±𝟏 = (1 − 𝑤ଶ)

|±భ|

మ ቀ
ௗ

ௗ௪
ቁ

|±ଵ|
[𝑃ଵ(𝑤)] 

= ඥ(1 − 𝑤ଶ)
𝑑

𝑑𝑤
𝑤  

= ඥ(1 − 𝑤ଶ) = 𝐬𝐢𝐧 𝜽 

𝟐 

 𝑷𝟐 

=
1

2ଶ 2!
൬

𝑑

𝑑𝑤
൰

ଶ

(𝑤ସ − 2𝑤ଶ + 1) 

 =
ଵ

ଶ
(3𝑤ଶ − 1) 

=
𝟏

𝟐
(𝟑𝒄𝒐𝒔𝟐𝜽 − 𝟏) 

𝟎 
𝑷𝟐

𝟎 = (1 − 𝑤ଶ) ൬
𝑑

𝑑𝑤
൰



[𝑃ଶ(𝑤)] = [𝑃ଶ(𝑤)] 

=
ଵ

ଶ
(3𝑤ଶ − 1) =

𝟏

𝟐
(𝟑𝒄𝒐𝒔𝟐𝜽 − 𝟏) 

±𝟏 

𝑷𝟐
±𝟏 = (1 − 𝑤ଶ)

|±భ|

మ ቀ
ௗ

ௗ௪
ቁ

|±ଵ|

ቂ
ଵ

ଶ
(3𝑤ଶ − 1)ቃ  

 = ඥ(1 − 𝑤ଶ)
ௗ

ௗ௪
ቂ

ଵ

ଶ
(3𝑤ଶ − 1)ቃ 

= 3𝑤ඥ(1 − 𝑤ଶ) = 3 𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽 

±𝟐 

 𝑷𝟐
±𝟐 = (1 − 𝑤ଶ)

|±మ|

మ ቀ
ௗ

ௗ௪
ቁ

|±ଶ|

ቂ
ଵ

ଶ
(3𝑤ଶ − 1)ቃ 

 = 𝟑(1 − 𝑤ଶ) 

= 3𝒔𝒊𝒏𝟐𝜽 
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Thus the normalised solutions of the 𝜃-eqn. is: 

Θ(𝜃) = Θ(𝜃) = 𝑁𝑃
(𝑤) = 𝑁𝑃

(cos 𝜃) 

where 𝑁 is the normalisation constant which can be obtained from the normalisation condition: 

න |𝑁𝑃
(𝑤)|ଶ𝑑𝑤

ିଵ

௪ୀଵ

= 1 

Since  න 𝑃
(𝑤)𝑃

(𝑤)𝑑𝑤

ିଵ

௪ୀଵ

=
2

(2𝑙 + 1)
∙

(𝑙 + |𝑚|)!

(𝑙 − |𝑚|)!
𝛿 

we have   |𝑁|ଶ =
1

 ∫ ห𝑃
(𝑤)ห

ଶ
𝑑𝑤

ିଵ

௪ୀଵ

=
(2𝑙 + 1)

2
∙

(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!
 … … … … (3.25) 

⇒ 𝑁 = ±𝑒ఋඨ
(2𝑙 + 1)

2
∙

(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!
,   Where  𝑒ఋ  is an arbitrary complex phase factor. 

However 𝑁 is taken as 𝑁 = 𝜖ට
(ଶାଵ)

ଶ
∙

(ି||)!

(ା||)!
  [where 𝜖 = (−1) for 𝑚 ≥ 0 and 𝜖 = 1 for 

𝑚 ≤ 0], to make Θ(𝜃) and 𝑌(𝜃, 𝜑) same as in other conventions of defining 𝑃
. Note that 𝜖 

is always equal to 1 or −1.  

Thus the solutions of the 𝜃 equation and the angular eqn. are given by:  

Θ(𝜃) = 𝜖 ቈ
2𝑙 + 1

4𝜋

(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!


ଵ ଶ⁄

𝑃
(cos 𝜃)  … … … … … … … (3.26) 

𝑊𝑖𝑡ℎ  𝑙 = 0,1,2, … … ;   𝑚 = 0, ±1, … … ± 𝑙 

𝑌(𝜃, 𝜑) = 𝜖 ቈ
2𝑙 + 1

4𝜋

(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!


ଵ ଶ⁄

𝑃
(cos 𝜃)𝑒ఝ

𝑤𝑖𝑡ℎ 𝜖 = (−1) for 𝑚 ≥ 0   &   𝜖 = 1 for 𝑚 ≤ 0 
     

⎭
⎪
⎬

⎪
⎫

… … …   (3.27) 

#     𝐕𝐞𝐫𝐢𝐟𝐲:    ቮ±𝒆𝒊𝜹ඨ
(𝟐𝒍 + 𝟏)

𝟐
∙

(𝒍 − |𝒎|)!

(𝒍 + |𝒎|)!
ቮ

𝟐

=
(𝟐𝒍 + 𝟏)

𝟐
∙

(𝒍 − |𝒎|)!

(𝒍 + |𝒎|)!
. 
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Table-3.2 

𝑷𝒍
𝒎(𝒘) and 𝒀𝒍𝒎(𝜽, 𝝋) for few small values of 𝒍 and 𝒎 

𝑙 𝑚 
 𝑃

(𝑤) 

(From Table 3.1) 

𝑌(𝜃, 𝜑) = 𝜖 ቈ
2𝑙 + 1

4𝜋

(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!


ଵ
ଶ

𝑃
(cos 𝜃)𝑒ఝ 

𝑤𝑖𝑡ℎ 𝜖 = (−1) for 𝑚 ≥ 0   &   𝜖 = 1 for 𝑚 ≤ 0 

 0 0 𝑃
(cos 𝜃) = 1 𝒀𝟎𝟎(𝜽, 𝝋) = ቈ

0 + 1

4𝜋

(𝑙 − 0)!

(𝑙 + 0)!


ଵ ଶ⁄

𝑃ଵ
𝑒 =

𝟏

√𝟒𝝅
 

1 

0 
𝑃ଵ

(cos 𝜃) = cos 𝜃 𝒀𝟏𝟎(𝜽, 𝝋) = ቈ
2 + 1

4𝜋

(𝑙 − 0)!

(𝑙 + 0)!


ଵ ଶ⁄

𝑃ଵ
𝑒 = ඨ

3

4𝜋
cos 𝜃 

±1  𝑃ଵ
±ଵ(cos 𝜃) = sin 𝜃 

𝒀𝟏±𝟏(𝜽, 𝝋) = ∓ ቈ
2 + 1

4𝜋

(𝑙 − 1)!

(𝑙 + 1)!


ଵ ଶ⁄

𝑃ଵ
±ଵ𝑒±ఝ 

= ∓ඨ
𝟑

𝟖𝝅
 𝐬𝐢𝐧 𝜽 𝒆±𝒊𝝋 

2 

0 
𝑃ଶ

(cos 𝜃) 

=
1

2
(3𝑐𝑜𝑠ଶ𝜃 − 1) 

𝒀𝟐𝟎(𝜽, 𝝋) = ቈ
2 × 2 + 1

4𝜋

(2 − 0)!

(2 + 0)!


ଵ
ଶ

𝑃ଶ
𝑒ఝ  

= ඨ
𝟓

𝟏𝟔𝝅
(𝟑𝒄𝒐𝒔𝟐𝜽 − 𝟏) 

±1 
𝑃ଶ

±ଵ(cos 𝜃) = 3 cos 𝜃 sin 𝜃 

𝒀𝟐±𝟏(𝜽, 𝝋) = ∓ ቈ
2 × 2 + 1

4𝜋

(2 − 1)!

(2 + 1)!


ଵ
ଶ

𝑃ଶ
±ଵ𝑒±ఝ 

= ∓ඨ
𝟏𝟓

𝟖𝝅
𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽 𝒆±𝒊𝝋 

±2  𝑃ଶ
±ଶ(cos 𝜃) = 3𝑠𝑖𝑛ଶ𝜃 

𝒀𝟐±𝟐(𝜽, 𝝋) = ቈ
2 × 2 + 1

4𝜋

(2 − 2)!

(2 + 2)!


ଵ
ଶ

𝑃ଶ
±ଶ𝑒±ଶఝ 

= ඨ
𝟏𝟓

𝟑𝟐𝝅
𝒔𝒊𝒏𝟐𝜽𝒆±𝟐𝒊𝝋 
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# 𝐏𝐫𝐨𝐯𝐞: 𝒀𝒍,ି𝒎(𝜽, 𝝋) = (−𝟏)𝒎[𝒀𝒍𝒎(𝜽, 𝝋)]∗ 

Proof:  Let 𝑚 = 𝑚, where 𝑚 is +𝑣𝑒.  

Then      𝑌(𝜃, 𝜑) = 𝑌బ
(𝜃, 𝜑) = (−1)బ ቈ

2𝑙 + 1

4𝜋

(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!


ଵ ଶ⁄

𝑃
బ(cos 𝜃)𝑒బఝ 

= (−1)బ ቈ
2𝑙 + 1

4𝜋

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!


ଵ ଶ⁄

𝑃
బ(cos 𝜃)𝑒బఝ 

[𝑌(𝜃, 𝜑)]∗ = ൣ𝑌బ
(𝜃, 𝜑)൧

∗
= (−1)బ ቈ

2𝑙 + 1

4𝜋

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!


ଵ ଶ⁄

𝑃
బ(cos 𝜃)𝑒ିబఝ 

And        𝑌,ି(𝜃, 𝜑) = 𝑌,ିబ
(𝜃, 𝜑) = ቈ

2𝑙 + 1

4𝜋

(𝑙 − |−𝑚|)!

(𝑙 + |−𝑚|)!


ଵ ଶ⁄

𝑃
ିబ(cos 𝜃)𝑒ିబఝ 

= ቈ
2𝑙 + 1

4𝜋

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!


ଵ ଶ⁄

𝑃
బ(cos 𝜃)𝑒ିబఝ 

=
ൣ𝑌బ

(𝜃, 𝜑)൧
∗

(−1)బ
 

=
[𝑌(𝜃, 𝜑)]∗

(−1)
 

= (−1)[𝑌(𝜃, 𝜑)]∗ 

Hence the proof. 

End of Notes on Angular part. 
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*Special Page 

Doing the following mathematics is optional, must avoid it if you have 

not enough time to waste 

One convention of defining 𝑃
(𝑤) has been discussed in the preceding section. Another 

convention of defining 𝑃
(𝑤) is:  

𝑃
(𝑤) = (1 − 𝑤ଶ)


ଶ ൬

𝑑

𝑑𝑤
൰



[𝑃(𝑤)] 

And   𝑃
ି(𝑤) = (1 − 𝑤ଶ)

ି
ଶ ൬

𝑑

𝑑𝑤
൰

ି

[𝑃(𝑤)] = (−1)
(𝒍 − 𝒎)!

(𝒍 + 𝒎)!
𝑃

(𝑤) 

With 0 ≤ 𝑚 (𝑖𝑛𝑡𝑒𝑔𝑒𝑟) ≤ 𝑙. 

# 𝐏𝐫𝐨𝐯𝐞:  𝑷𝒍
ି𝒎(𝒘) = (−𝟏)𝒎

(𝒍 − 𝒎)!

(𝒍 + 𝒎)!
𝑷𝒍

𝒎(𝒘) 

Ans.:     

Libniz’s formula:   ൬
𝑑

𝑑𝑥
൰



[𝐴(𝑥)𝐵(𝑥)] = 
𝑛!

(𝑛 − 𝑠)! 𝑠!
൬

𝑑

𝑑𝑥
൰

ି௦

𝐴(𝑥) ൬
𝑑

𝑑𝑥
൰

௦

𝐵(𝑥)



௦ୀ

. 

Therefore  ൬
𝑑

𝑑𝑤
൰

ା

(𝑤ଶ − 1) = ൬
𝑑

𝑑𝑤
൰

ା

[(𝑤 + 1)(𝑤 − 1)] 

= 
(𝑙 + 𝑚)!

(𝑙 + 𝑚 − 𝑠)! 𝑠!
൬

𝑑

𝑑𝑥
൰

ାି௦

(𝑤 + 1) ൬
𝑑

𝑑𝑥
൰

௦

(𝑤 − 1)

ା

௦ୀ

 

= 
(𝑙 + 𝑚)!

(𝑙 + 𝑚 − 𝑠)! 𝑠!
൬

𝑑

𝑑𝑥
൰

𝒍ା𝒎ି𝒔

(𝑤 + 1)𝒍 ൬
𝑑

𝑑𝑥
൰

𝒔

(𝑤 − 1)𝒍

𝒍

𝒔ୀ𝒎

 

= 
(𝑙 + 𝑚)!

(𝑙 + 𝑚 − 𝑠)! 𝑠!

𝑙!

(𝑠 − 𝑚)!
(𝑤 + 1)௦ି

𝑙!

(𝑙 − 𝑠)!
(𝑤 − 1)ି௦



௦ୀ

 

= 
(𝑙 + 𝑚)!

(𝑙 + 𝑚 − 𝑠)! 𝑠!

𝑙!

(𝑠 − 𝑚)!

𝑙!

(𝑙 − 𝑠)!
(𝑤 + 1)௦ି(𝑤 − 1)ି௦



௦ୀ

 

= (𝑙!)ଶ(𝑙 + 𝑚)! 
1

(𝑙 + 𝑚 − 𝑠)! 𝑠! (𝑠 − 𝑚)! (𝑙 − 𝑠)!



௦ୀ

(𝑤 + 1)௦ି(𝑤 − 1)ି௦ 
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= (𝑙!)ଶ(𝑙 + 𝑚)! ቆ
(𝑤 + 1)(𝑤 − 1)ି

𝑙! 𝑚! 0! (𝑙 − 𝑚)!
+

(𝑤 + 1)ଵ(𝑤 − 1)ିିଵ

(𝑙 − 1)! (𝑚 + 1)! 1! (𝑙 − 𝑚 − 1)!
+ ⋯ 

… +
(𝑤 + 1)ିିଵ(𝑤 − 1)ଵ

(𝑚 + 1)! (𝑙 − 1)! (𝑙 − 𝑚 − 1)! 1!
+

(𝑤 + 1)ି(𝑤 − 1)

𝑚! 𝑙! (𝑙 − 𝑚)! 0!
ቇ 

Again:   ൬
𝑑

𝑑𝑤
൰

ି

(𝑤ଶ − 1) = ൬
𝑑

𝑑𝑤
൰

ି

[(𝑤 + 1)(𝑤 − 1)] 

= 
(𝑙 − 𝑚)!

(𝑙 − 𝑚 − 𝑠)! 𝑠!
൬

𝑑

𝑑𝑥
൰

ିି௦

(𝑤 + 1) ൬
𝑑

𝑑𝑥
൰

௦

(𝑤 − 1)

ି

௦ୀ

 

= 
(𝑙 − 𝑚)!

(𝑙 − 𝑚 − 𝑠)! 𝑠!

𝑙!

(𝑠 + 𝑚)!
(𝑤 + 1)௦ା

𝑙!

(𝑙 − 𝑠)!
(𝑤 − 1)ି௦

ି

௦ୀ

 

= 
(𝑙 − 𝑚)!

(𝑙 − 𝑚 − 𝑠)! 𝑠!

𝑙!

(𝑠 + 𝑚)!

𝑙!

(𝑙 − 𝑠)!
(𝑤 + 1)௦ା(𝑤 − 1)ି௦

ି

௦ୀ

 

= (𝑙 − 𝑚)! (𝑙!)ଶ 
1

(𝑙 − 𝑚 − 𝑠)! 𝑠! (𝑠 + 𝑚)! (𝑙 − 𝑠)!

ି

௦ୀ

(𝑤 + 1)௦ା(𝑤 − 1)ି௦ 

= (𝑙 − 𝑚)! (𝑙!)ଶ ቆ
(𝑤 + 1)(𝑤 − 1)

(𝑙 − 𝑚)! 0! 𝑚! 𝑙!
+

(𝑤 + 1)ଵା(𝑤 − 1)ିଵ

(𝑙 − 𝑚 − 1)! 1! (𝑚 + 1)! (𝑙 − 1)!
+ ⋯ 

… +
(𝑤 + 1)ିଵ(𝑤 − 1)ାଵ

1! (𝑙 − 𝑚 − 1)! (𝑙 − 1)! (𝑚 + 1)!
+

(𝑤 + 1)(𝑤 − 1)

0! (𝑙 − 𝑚)! 𝑙! 𝑚!
ቇ 

= (𝑙 − 𝑚)! (𝑙!)ଶ(𝑤 + 1)(𝑤 − 1) ቆ
(𝑤 + 1)(𝑤 − 1)ି

(𝑙 − 𝑚)! 0! 𝑚! 𝑙!
+

(𝑤 + 1)ଵ(𝑤 − 1)ିିଵ

(𝑙 − 𝑚 − 1)! 1! (𝑚 + 1)! (𝑙 − 1)!
 

… +
(𝑤 + 1)ିିଵ(𝑤 − 1)ଵ

1! (𝑙 − 𝑚 − 1)! (𝑙 − 1)! (𝑚 + 1)!
+

(𝑤 + 1)ି(𝑤 − 1)

0! (𝑙 − 𝑚)! 𝑙! 𝑚!
ቇ 

Therefore    
ቀ

𝑑
𝑑𝑤

ቁ
ି

(𝑤ଶ − 1)

ቀ
𝑑

𝑑𝑤
ቁ

ା

(𝑤ଶ − 1)

=
(𝑙 − 𝑚)! (𝑙!)ଶ(𝑤 + 1)(𝑤 − 1)

(𝑙!)ଶ(𝑙 + 𝑚)!
=

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
(𝑤ଶ − 1) 

⇒⇒ ൬
𝑑

𝑑𝑤
൰

ି

(𝑤ଶ − 1) =
(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
(𝑤ଶ − 1) ൬

𝑑

𝑑𝑤
൰

ା

(𝑤ଶ − 1) 
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Now,    𝑃
ି(𝑤) = (1 − 𝑤ଶ)

ି
ଶ ൬

𝑑

𝑑𝑤
൰

ି

[𝑃(𝑤)] 

= (1 − 𝑤ଶ)
ି

ଶ ൬
𝑑

𝑑𝑤
൰

ି

ቈ
1

2  𝑙!
൬

𝑑

𝑑𝑤
൰



(𝑤ଶ − 1)     = (1 − 𝑤ଶ)
ି

ଶ
1

2  𝑙!
൬

𝑑

𝑑𝑤
൰

ି

(𝑤ଶ − 1) 

= (1 − 𝑤ଶ)
ି

ଶ
(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
(𝑤ଶ − 1)

1

2  𝑙!
൬

𝑑

𝑑𝑤
൰

ା

(𝑤ଶ − 1) 

= (1 − 𝑤ଶ)
ି

ଶ
(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
(−1)(1 − 𝑤ଶ)

1

2  𝑙!
൬

𝑑

𝑑𝑤
൰

ା

(𝑤ଶ − 1) 

= (−1)
(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
(1 − 𝑤ଶ)


ଶ ൬

𝑑

𝑑𝑤
൰



ቈ
1

2  𝑙!
൬

𝑑

𝑑𝑤
൰



(𝑤ଶ − 1) 

= (−1)
(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
(1 − 𝑤ଶ)


ଶ ൬

𝑑

𝑑𝑤
൰



[𝑃(𝑤)] 

= (−1)
(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
𝑃

(𝑤). 

In this convention   𝑁  is equal to  𝑁 = ඨ
(2𝑙 + 1)

2
∙

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
 

And     𝑌(𝜃, 𝜑) = ඨ
(2𝑙 + 1)

4𝜋
∙

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
𝑃

(cos 𝜃)𝑒ఝ 

Note that 

𝒀𝒍,ି𝒎(𝜽, 𝝋) = ඨ
(2𝑙 + 1)

4𝜋
∙

(𝑙 + 𝑚)!

(𝑙 − 𝑚)!
𝑃

ି(cos 𝜃)𝑒ିఝ 

= ඨ
(2𝑙 + 1)

4𝜋
∙

(𝑙 + 𝑚)!

(𝑙 − 𝑚)!
(−1)

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
𝑃

(cos 𝜃)𝑒ିఝ 

= (−1)ඨ
(2𝑙 + 1)

4𝜋
∙

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
𝑃

(cos 𝜃)𝑒ିఝ = (−𝟏)𝒎[𝒀𝒍𝒎(𝜽, 𝝋)]∗ 

This result is same as that obtained by our other convention. Thus use of 𝝐 [= (−𝟏)𝒎 for 𝒎 ≥ 𝟎 

and = 𝟏 for 𝒎 < 𝟎] in the other convention is justified. 
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3.2.3 Solution of Radial Equation:  

With 𝜆 = 𝑙(𝑙 + 1), where 𝑙 = 0,1,2 … the radial equation (3.14) becomes: 

1

𝑟ଶ

𝑑

𝑑𝑟
ቆ𝑟ଶ

𝑑𝑅(𝑟)

𝑑𝑟
ቇ + ቈ

2𝜇

ℏଶ
[𝐸 − 𝑉(𝑟)] −

𝑙(𝑙 + 1)

𝑟ଶ
 𝑅(𝑟) = 0 … … … … … (3.27) 

With 𝑉(𝑟) = −
మ

ସగఢబ
 , this equation becomes: 

1

𝑟ଶ

𝑑

𝑑𝑟
൬𝑟ଶ

𝑑𝑅

𝑑𝑟
൰ + ቈ

2𝜇

ℏଶ
ቆ𝐸 +

𝑍𝑒ଶ

4𝜋𝜖𝑟
ቇ −

𝑙(𝑙 + 1)

𝑟ଶ
 𝑅 = 0 

Or,   
1

𝑟ଶ

𝑑

𝑑𝑟
൬𝑟ଶ

𝑑𝑅

𝑑𝑟
൰ + ቈ

2𝜇𝐸

ℏଶ
+

2𝜇

ℏଶ

𝑍𝑒ଶ

4𝜋𝜖𝑟
−

𝑙(𝑙 + 1)

𝑟ଶ
 𝑅 = 0 … … … … … (3.28) 

To make the equation simpler, we put:  

(i)  𝜶 = ඨ
−𝟖𝝁𝑬

ℏ𝟐
 … … (3.28A)    and      (ii)  𝝆 = 𝜶𝒓 = ඨ

−𝟖𝝁𝑬

ℏ𝟐
𝒓 = ඨ

𝟖𝝁|𝑬|

ℏ𝟐
𝒓  … … (𝟑. 𝟐𝟖𝐁) 

[Note that, since the energy of the electron of a Hydrogen atom is negative, therefore 
ି଼ఓா

ℏమ =
଼ఓ|ா|

ℏమ  

is positive.  Hence 𝜶 = ට
ି𝟖𝝁𝑬

ℏ𝟐   is not imaginary.] 

𝑇ℎ𝑒𝑛  
𝑑

𝑑𝑟
=

𝑑𝜌

𝑑𝑟

𝑑

𝑑𝜌
= 𝛼

𝑑

𝑑𝜌
. 

And from eqn. (3.28): 

𝛼ଶ

𝜌ଶ
𝛼

𝑑

𝑑𝜌
ቆ

𝜌ଶ

𝛼ଶ
𝛼

𝑑𝑅

𝑑𝜌
ቇ + ቈ

2𝜇𝐸

ℏଶ
+

2𝜇

ℏଶ

𝑍𝛼𝑒ଶ

4𝜋𝜖𝜌
−

𝛼ଶ𝑙(𝑙 + 1)

𝜌ଶ
 𝑅 = 0; 

⇒
1

𝜌ଶ

𝑑

𝑑𝜌
൬𝜌ଶ

𝑑𝑅

𝑑𝜌
൰ +

1

𝛼ଶ
ቈ−

1

4
𝛼ଶ +

2𝜇

ℏଶ

𝑍𝛼𝑒ଶ

4𝜋𝜖𝜌
−

𝛼ଶ𝑙(𝑙 + 1)

𝜌ଶ
 𝑅 = 0; 

⇒
1

𝜌ଶ

𝑑

𝑑𝜌
൬𝜌ଶ

𝑑𝑅

𝑑𝜌
൰ + ቈ−

1

4
+

2𝜇𝑍𝑒ଶ

4𝜋𝜖ℏଶ𝛼𝜌
−

𝑙(𝑙 + 1)

𝜌ଶ
 𝑅 = 0  … … … … … . . … (3.29) 

Now we put:  

𝜆 =
2𝜇𝑍𝑒ଶ

4𝜋𝜖ℏଶ𝛼
=

2𝜇𝑍𝑒ଶ

4𝜋𝜖ℏଶ
ඨ

ℏଶ

8𝜇|𝐸|
=

𝑍𝑒ଶ

4𝜋𝜖ℏ
ඨ

𝜇

2|𝐸|
=

𝑍𝑒ଶ

4𝜋𝜖ℏ
ට

𝜇

−2𝐸
… … … … (3.29𝐴) 



 

C11T Ch-3 Quantum theory of H atom # Debasish Aich, Dept. of Physics, Kharagpur College          26 

 

Then eqn. (3.29) becomes: 

𝑑ଶ𝑅

𝑑𝜌ଶ
+

2

𝜌

𝑑𝑅

𝑑𝜌
+ ቈ

𝜆

𝜌
−

1

4
−

𝑙(𝑙 + 1)

𝜌ଶ
 𝑅 = 0  … … … … ….  (3.30) 

At  𝜌 ⟶ ∞, the above equation reduces to:  

𝑑ଶ𝑅

𝑑𝜌ଶ
−

1

4
𝑅 = 0 

having solutions:  𝑅 = 𝐴𝑒±
భ

మ
ఘ, where  𝐴 is any constant. 

Therefore as the solution of eqn. (3.30) we can assume a trial solution of the form: 

𝑅 = 𝐹(𝜌)𝑒±
ଵ
ଶ

ఘ, 

where 𝐹(𝜌) is a function in 𝜌 and is to be determined to obtain the solution for 𝑅.  

However we reject the solution 𝑅 = 𝐹(𝜌)𝒆ା
𝟏

𝟐
𝝆 because 𝑅 must remain finite at 𝜌 ⟶ ∞ but  𝒆ା

𝟏

𝟐
𝝆 

blows up at 𝜌 ⟶ ∞ and proceed with: 

𝑅 = 𝐹(𝜌)𝑒ି
ଵ
ଶ

ఘ  … … … … (3.30A) 

𝑇ℎ𝑒𝑛  
𝑑𝑅

𝑑𝜌
=

𝑑𝐹

𝑑𝜌
𝑒ି

ଵ
ଶ

ఘ −
1

2
𝐹𝑒ି

ଵ
ଶ

ఘ = ൬𝐹ᇱ −
1

2
𝐹൰ 𝑒ି

ଵ
ଶ

ఘ 

𝑎𝑛𝑑  
𝑑ଶ𝑅

𝑑𝜌ଶ
 =

𝑑ଶ𝐹

𝑑𝜌ଶ
𝑒ି

ଵ
ଶ

ఘ −
1

2

𝑑𝐹

𝑑𝜌
𝑒ି

ଵ
ଶ

ఘ −
1

2

𝑑𝐹

𝑑𝜌
𝑒ି

ଵ
ଶ

ఘ +
1

2
∙

1

2
𝐹𝑒ି

ଵ
ଶ

ఘ      =  ቆ
𝑑ଶ𝐹

𝑑𝜌ଶ
−

𝑑𝐹

𝑑𝜌
+

1

4
𝐹ቇ 𝑒ି

ଵ
ଶ

ఘ 

= 𝑒ି
ଵ
ଶ

ఘ ൬𝐹ᇱᇱ − 𝐹ᇱ +
1

4
𝐹൰ 

And eqn. (3.30) reduces to: 

൬𝐹ᇱᇱ − 𝐹ᇱ +
1

4
𝐹൰ 𝑒ି

ଵ
ଶ

ఘ +
2

𝜌
൬𝐹ᇱ −

1

2
𝐹൰ 𝑒ି

ଵ
ଶ

ఘ + ቈ
𝜆

𝜌
−

1

4
−

𝑙(𝑙 + 1)

𝜌ଶ
 𝐹𝑒ି

ଵ
ଶ

ఘ = 0 

⇒ 𝐹ᇱᇱ − 𝐹ᇱ +
1

4
𝐹 +

2

𝜌
𝐹ᇱ −

1

𝜌
𝐹 + ቈ

𝜆

𝜌
−

1

4
−

𝑙(𝑙 + 1)

𝜌ଶ
 𝐹 = 0 

⇒ 𝐹ᇱᇱ + ൬
2

𝜌
− 1൰ 𝐹ᇱ + ቈ

𝜆 − 1

𝜌
−

𝑙(𝑙 + 1)

𝜌ଶ
 𝐹 = 0 

⇒ 𝜌ଶ𝐹ᇱᇱ + (2𝜌 − 𝜌ଶ)𝐹ᇱ + [(𝜆 − 1)𝜌 − 𝑙(𝑙 + 1)]𝐹 = 0 … … … … … … … (3.31) 
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This 2nd order differential equation can be solved by Frobenius series method assuming: 

𝐹(𝜌) =  𝑎ఔ𝜌ఔା௦

ஶ

ఔୀ

, with  𝑎 ≠ 0,   … … … … … … (3.31A) 

Then   𝐹ᇱ(𝜌) =  𝑎ఔ(𝜈 + 𝑠)𝜌ఔା௦ିଵ

ஶ

ఔୀ

  𝑎nd   𝐹ᇳ(𝜌) =  𝑎ఔ(𝜈 + 𝑠)(𝜈 + 𝑠 − 1)𝜌ఔା௦ିଶ

ஶ

ఔୀ

 

Then eqn. (13) becomes: 

𝜌ଶ  𝑎ఔ(𝜈 + 𝑠)(𝜈 + 𝑠 − 1)𝜌ఔା௦ିଶ

ఔ

+ 2𝜌  𝑎ఔ(𝜈 + 𝑠)𝜌ఔା௦ିଵ

ఔ

− 𝜌ଶ  𝑎ఔ(𝜈 + 𝑠)𝜌ఔା௦ିଵ

ఔ

 

+(𝜆 − 1)𝜌  𝑎ఔ𝜌ఔା௦

ఔ

− 𝑙(𝑙 + 1)  𝑎ఔ𝜌ఔା௦

ఔ

= 0 

Or,    𝑎ఔ(𝜈 + 𝑠)(𝜈 + 𝑠 − 1)𝜌ఔା௦

ఔ

+ 2  𝑎ఔ(𝜈 + 𝑠)𝜌ఔା௦

ఔ

−  𝑎ఔ(𝜈 + 𝑠)𝜌ఔା௦ାଵ

ఔ

 

+(𝜆 − 1)  𝑎ఔ𝜌ఔା௦ାଵ

ఔ

− 𝑙(𝑙 + 1)  𝑎ఔ𝜌ఔା௦

ఔ

= 0 

Or,    𝑎ఔ[(𝜈 + 𝑠)(𝜈 + 𝑠 − 1) + 2(𝜈 + 𝑠) − 𝑙(𝑙 + 1)]𝜌ఔା௦

ఔ

 

−  𝑎ఔ[(𝜈 + 𝑠) − (𝜆 − 1)]𝜌ఔା௦ାଵ

ఔ

= 0 

Or,  𝑎ఔ(𝜈 + 𝑠 + 1 − 𝜆)𝜌ఔା௦ାଵ

ఔ

−  𝑎ఔ[(𝜈 + 𝑠)(𝜈 + 𝑠 + 1) − 𝑙(𝑙 + 1)]𝜌ఔା௦

ఔ

= 0  

… … … (3.32) 

Eqn. (3.32) should be valid for all values of 𝜌. Therefore the coefficients of each power of 𝜌  must 

vanish separately. Equating the coefficient of 𝜌௦ to zero we get (remember 𝜈 = 0,1,2, …. [eqn. 

(3.31A)]; i.e.  𝜈 can not be negative): 

𝑎[𝑠(𝑠 + 1) − 𝑙(𝑙 + 1)] = 0. 

Since 𝑎 ≠ 0 [see eqn. (14)], so we must have:  

𝑠ଶ − 𝑙ଶ + 𝑠 − 𝑙 = 0  ⇒   (𝑠 − 𝑙)(𝑠 + 𝑙 + 1) = 0  ⇒   𝑠 = 𝑙  or  − (𝑙 + 1). 

Now, for  𝑠 = −(𝑙 + 1),  the 1st term in the expression of 𝐹(𝜌) i.e. 𝑎𝜌ି(ାଵ) → ∞  at 𝜌 → ∞, even 

for 𝑙 = 0.  

Therefore only acceptable value of 𝑠 is  𝑠 = 𝑙. 
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Then Eqn. (3.31A) becomes: 

𝐹(𝜌) =  𝑎ఔ𝜌ఔା௦

ஶ

ఔୀ

=  𝑎ఔ𝜌ఔା

ஶ

ఔୀ

= 𝜌  𝑎ఔ𝜌ఔ

ஶ

ఔୀ

  with  𝑎 ≠ 0, … … … … (3.31B) 

And Eqn. (3.32) becomes: 

 𝑎ఔ(𝜈 + 𝑙 + 1 − 𝜆)𝜌ఔାାଵ

ఔ

−  𝑎ఔ[(𝜈 + 𝑙)(𝜈 + 𝑙 + 1) − 𝑙(𝑙 + 1)]𝜌ఔା

ఔ

= 0 

 𝑎ఔ(𝜈 + 𝑙 + 1 − 𝜆)𝜌ఔାାଵ

ఔ

−  𝑎ఔ(𝜈ଶ + 2𝜈𝑙 + 𝜈)𝜌ఔା

ఔ

= 0 

 𝑎ఔ(𝜈 + 𝑙 + 1 − 𝜆)𝜌ఔାାଵ

ఔ

−  𝑎ఔ𝜈(𝜈 + 2𝑙 + 1)𝜌ఔା

ఔ

= 0 

Equating the coefficient of 𝜌ఔାାଵ to zero we get the following recursion relation: 

𝑎ఔାଵ =
𝜈 + 𝑙 + 1 − 𝜆

(𝜈 + 1)(𝜈 + 2𝑙 + 2)
𝑎ఔ  … … … … . (3.33) 

Now for large values of 𝜈, 

𝑎ఔାଵ

𝑎ఔ
=

𝜈 + 𝑙 + 1 − 𝜆

(𝜈 + 1)(𝜈 + 2𝑙 + 2)
=

1

𝜈
. 

Again in the expression of 𝑒ఘ, i.e.  

𝑒ఘ = 
𝜌ఔ

𝜈!

ஶ

ఔୀ

=  𝐴ఔ𝜌ఔ

ஶ

ఔୀ

(𝑠𝑎𝑦), 

𝐴ఔାଵ

𝐴ఔ
=

𝜈!

(𝜈 + 1)!
⟶

1

𝜈
  for large values of 𝜈. 

Thus for large values of 𝜈, 𝐹(𝜌) = 𝜌 ∑ 𝑎ఔ𝜌ఔஶ
ఔୀ   behaves like 𝜌𝑒ఘ. And 𝑅 = 𝐹(𝜌)𝑒ିఘ ଶ⁄  [eqn. 

(3.30A)] behaves like 𝜌𝑒ఘ ଶ⁄ , which tends to infinity for 𝜌 → ∞ and thus is not acceptable. 

Therefore the series ∑ 𝑎ఔ𝜌ఔஶ
ఔୀ  should terminate at some value of 𝜈. This can be done by restricting 

𝜆 to be equal to some integer 𝑛 i.e. imposing the condition: 

𝝀 = 𝒏  … … … (𝟑. 𝟑𝟒) 

such that   𝑎ఔାଵ =
𝜈 + 𝑙 + 1 − 𝜆

(𝜈 + 1)(𝜈 + 2𝑙 + 2)
𝑎ఔ =

𝜈 + 𝑙 + 1 − 𝑛

(𝜈 + 1)(𝜈 + 2𝑙 + 2)
𝑎ఔ     vanishes for 

𝝂 = 𝒏 − 𝒍 − 𝟏 … … … … … … … … (𝟑. 𝟑𝟒𝐀) 
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Again if 𝑎ఔାଵ vanishes, then all higher coefficients 𝑎ఔାଶ, 𝑎ఔାଷ, … … … will also vanish and the series 

will terminate. The non-vanishing coefficient of highest order term will be  𝑎ఔ = 𝑎ିିଵ. 

Thus the series  ∑ 𝑎ఔ𝜌ఔஶ
ఔୀ  converts to a polynomial  

𝐿(𝜌) =  𝑎ఔ𝜌ఔ

𝒏ି𝒍ି𝟏

ఔୀ

 

and then   𝐹(𝜌) = 𝜌  𝑎ఔ𝜌ఔ

𝒏ି𝒍ି𝟏

ఔୀ

= 𝜌𝐿(𝜌) .  … … … … . (3.35) 

Note that if the integer 𝑛 ≤ 0 , then,  𝜈 = 𝜆 − 𝑙 − 1 = 𝑛 − 𝑙 − 1 becomes – 𝑣𝑒, which contradicts 

the assumption 𝜈 = 0,1,2 … ...(see eqn. (3.31A)).  

Therefore 𝒏 will have only positive integral values:  

𝒏 = 𝟏, 𝟐, 𝟑 … … 

3.2.3.1 Before  proceeding  further  in  solving  the  radial  equation,  let us explore the following 

interesting results: 

(i) Energy eigen values:   

From eqns. (3.29A) & (3.34) we have: 

𝜆 =
𝑍𝑒ଶ

4𝜋𝜖ℏ
ට

𝜇

−2𝐸
= 𝑛 

𝑬𝒏 = −
𝝁𝒁𝟐𝒆𝟒

𝟑𝟐𝝅𝟐ℏ𝟐𝝐𝟎
𝟐𝒏𝟐

= − 
𝒁𝟐𝒆𝟐

𝟖𝝅𝝐𝟎𝒂𝟎𝒏𝟐
,    𝐰𝐢𝐭𝐡  𝒏 = 𝟏, 𝟐 … … … (3.36) 

Where 𝑎 =
4𝜋ℏଶ𝜖

𝜇𝑒ଶ
 is the well known expression of first Bohr radius. 

𝛼 = ඨ
−8𝜇𝐸

ℏଶ
= ඨ

8𝜇

ℏଶ

𝜇𝑍ଶ𝑒ସ

32𝜋ଶℏଶ𝜖
ଶ

1

𝑛ଶ
=

𝜇𝑍𝑒ଶ

2𝜋ℏଶ𝜖𝑛
=

2𝑍

𝑎𝑛
 … … … … (3.37) 

For 𝑍 = 1, eqn. (3.36) gives Bohr energies of Hydrogen atom.  

(ii) Principal quantum number: The integer 𝑛 is called principal quantum number and gives the 

discrete energy levels of Hydrogen atom, which are the same as given by Bohr theory of Hydrogen 

atom. 
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(iii) Relation between orbital angular momentum quantum number and principal quantum 

number (𝒍 ≤ 𝒏 − 𝟏): 

We have  

 (a)  𝑙 = 0,1,2, … ….;   

 (b) 𝜈 = 𝑛 − 𝑙 − 1, i.e. 𝑙 = 𝑛 − 𝜈 − 1;  and 

 (c) 𝜈 = 0,1,2 …. i.e. 𝜈 = 0. 

Then, for a given 𝑛: 

 𝑙௫ = 𝑛 − 𝜈 − 1 = 𝑛 − 1 

Thus  𝒍  can have integral values between  𝟎  and  𝒏 − 𝟏. Therefore 𝒍 has 𝒏 number of values. 

3.2.3.1 Radial Wave Functions:  

With 𝜆 = 𝑛, from equation (3.31A):  

𝐹(𝜌) = 𝜌  𝑎ఔ𝜌ఔ

𝒏ି𝒍ି𝟏

ఔୀ

= 𝜌𝐿(𝜌),        𝑛 = 1,2,3 … … … … … (3.31𝐵) 

𝐹ᇱ(𝜌) = 𝑙𝜌ିଵ𝐿(𝜌) + 𝜌𝐿ᇱ(𝜌) 

𝐹ᇱᇱ(𝜌) = 𝑙(𝑙 − 1)𝜌ିଶ𝐿(𝜌) + 𝑙𝜌ିଵ𝐿ᇱ(𝜌) + 𝑙𝜌ିଵ𝐿ᇱ(𝜌) + 𝜌𝐿ᇱᇱ(𝜌) 

= 𝑙(𝑙 − 1)𝜌ିଶ𝐿(𝜌) + 2𝑙𝜌ିଵ𝐿ᇱ(𝜌) + 𝜌𝐿ᇱᇱ(𝜌) 

The equation  

𝝆𝟐𝑭ᇱᇱ + (𝟐𝝆 − 𝝆𝟐)𝑭ᇱ + [(𝝀 − 𝟏)𝝆 − 𝒍(𝒍 + 𝟏)]𝑭 = 𝟎 … … … … … … … (𝟑. 𝟑𝟖) 

reduces to:  

𝜌ଶ[𝑙(𝑙 − 1)𝜌ିଶ𝐿(𝜌) + 2𝑙𝜌ିଵ𝐿ᇱ(𝜌) + 𝜌𝐿ᇱᇱ(𝜌)] + (2𝜌 − 𝜌ଶ)[𝑙𝜌ିଵ𝐿(𝜌) + 𝜌𝐿ᇱ(𝜌)] 

+[(𝑛 − 1)𝜌 − 𝑙(𝑙 + 1)]𝜌𝐿(𝜌) = 0 

Or,     𝑙(𝑙 − 1)𝜌𝐿(𝜌) + 2𝑙𝜌ାଵ𝐿ᇱ(𝜌) + 𝜌ାଶ𝐿ᇱᇱ(𝜌) + 2𝑙𝜌𝐿(𝜌) + 2𝜌ାଵ𝐿ᇱ(𝜌) 

−𝑙𝜌ାଵ𝐿(𝜌) − 𝜌ାଶ𝐿ᇱ(𝜌) + (𝑛 − 1)𝜌ାଵ𝐿(𝜌) − 𝑙(𝑙 + 1)𝜌𝐿(𝜌) = 0 

Or,    𝜌ାଵ{𝜌𝐿ᇱᇱ(𝜌) + (2𝑙 + 2 − 𝜌)𝐿ᇱ(𝜌) + (𝑛 − 𝑙 − 1)𝐿(𝜌)} = 0 
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Since this Eqn. is true for all values of 𝜌, so the bracketed term must vanish: 

𝜌𝐿ᇱᇱ(𝜌) + (2𝑙 + 2 − 𝜌)𝐿ᇱ(𝜌) + (𝑛 − 𝑙 − 1)𝐿(𝜌) = 0 

𝜌
𝑑ଶ𝐿(𝜌)

𝑑𝜌ଶ
+ (2𝑙 + 2 − 𝜌)

𝑑𝐿(𝜌)

𝑑𝜌
+ (𝑛 − 𝑙 − 1)𝐿(𝜌) = 0 … … … … … … (3.39) 

Solving Eqn. (3.29) is not simple. Let us compare Eqn. (18) with associated Laguerre differential 

equation: 

𝑥
𝑑ଶ𝐿

 (𝑥)

𝑑𝑥ଶ
+ (𝑝 + 1 − 𝑥)

𝑑𝐿
 (𝑥)

𝑑𝑥
+ (𝑞 − 𝑝)𝐿

 (𝑥) = 0 … … … … … … … . (3.39A)∗ 

where 𝐿
 (𝜌) are the associated Laguerre polynomials. We see that Eqns. (3.39) & (3.39A) become 

identical for 𝑝 = 2𝑙 + 1 and 𝑞 = 𝑛 + 𝑙. 

Therefore the solutions of equation (3.39) are given by associated Laguerre polynomials 𝐿ା
ଶାଵ(𝜌). 

Equation (3.31B) becomes: 

𝐹(𝜌) = 𝜌  𝑎ఔ𝜌ఔ

𝒏ି𝒍ି𝟏

ఔୀ

= 𝜌𝐿(𝜌) = 𝜌𝐿ା
ଶାଵ(𝜌) … … … … … … (3.40) 

# Associated Laguerre Polynomials: 

Associated Laguerre polynomials 𝐿
 (𝑥) are given by (see Zettili) Rodrigues formula as: 

𝐿
 (𝑥) = ൬

𝑑

𝑑𝑥
൰



𝐿(𝑥) … … … … … … (3.41)   

Where 𝐿(𝑥) are Laguerre polynomials given by: 

𝐿(𝑥) = 𝑒௫ ൬
𝑑

𝑑𝑥
൰



(𝑥𝑒ି௫) … … … … … … (3.42) 

Laguerre polynomials 𝐿(𝑥) satisfy Laguerre differential equation: 

𝑥
𝑑ଶ𝐿(𝑥)

𝑑𝑥ଶ
+ (1 − 𝑥)

𝑑𝐿(𝑥)

𝑑𝑥
+ 𝑞𝐿(𝑥) = 0 … … … … … … … . (3.39B) 

Therefore from eqn. (3.30A) ൣ𝑅 = 𝐹(𝜌)𝑒ିఘ ଶ⁄ ൧,  eqn. (3.40) ൣ𝐹(𝜌) = 𝜌𝐿ା
ଶାଵ(𝜌)൧ and eqn. 

(3.28B) [𝜌 = 𝛼𝑟] we can write: 

𝑅 = 𝐹(𝜌)𝑒ିఘ ଶ⁄ = 𝜌𝐿ା
ଶାଵ(𝜌)𝑒ିఘ ଶ⁄ = 𝜌𝑒ିఘ ଶ⁄ 𝐿ା

ଶାଵ(𝜌) 

𝑅 = 𝑁 (𝛼𝑟)  𝑒ିఈ ଶ⁄ 𝐿ା
ଶାଵ(𝛼𝑟) 

where 𝑁  is normalisation constant.   



 

C11T Ch-3 Quantum theory of H atom # Debasish Aich, Dept. of Physics, Kharagpur College          32 

 

𝑁 can be evaluated from the normalisation relation:  

න 𝑅
ଶ𝑟ଶ𝑑𝑟

ஶ



= 1 

Or,       𝑁
ଶ 1

𝛼
ଷ

න 𝑒ିఘ𝜌ଶ𝐿ା
ଶାଵ(𝜌)𝜌ଶ𝑑𝜌

ஶ



= 1 

Or, 𝑁
ଶ ቀ

𝑎𝑛

2𝑍
 ቁ

ଷ

න 𝑒ିఘ𝜌ଶ𝐿ା
ଶାଵ(𝜌)𝜌ଶ𝑑𝜌

ஶ



= 1 

Orthogonal relation of associated Laguerre polynomials is given by:  

න 𝑒ିఘ𝜌ଶ𝐿ା
ଶାଵ(𝜌)𝜌ଶ𝑑𝜌

ஶ



=
2𝑛[(𝑛 + 1)!]ଷ

(𝑛 + 𝑙 + 1)!
 

Therefore: 

𝑁 = ±ඨ
(𝑛 − 𝑙 − 1)!

2𝑛[(𝑛 + 𝑙)!]ଷ
𝛼

ଷ = ±ඨ
(𝑛 − 𝑙 − 1)!

2𝑛[(𝑛 + 𝑙)!]ଷ
൬

2𝑍

𝑎𝑛
 ൰

ଷ

= ±2 ൬
𝑍

𝑎𝑛
 ൰

ଷ
ଶ

ඨ
(𝑛 − 𝑙 − 1)!

𝑛[(𝑛 + 𝑙)!]ଷ
 

We chose negative value of 𝑁 to make the first wave function of hydrogen atom positive. 

𝑁 = −2 ൬
𝑍

𝑎𝑛
 ൰

ଷ
ଶ

ඨ
(𝑛 − 𝑙 − 1)!

𝑛[(𝑛 + 𝑙)!]ଷ
… … … (3.43) 

Then the radial wave functions are given by: 

𝑅(𝑟) = −2 ൬
𝑍

𝑎𝑛
 ൰

ଷ
ଶ

ඨ
(𝑛 − 𝑙 − 1)!

𝑛[(𝑛 + 𝑙)!]ଷ
 𝑒ିఈ ଶ⁄ (𝛼𝑟)𝐿ା

ଶାଵ(𝛼𝑟) 

𝑅(𝑟) = −ඨ
(𝑛 − 𝑙 − 1)!

2𝑛[(𝑛 + 𝑙)!]ଷ
൬

2𝑍

𝑎𝑛
 ൰

ଷ

𝑒
ି 


బ ൬

2𝑍𝑟

𝑎𝑛
൰



𝐿ା
ଶାଵ ൬

2𝑍𝑟

𝑎𝑛
൰ … … … (3.44) 

𝑅(𝑟) = −ඨ
(𝑛 − 𝑙 − 1)!

2𝑛[(𝑛 + 𝑙)!]ଷ
൬

2

𝑎𝑛
 ൰

ଷ

𝑒
ି 


బ ൬

2𝑟

𝑎𝑛
൰



𝐿ା
ଶାଵ ൬

2𝑟

𝑎𝑛
൰ [For Hydrogen atom 𝑍 = 1] 

… (3.45) 
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Thus the final solution for the hydrogen atom wave function is given by: 

𝜓(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌(𝜃, 𝜑) … … … (3.46) 

With  

𝑅(𝑟) = −2 ൬
1

𝑛𝑎
 ൰

ଷ
ଶ

ඨ
(𝑛 − 𝑙 − 1)!

𝑛[(𝑛 + 𝑙)!]ଷ
൬

2𝑟

𝑛𝑎
൰



𝑒
ି 


బ  𝐿ା

ଶାଵ ൬
2𝑟

𝑛𝑎
൰ 

𝑌(𝜃, 𝜑) = 𝜖 ቈ
2𝑙 + 1

4𝜋

(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!


ଵ ଶ⁄

𝑃
(cos 𝜃)𝑒ఝ 

𝑊𝑖𝑡ℎ 𝑛 = 1,2, … … ;   𝑙 = 0,1,2, … … (𝑛 − 1);   𝑚 = 0, ±1, … … ± 𝑙. 

𝐴𝑛𝑑 𝜖 = (−1) for 𝑚 ≥ 0   &   𝜖 = 1 for 𝑚 ≤ 0 

𝑎 =
4𝜋ℏଶ𝜖

𝜇𝑒ଶ
 

𝑃
 = associated Legendre polynomials and 𝐿ା

ଶାଵ = associated Laguerre polynomials.  

 

 

*Note that there are another convention of writing the associated Laguerre differential 

equation. In this convention this equation is given by [See Boas and Arfken]: 

𝑥
𝑑ଶ𝐿

 (𝑥)

𝑑𝑥ଶ
+ (𝑘 + 1 − 𝑥)

𝑑𝐿
 (𝑥)

𝑑𝑥
+ 𝑛𝐿

 (𝑥) = 0 … … … … … … … (A) 

In this convention associated Laguerre polynomials 𝐿
 (𝑥) are given by (see Arfken) 

Rodrigues formula as: 

𝐿
 (𝒙) = (−𝟏)𝒌 ൬

𝒅

𝒅𝒙
൰

𝒌

𝑳𝒏ା𝒌(𝒙) =
𝒆ି𝒙𝒙𝒌

𝒏!
൬

𝒅

𝒅𝒙
൰

𝒏

൫𝒆ି𝒙𝒙𝒏ା𝒌൯ … … … … … … (𝐁)   

Where 𝐿(𝑥) are Laguerre polynomials and in this convention are given by: 

𝑳𝒎(𝒙) =
𝒆𝒙

𝒎!
൬

𝒅

𝒅𝒙
൰

𝒎

(𝒙𝒎𝒆ି𝒙) … … … … … … (𝐂) 

Laguerre polynomials 𝐿(𝑥) satisfy Laguerre differential equation: 

𝑥
𝑑ଶ𝐿(𝑥)

𝑑𝑥ଶ
+ (1 − 𝑥)

𝑑𝐿(𝑥)

𝑑𝑥
+ 𝑚𝐿(𝑥) = 0 … … … … … … … . (D) 
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# First few radial wave functions: 

Let we want to find the expressions of first few radial wave functions namely 𝑅 = 𝑅ଵ, 𝑅ଶ and 𝑅ଶଵ. Then 

required values of 𝑛 & 𝑙 are 1,0;   2,0  and 2,1. Therefore the values of 𝑝 and 𝑞 will be: 

𝑛 = 1, 𝑙 = 0 ⇒            𝑝 = 2𝑙 + 1 = 1, 𝑞 = 𝑛 + 𝑙 = 1 

𝑛 = 2, 𝑙 = 0 ⇒            𝑝 = 2𝑙 + 1 = 1, 𝑞 = 𝑛 + 𝑙 = 2 

𝑛 = 2, 𝑙 = 1 ⇒            𝑝 = 2𝑙 + 1 = 3, 𝑞 = 𝑛 + 𝑙 = 3 

Then the required associated Laguerre polynomials required in Hydrogen Atom problem are 𝐿
 (𝑥) =

 𝐿ଵ
ଵ (𝑥), 𝐿ଶ

ଵ (𝑥) and 𝐿ଷ
ଷ (𝑥) and the required Laguerre polynomials     𝐿(𝑥) = 𝐿ଵ(𝑥), 𝐿ଶ(𝑥) and 𝐿ଷ(𝑥). 

Table-3.3 

𝑳𝟏(𝒙), 𝑳𝟐(𝒙), 𝑳𝟑(𝒙);  𝑳𝟏
𝟏(𝒙), 𝑳𝟐

𝟏(𝒙), 𝑳𝟑
𝟑(𝒙) 

𝐿(𝑥) = 𝑒௫ ൬
𝑑

𝑑𝑥
൰



(𝑥𝑒ି௫) 𝐿
 (𝑥) = ൬

𝑑

𝑑𝑥
൰



𝐿(𝑥) 

𝑛 = 1, 𝑙 = 0;   𝑝 = 2𝑙 + 1 = 1, 𝑞 = 𝑛 + 𝑙 = 1 

𝑳𝟏(𝒙) = 𝑒௫ ൬
𝑑

𝑑𝑥
൰

ଵ

(𝑥ଵ𝑒ି௫) = 𝑒௫(1 − 𝑥)𝑒ି௫  

𝑳𝟏(𝒙) = 𝟏 − 𝒙 

𝑳𝟏
𝟏(𝒙) = ൬

𝑑

𝑑𝑥
൰

ଵ

𝐿ଵ(𝑥) =
𝑑

𝑑𝑥
(1 − 𝑥)  

𝑳𝟏
𝟏(𝒙) = −𝟏 

𝑛 = 2, 𝑙 = 0; 𝑝 = 1, 𝑞 = 2 

𝑳𝟐(𝒙) = 𝑒௫ ൬
𝑑

𝑑𝑥
൰

ଶ

(𝑥ଶ𝑒ି௫)   = 𝑒௫
𝑑

𝑑𝑥
[(2𝑥 − 𝑥ଶ)𝑒ି௫] 

= 𝑒௫[(2 − 2𝑥)𝑒ି௫ − (2𝑥 − 𝑥ଶ)𝑒ି௫] 

= 2 − 2𝑥 − 2𝑥 + 𝑥ଶ 

𝑳𝟐(𝒙) = 𝟐 − 𝟒𝒙 + 𝒙𝟐 

𝑳𝟐
𝟏(𝒙) = ൬

𝑑

𝑑𝑥
൰

ଵ

𝐿ଶ(𝑥) 

=
𝑑

𝑑𝑥
(2 − 4𝑥 + 𝑥ଶ) 

𝑳𝟐
𝟏(𝒙) = −𝟒 + 𝟐𝒙 

𝑛 = 2, 𝑙 = 1; 𝑝 = 2𝑙 + 1 = 3, 𝑞 = 𝑛 + 𝑙 = 3 

𝑳𝟑(𝒙) = 𝑒௫ ൬
𝑑

𝑑𝑥
൰

ଷ

(𝑥ଷ𝑒ି௫) = 𝑒௫ ൬
𝑑

𝑑𝑥
൰

ଶ

[(3𝑥ଶ − 𝑥ଷ)𝑒ି௫] 

= 𝑒௫
𝑑

𝑑𝑥
[(6𝑥 − 3𝑥ଶ)𝑒ି௫ − (3𝑥ଶ − 𝑥ଷ)𝑒ି௫] 

= 𝑒௫
𝑑

𝑑𝑥
[(6𝑥 − 6𝑥ଶ + 𝑥ଷ)𝑒ି௫] 

= 𝑒௫[(6 − 12𝑥 + 3𝑥ଶ)𝑒ି௫ − (6𝑥 − 6𝑥ଶ + 𝑥ଷ)𝑒ି௫] 

⇒  𝑳𝟑(𝒙) = 𝟔 − 𝟏𝟖𝒙 + 𝟗𝒙𝟐 − 𝒙𝟑 

𝑳𝟑
𝟑(𝒙) = ൬

𝑑

𝑑𝑥
൰

ଷ

𝐿ଷ(𝑥) 

= ൬
𝑑

𝑑𝑥
൰

ଷ

(6 − 18𝑥 + 9𝑥ଶ − 𝑥ଷ) 

= −𝟔 

⇒  𝑳𝟑
𝟑(𝒙) = −𝟔 
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Table-3.4 

𝑹𝟏𝟎, 𝑹𝟐𝟎 𝐚𝐧𝐝 𝑹𝟐𝟏 

𝐿
 (𝑥) = ൬

𝑑

𝑑𝑥
൰



𝐿(𝑥) 𝑅 = −2 ൬
1

𝑛𝑎
 ൰

ଷ
ଶ

ඨ
(𝑛 − 𝑙 − 1)!

𝑛[(𝑛 + 𝑙)!]ଷ ൬
2𝑟

𝑛𝑎
൰



𝑒
ି 


బ  𝐿ା

ଶାଵ ൬
2𝑟

𝑛𝑎
൰ 

𝒏 = 𝟏, 𝒍 = 𝟎;  𝒑 = 𝟐𝒍 + 𝟏 = 𝟏, 𝒒 = 𝒏 + 𝒍 = 𝟏 

𝑳𝟏
𝟏(𝒙) = −𝟏 

𝑹𝒏𝒍 = 𝑹𝟏𝟎 = −2 ൬
1

𝑎
 ൰

ଷ
ଶ

ඨ
(1 − 0 − 1)!

1 × [(1 + 0)!]ଷ ൬
2𝑟

𝑎
൰



𝑒
ି 


బ  𝐿ଵ

ଵ ൬
2𝑟

𝑎
൰ 

= −2 ൬
1

𝑎
 ൰

ଷ
ଶ

𝑒
ି 


బ  (−1)          

𝑹𝟏𝟎 = 2 ൬
𝟏

𝒂𝟎
൰

𝟑 𝟐⁄

𝒆𝒙𝒑 ൬− 
𝒓

𝒂𝟎
൰ 

𝒏 = 𝟐, 𝒍 = 𝟎; 𝒑 = 𝟐𝒍 + 𝟏 = 𝟏, 𝒒 = 𝒏 + 𝒍 = 𝟐 

𝑳𝟐
𝟏(𝒙) = −𝟒 + 𝟐𝒙 

𝑹𝒏𝒍 = 𝑹𝟐𝟎 

= −2 ൬
1

2𝑎
 ൰

ଷ
ଶ

ඨ
(2 − 0 − 1)!

2 × [(2 + 0)!]ଷ ൬
2𝑟

2𝑎
൰



𝑒
ି 


ଶబ  𝐿ଶ

ଵ ൬
2𝑟

2𝑎
൰ 

= −2 ൬
1

2𝑎
 ൰

ଷ
ଶ

ඨ
1

2ସ
 𝑒

ି 


ଶబ  𝐿ଶ
ଵ ൬

𝑟

𝑎
൰  = −2 ൬

1

2𝑎
 ൰

ଷ
ଶ 1

4
𝑒

ି 


ଶబ  ൬−4 +
2𝑟

𝑎
൰ 

𝑹𝟐𝟎 = 𝟐 ൬
𝟏

𝟐𝒂𝟎
൰

𝟑 𝟐⁄

൬𝟏 −
𝒓

𝟐𝒂𝟎
൰ 𝒆𝒙𝒑 ൬− 

𝒓

𝟐𝒂𝟎
൰ 

𝒏 = 𝟐, 𝒍 = 𝟏; 𝒑 = 𝟐𝒍 + 𝟏 = 𝟑, 𝒒 = 𝒏 + 𝒍 = 𝟑 

𝑳𝟑
𝟑(𝒙) = −𝟔 

𝑹𝒏𝒍 = 𝑹𝟐𝟏 

= −2 ൬
1

2𝑎
 ൰

ଷ
ଶ

ඨ
(2 − 1 − 1)!

2[(2 + 1)!]ଷ ൬
2𝑟

2𝑎
൰

ଵ

𝑒
ି 


ଶబ  𝐿ଷ

ଷ ൬
2𝑟

2𝑎
൰ 

= −2 ൬
1

2𝑎
 ൰

ଷ
ଶ 1

√2 × 6ଷ
൬

𝑟

𝑎
൰ 𝑒

ି


ଶబ × (−6) 

𝑹𝟐𝟏 =
𝟐

√𝟑
൬

𝟏

𝟐𝒂𝟎
൰

𝟑 𝟐⁄

൬
𝒓

𝟐𝒂𝟎
൰ 𝒆𝒙𝒑 ൬−

𝒓

𝟐𝒂𝟎
൰ 

Similarly we can show: 

 𝑹𝟑𝟎 = 𝟐 ቀ
𝟏

𝟑𝒂𝟎
ቁ

𝟑 𝟐⁄
𝟏 − 𝟐

𝒓

𝟑𝒂𝟎
+

𝟐

𝟑
ቀ

𝒓

𝟑𝒂𝟎
ቁ

𝟐
൨ 𝒆

ି
𝒓

𝟑𝒂𝟎;                 𝑹𝟑𝟏 =
𝟖

𝟑√𝟐
ቀ

𝟏

𝟑𝒂𝟎
ቁ

𝟑 𝟐⁄
ቀ𝟏 −

𝟏

𝟐

𝒓

𝟑𝒂𝟎
ቁ ቀ

𝒓

𝟑𝒂𝟎
ቁ 𝒆

ି
𝒓

𝟑𝒂𝟎;  

 𝑹𝟑𝟐 =
𝟒

𝟑√𝟏𝟎
ቀ

𝟏

𝟑𝒂𝟎
ቁ

𝟑 𝟐⁄
ቀ

𝒓

𝟑𝒂𝟎
ቁ

𝟐
𝒆

ି
𝒓

𝟑𝒂𝟎  … … …  
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https://www.desmos.com/calculator/uwv75iytfu 

Fig. 3.1 Plot of first few radial wave functions of hydrogen atom 
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The time independent part of hydrogen atom wave function i.e. the solution of the time independent 

Schrodinger equation for hydrogen atom is given by: 

𝜓(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌(𝜃, 𝜑) … … … (3.46) 

With symbols having usual meaning.  

The probability of finding the electron in a volume element  

𝑑𝜏 = 𝑑𝑟 𝑟𝑑𝜃 𝑟 sin 𝜃  𝑑𝜑 = 𝑟ଶ𝑑𝑟 sin 𝜃 𝑑𝜃𝑑𝜑 

is given by: 

𝜌𝑑𝜏 = |𝜓|ଶ𝑑𝜏 = |𝑅(𝑟)|ଶ|𝑌(𝜃, 𝜑)|ଶ𝑟ଶ𝑑𝑟 sin 𝜃 𝑑𝜃𝑑𝜑 

= |𝑅(𝑟)|ଶ𝑟ଶ𝑑𝑟|𝑌(𝜃, 𝜑)|ଶ sin 𝜃 𝑑𝜃𝑑𝜑 

The probability of finding the electron in a spherical shell between radii 𝑟 and 𝑟 + 𝑑𝑟 is given by:  

න න |𝑅(𝑟)|ଶ|𝑌(𝜃, 𝜑)|ଶ𝑟ଶ𝑑𝑟 sin 𝜃 𝑑𝜃𝑑𝜑

ଶగ

ఝୀ

గ

ఏୀ

 

= |𝑅(𝑟)|ଶ𝑟ଶ𝑑𝑟 න න |𝑌(𝜃, 𝜑)|ଶ sin 𝜃 𝑑𝜃𝑑𝜑

ଶగ

ఝୀ

గ

ఏୀ

 

= |𝑅(𝑟)|ଶ𝑟ଶ𝑑𝑟 න න |𝑌(𝜃, 𝜑)|ଶ sin 𝜃 𝑑𝜃𝑑𝜑

ଶగ

ఝୀ

గ

ఏୀ

 

But 𝑌(𝜃, 𝜑) are normalised in the limit 𝜃 = 0 to 𝜋 and 𝜑 = 0 to 2𝜋. Therefore  

න න |𝑌(𝜃, 𝜑)|ଶ sin 𝜃 𝑑𝜃𝑑𝜑

ଶగ

ఝୀ

గ

ఏୀ

= 1 

Thus:  

න න |𝑅(𝑟)|ଶ|𝑌(𝜃, 𝜑)|ଶ𝑟ଶ𝑑𝑟 sin 𝜃 𝑑𝜃𝑑𝜑

ଶగ

ఝୀ

గ

ఏୀ

= |𝑅(𝑟)|ଶ𝑟ଶ𝑑𝑟 න න |𝑌(𝜃, 𝜑)|ଶ sin 𝜃 𝑑𝜃𝑑𝜑

ଶగ

ఝୀ

గ

ఏୀ

 

= |𝑅(𝑟)|ଶ𝑟ଶ𝑑𝑟 

= 𝐷(𝑟)𝑑𝑟 

Where 𝐷(𝑟) = |𝑅(𝑟)|ଶ𝑟ଶ  ……… (3.47) is called the radial probability density. 
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Expressions of radial probability densities 𝑫𝒏𝒍(𝒓) for small values of 𝒏   𝒂𝒏𝒅   𝒍 

To see the plots of 𝐷 browse https://www.desmos.com/calculator/hd85wvs3me 

For 𝐷ଵ, 𝐷ଶ, 𝐷ଷ browse https://www.desmos.com/calculator/z5j8sa5krc 

For 𝐷ଶଵ, 𝐷ଷଵ browse https://www.desmos.com/calculator/nans2odf1e  

  For 𝐷ଷଶ browse https://www.desmos.com/calculator/ee3daxe6ht 

Table-3.5 

𝑛, 𝑙 𝑅 
𝐷(𝑟) = |𝑅(𝑟)|ଶ𝑟ଶ 

For 𝑎 = 1 

1,0 𝑅ଵ = 2 ൬
1

𝑎
൰

ଷ ଶ⁄

𝑒
ି 


బ  

𝐷ଵ(𝑟) = |𝑅ଵ(𝑟)|ଶ𝑟ଶ = 4 ൬
1

𝑎0

൰
3

𝑟ଶ𝑒
− 

2𝑟
𝑎0  

= 4𝑟ଶ𝑒𝑥𝑝(−2𝑟) 

2,0 𝑅ଶ = 2 ൬
1

2𝑎
൰

ଷ ଶ⁄

൬1 −
𝑟

2𝑎
൰ 𝑒

ି 


ଶబ  

𝐷ଶ(𝑟) = |𝑅ଶ(𝑟)|ଶ𝑟ଶ 

=
1

2
ቀ1 −

𝑟

2
ቁ

2

𝑟ଶ𝑒𝑥𝑝(−𝑟) 

2,1 𝑅ଶଵ =
2

√3
൬

1

2𝑎
൰

ଷ ଶ⁄

൬
𝑟

2𝑎
൰ 𝑒

ି 


ଶబ  

𝐷ଶଵ(𝑟) = |𝑅ଶଵ(𝑟)|ଶ𝑟ଶ 

=
4

3
൬

1

2𝑎0

൰
3

൬
𝑟

2𝑎0

൰
2

𝑟ଶ𝑒
− 

𝑟
𝑎0 =

1

24
𝑟ସ𝑒𝑥𝑝(−𝑟) 

3,0 

𝑅ଷ 

= 2 ൬
1

3𝑎
൰

ଷ
ଶ

ቈ1 − 2
𝑟

3𝑎
+

2

3
൬

𝑟

3𝑎
൰

ଶ

 𝑒
ି


ଷబ  

𝐷ଷ(𝑟) = |𝑅ଷ(𝑟)|ଶ𝑟ଶ 

=
4

27
ቆ1 −

2𝑟

3
+

2𝑟2

27
ቇ

2

𝑟ଶ exp ൬−
2𝑟

3
൰ 

3,1 

𝑅ଷଵ 

=
8

3√2
൬

1

3𝑎
൰

ଷ
ଶ

൬1 −
1

2

𝑟

3𝑎
൰ ൬

𝑟

3𝑎
൰ 𝑒

ି


ଷబ  

𝐷ଷଵ(𝑟) = |𝑅ଷଵ(𝑟)|ଶ𝑟ଶ 

=
32

2187
ቀ1 −

𝑟

6
ቁ

2

𝑟ସ exp ൬−
2𝑟

3
൰ 

3,2 𝑅ଷଶ =
4

3√10
൬

1

3𝑎
൰

ଷ ଶ⁄

൬
𝑟

3𝑎
൰

ଶ

𝑒
ି


ଷబ   

𝐷ଷଶ(𝑟) = |𝑅ଷଶ(𝑟)|ଶ𝑟ଶ =
8

45
൬

1

3𝑎0

൰
3

൬
𝑟

3𝑎0

൰
4

𝑟ଶ𝑒
−

2𝑟
3𝑎0  

= ൬
8

98415
൰ 𝑟 exp ൬−

2𝑟

3
൰ 
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Fig. 3.2A First few radial wave 
functions of Hydrogen atom 

With 𝒂𝟎 = 𝟏 

Fig. 3.2B Radial probability densities 
of Hydrogen atom for small 𝒏 & 𝒍. 

With 𝒂𝟎 = 𝟏 
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Problems 

P.3.1 Prove that the radial probability density for the hydrogen atom on 1s state is maximum at 

𝒓 = 𝒕𝒉𝒆 𝑩𝒐𝒉𝒓 𝒓𝒂𝒅𝒊𝒖𝒔. [S. N. Ghoshal, 2nd Ed. Chapter VII, Page-286]. 

Ans.  Radial probability density of 1𝑠 state (𝑛 = 1, 𝑙 = 0): 

𝐷 = 𝐷ଵ = |𝑅ଵ|ଶ𝑟ଶ = ቤ2 ൬
1

𝑎0

൰
3 2⁄

𝑒
− 

𝑟
𝑎0ቤ

2

𝑟ଶ = 4 ൬
1

𝑎0

൰
3

𝑟ଶ𝑒
− 

2𝑟
𝑎0  

For 𝐷ଵ to be maximum:  

𝑑(𝐷ଵ)

𝑑𝑟
= 0 

⇒
𝑑(𝐷ଵ)

𝑑𝑟
= 4 ൬

1

𝑎0

൰
3

ቆ2𝑟𝑒
− 

2𝑟
𝑎0 −

2𝑟ଶ

𝑎0

𝑒
− 

2𝑟
𝑎0ቇ = 4 ൬

1

𝑎0

൰
3

൬1 −
𝑟

𝑎0

൰ 2𝑟𝑒
− 

2𝑟
𝑎0 = 0 

⇒ 𝑟 = 𝑎0. 

Hence the proof. 

P.3.2 Calculate < 𝒓 > , for the hydrogen atom on 1s state. [S. N. Ghoshal, 2nd Ed. Chapter VII, Page-

286]. 

< 𝒓 > = න 𝜓
∗(𝑟, 𝜃, 𝜑)𝑟𝜓(𝑟, 𝜃, 𝜑) 𝑑𝜏 

= න න න [𝑅(𝑟)]∗  [𝑌(𝜃, 𝜑)]∗  𝑟𝑅(𝑟)𝑌(𝜃, 𝜑)𝑟ଶ𝑑𝑟 sin 𝜃 𝑑𝜃𝑑𝜑

𝟐𝝅

𝝋ୀ𝟎

𝝅

𝜽ୀ𝟎

ஶ

𝒓ୀ𝟎

 

= න |𝑅(𝑟)|ଶ𝑟ଷ𝑑𝑟 න න |𝑌(𝜃, 𝜑)|ଶ sin 𝜃 𝑑𝜃𝑑𝜑

𝟐𝝅

𝝋ୀ𝟎

𝝅

𝜽ୀ𝟎

ஶ

𝒓ୀ𝟎

 

= න |𝑅(𝑟)|ଶ𝑟ଷ𝑑𝑟

ஶ

𝒓ୀ𝟎

 

= න 𝐷  𝑟 𝑑𝑟

ஶ

𝒓ୀ𝟎
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[Since 𝑌(𝜃, 𝜑) are normalised within 𝜃 = 0 to 𝜋  and 𝜑 = 0 to 2𝜋, therefore 

∫ ∫ |𝑌(𝜃, 𝜑)|ଶ sin 𝜃 𝑑𝜃𝑑𝜑
ଶగ

ఝୀ

గ

ఏୀ
= 1] 

In 1𝑠 state (𝑛 = 1, 𝑙 = 0) of Hydrogen atom,   

< 𝒓 > = න 𝐷  𝑟 𝑑𝑟

ஶ

𝒓ୀ𝟎

= 4 ൬
1

𝑎0

൰
3

න 𝑟ଷ𝑒
− 

2𝑟
𝑎0𝑑𝑟

∞

0

 

= 4 ൬
1

𝑎
൰

ଷ

ቀ
𝑎

2
ቁ

ସ

න ൬
2𝑟

𝑎
൰

3

𝑒
ି 

ଶ
బ𝑑 ൬

2𝑟

𝑎
൰

ஶ



 

=
𝑎

4
න 𝑥3𝑒ି ௫𝑑𝑥

ஶ



 

=
𝑎

4
3! 

=
3

2
𝑎 

P.3.2 Calculate the expectation values of potential energy and kinetic energy for the hydrogen atom 
on 1s state is maximum. [S. N. Ghoshal, 2nd Ed. Chapter VII, Page-286-287]. 

Ans.: Expectation values of potential energy: 

 < 𝑽 > = ∫ 𝜓
∗(𝑟, 𝜃, 𝜑)𝑉(𝑟)𝜓(𝑟, 𝜃, 𝜑) 𝑑𝜏 

= −
𝑒ଶ

4𝜋𝜖
න 𝜓

∗(𝑟, 𝜃, 𝜑)
1

𝑟
𝜓(𝑟, 𝜃, 𝜑) 𝑑𝜏 

= −
𝑒ଶ

4𝜋𝜖
න |𝑅(𝑟)|ଶ𝑟ଶ

1

𝑟
𝑑𝑟

ஶ

𝒓ୀ𝟎

 

= −
𝑒ଶ

4𝜋𝜖
න 𝐷  

1

𝑟
 𝑑𝑟

ஶ

𝒓ୀ𝟎

 

In 1𝑠 state (𝑛 = 1, 𝑙 = 0) of hydrogen atom,   

< 𝑽 > = −
𝑒ଶ

4𝜋𝜖
4 ൬

1

𝑎0

൰
3

න 𝑟𝑒
− 

2𝑟
𝑎0𝑑𝑟

∞

0

 

= −
𝑒2

4𝜋𝜖0
4 ൬

1

𝑎
൰

ଷ

ቀ
𝑎

2
ቁ

ଶ

න ൬
2𝑟

𝑎
൰ 𝑒

ି 
ଶ
బ𝑑 ൬

2𝑟

𝑎
൰

ஶ
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= −
𝑒2

4𝜋𝜖0𝑎
න 𝑥𝑒ି ௫𝑑𝑥

ஶ



 

= −
𝑒2

4𝜋𝜖0𝑎
. 

Expectation values of kinetic energy:  

< 𝑇 > = න 𝜓
∗(𝑟, 𝜃, 𝜑)𝑇𝜓(𝑟, 𝜃, 𝜑) 𝑑𝜏 

= −
ℏଶ

2𝜇
න 𝜓

∗(𝑟, 𝜃, 𝜑)[∇ଶ𝜓(𝑟, 𝜃, 𝜑)] 𝑑𝜏 

In 1𝑠 state (𝑛 = 1, 𝑙 = 0) of hydrogen atom,   

< 𝑇 > = −
ℏଶ

2𝜇
න 𝜓ଵ

∗(𝑟, 𝜃, 𝜑)[∇ଶ𝜓ଵ(𝑟, 𝜃, 𝜑)] 𝑑𝜏 

= න න න 𝜓ଵ
∗(𝑟, 𝜃, 𝜑)  [∇ଶ𝜓ଵ(𝑟, 𝜃, 𝜑)] 𝑟ଶ𝑑𝑟 sin 𝜃 𝑑𝜃𝑑𝜑

ଶగ

ఝୀ

గ

ఏୀ

ஶ

ୀ

 

𝜓ଵ(𝑟, 𝜃, 𝜑) = 𝑅ଵ(𝑟)𝑌(𝜃, 𝜑) = 2 ൬
1

𝑎0

൰
3 2⁄

𝑒
− 

𝑟
𝑎0

1

√4𝜋
=

1

√𝜋
൬

1

𝑎0

൰
3 2⁄

𝑒
− 

𝑟
𝑎0  

< 𝑇 >= −
ℏଶ

2𝜇

1

𝜋

1

𝑎0
3

න න න 𝑒
− 

𝑟
𝑎0  ∇ଶ𝑒

− 
𝑟

𝑎0൨  𝑟ଶ𝑑𝑟 sin 𝜃 𝑑𝜃𝑑𝜑

ଶగ

ఝୀ

గ

ఏୀ

ஶ

ୀ

 

= −
ℏଶ

2𝜇

1

𝜋

1

𝑎0
3

න න න 𝑒
− 

𝑟
𝑎0  ቈቆ

𝜕ଶ

𝜕𝑟ଶ
+

2

𝑟

𝜕

𝜕𝑟
ቇ 𝑒

− 
𝑟

𝑎0 𝑟ଶ𝑑𝑟 sin 𝜃 𝑑𝜃𝑑𝜑

ଶగ

ఝୀ

గ

ఏୀ

ஶ

ୀ

 

= −
ℏଶ

2𝜇

1

𝜋

1

𝑎0
3

න 𝑒
− 

𝑟
𝑎0  ቈቆ

𝜕ଶ

𝜕𝑟ଶ
+

2

𝑟

𝜕

𝜕𝑟
ቇ 𝑒

− 
𝑟

𝑎0 𝑟ଶ𝑑𝑟 න න sin 𝜃 𝑑𝜃𝑑𝜑

ଶగ

ఝୀ

గ

ఏୀ

ஶ

ୀ

 

= −
ℏଶ

2𝜇

1

𝜋

1

𝑎0
3

න 𝑒
− 

𝑟
𝑎0  ൬

1

𝑎0
ଶ

−
2

𝑟

1

𝑎0

൰ 𝑒
− 

𝑟
𝑎0൨  𝑟ଶ𝑑𝑟 4𝜋

ஶ

ୀ

 

= −
ℏଶ

2𝜇

4

𝑎0
3

න 𝑒
− 

2𝑟
𝑎0  ቆ

𝑟ଶ

𝑎0
ଶ

−
2𝑟

𝑎0

ቇ  𝑑𝑟 

ஶ

ୀ
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= −
ℏଶ

2𝜇


4

𝑎0
5

ቀ
𝑎0

2
ቁ

3

න ൬
2𝑟

𝑎0

൰
ଶ

𝑒
− 

2𝑟
𝑎0   𝑑 ൬

2𝑟

𝑎0

൰ 

ஶ

ୀ

−
8

𝑎0
4

ቀ
𝑎0

2
ቁ

2

න ൬
2𝑟

𝑎0

൰ 𝑒
− 

2𝑟
𝑎0   𝑑 ൬

2𝑟

𝑎0

൰ 

ஶ

ୀ

൩ 

= −
ℏଶ

2𝜇


1

2𝑎0
2

න 𝑥ଶ𝑒− 𝑥  𝑑𝑥 

ஶ

௫ୀ

−
2

𝑎0
2

න 𝑥𝑒− 𝑥  𝑑𝑥 

ஶ

௫ୀ

൩ 

= −
ℏଶ

2𝜇


1

2𝑎0
2

2! −
2

𝑎0
2
൨ 

=
ℏଶ

2𝜇𝑎0
2
 

=
ℏଶ

2𝜇
ቆ

𝜇𝑒ଶ

4𝜋ℏଶ𝜖
ቇ

ଶ

 

=
𝜇𝑒ସ

32𝜋ଶℏଶ𝜖
ଶ

. 
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Special Page 

 

 

 

Significance of the term 
𝒍(𝒍ା𝟏)

𝒓𝟐 : 

Let us rewrite the above equation as: 
ℏమ

ଶ

ଵ

మ

ௗ

ௗ
ቀ𝑟ଶ ௗோ()

ௗ
ቁ + [𝐸 − 𝑉(𝑟)]𝑅(𝑟) −

ℏమ

ଶ

(ାଵ)

మ 𝑅(𝑟) = 0 

Or,  𝐸𝑅(𝑟) = −
ℏమ

ଶ

ଵ

మ

ௗ

ௗ
ቀ𝑟ଶ ௗோ()

ௗ
ቁ +

ℏమ

ଶ

(ାଵ)

మ 𝑅(𝑟) + 𝑉(𝑟)𝑅(𝑟) 

Or,  𝐸𝑅(𝑟) = ቂ−
ℏమ

ଶ

ଵ

మ

ௗ

ௗ
ቀ𝑟ଶ ௗ

ௗ
ቁ +

ℏమ

ଶ

(ାଵ)

మ + 𝑉(𝑟)ቃ 𝑅(𝑟) 

Now  
ℏమ

ଶ

(ାଵ)

మ =
(ାଵ)ℏమ

ଶమ =
మ

ଶమ, where 𝐿 = ඥ𝑙(𝑙 + 1) ℏ is the quantum mechanical expression of orbital 

angular momentum of the electron in which 𝑙 are called orbital angular momentum quantum number.  

Therefore 𝐸𝑅(𝑟) = ቂ−
ℏమ

ଶ

ଵ

మ

ௗ

ௗ
ቀ𝑟ଶ ௗ

ௗ
ቁ +

మ

ଶమ + 𝑉(𝑟)ቃ 𝑅(𝑟)  

Or, 𝐸 ≡ 𝐻 ≡ −
ℏమ

ଶ

ଵ

మ

ௗ

ௗ
ቀ𝑟ଶ ௗ

ௗ
ቁ +

మ

ଶమ + 𝑉(𝑟) ……………….. (A) 

Now, −
ℏమ

ଶ

ଵ

మ

ௗ

ௗ
ቀ𝑟ଶ ௗ

ௗ
ቁ is the radial part of  

൫ିℏ∇ሬሬ⃗ ൯
మ

ଶ
=

⃗ మ

ଶ
= 𝑇 = 𝐾. 𝐸. 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 

Thus −
ℏమ

ଶ

ଵ

మ

ௗ

ௗ
ቀ𝑟ଶ ௗ

ௗ
ቁ is the kinetic energy of the electron for its motion in radial coordinate 𝑟. 

Hydrogen atom problem is a central force problem since the electron moves under the central Coulomb 

potential of the nucleus. 

Thus −
ℏమ

ଶ

ଵ

మ

ௗ

ௗ
ቀ𝑟ଶ ௗ

ௗ
ቁ is the kinetic energy of the particle due to radial motion of the particle. 

Now remember the central force problem of classical mechanics. The total energy of the particle moving 
under central force is given by: 

𝐸 =
ଵ

ଶ
𝑚൫�̇�ଶ + 𝑟ଶ�̇�ଶ൯ + 𝑉(𝑟) =

ଵ

ଶ
𝑚�̇�ଶ +

ଵ

ଶ
𝑚𝑟ଶ ቀ



మቁ
ଶ

+ 𝑉(𝑟)       

[Remember, in central force problem of classical mechanics, �̇� =


మ ] 

Or, 𝐸 =
ଵ

ଶ
𝑚�̇�ଶ +

మ

ଶమ + 𝑉(𝑟) =
ଵ

ଶ
𝑚�̇�ଶ + ቂ

మ

ଶమ + 𝑉(𝑟)ቃ  …………….(B) 

In writing the energy equation in the style (like Eqn. (B)) 
మ

ଶమ is termed as ‘potential’ energy arising out 

due to the angular momentum of the particle. This is also called the centrifugal potential since the 
centrifugal force on the particle moving under central force can be derived from it. 

Comparing (A) and (B) we can say that the term 
(ାଵ)

మ  in the radial equation of hydrogen atom problem is 

related to the orbital angular momentum of the electron. 


