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INTRODUCTION 

As discussed in SLM 44, the size of the nucleus is very small and nuclear 

forces are far more complicated than other well-known forces. In fact, the 

picture of nuclear forces is still not clear. This picture is different from the 

case of atom, where the forces are known and atomic model is well established 

for deducing various properties in atomic domain. Due to the lack of detailed 

knowledge of nuclear forces, nuclear models, namely liquid drop model, shell 

model, Nilson model, Fermi gas model, collective model, Bohr Motelson 

model, interacting boson model, etc. have been developed, each of which is 

useful in a more or less limited fashion. 

In order to understand and predict the properties of the nucleus, we have to 

know the forces completely. For knowing nuclear forces, we adopt a different 

approach. In nuclei, we choose an oversimplified theory, the treatment of 

which is mathematically possible, but the theory should be rich in physics. If 

this theory is fairly successful in accounting for at least a few properties of the 

nucleus, we can then improve the model by adding additional terms so that it 

is capable to account more nuclear properties. In this way, we construct a 

nuclear model, a simplified view of nuclear structure, which still contains the 

essentials of the nuclear properties. A good nuclear model must satisfy 

following two criteria: 

 

It must reasonably well account for previously measured nuclear properties. 

It must predict additional nuclear properties that can be measured in new 

experiments. 

 

The development of nuclear models has taken place along the following lines. 

In the first type of nuclear models, nucleus has been treated like a drop of liquid, 

in which nucleons present in the nucleus interact very strongly among 

themselves. This is like molecules present in a drop of liquid, which interact 

among themselves very strongly. This treatment gave rise to models like liquid 

drop model, collective model, etc. The second type of models is constructed in 

analogy with the shell model of the atom. In these models, the nucleons are 

weakly interacting among themselves. This treatment gave rise to  Fermi  gas  

model,  shell  model, Nilson model, etc. 

In this chapter,  we discuss only two models, i.e. liquid drop model and shell 

model. In the  end, a brief description of Collectiveis given. 

 

3.1      LIQUID DROP MODEL 

Bethe- Weizsacker in 1935 proposed on the basis of experimental facts that a 

nucleus resembles a drop of liquid. In 1939, Bohr and Wheeler further 



developed this model to explain the phenomenon of nuclear fission. 

Following are some of the similarities between a drop of liquid and nucleus, 

which prompted Weizsacker to develop the liquid drop model. 

Similarities between Liquid Drop and Nucleus 

 

1. Nuclear forces are analogous to the surface tension of a liquid. 

2. The nucleons behave in a manner similar to that of molecules in a liquid 

drop. 

3. The density of the nuclear matter is almost independent of A, showing 

resemblance to liquid drop where the density of a liquid is independent 

of the size of the drop. 

4. The constant binding energy per nucleon is analogous to the latent heat of 

vaporization. 

5. The disintegration of nuclei by the emission of particles is analogous to 

the evaporation of molecules from the surface of liquid. 

6. The absorption of bombarding particles by a nucleus corresponds to the 

condensation of drops. 

7. The energy of nuclei corresponds to internal thermal vibrations of drop 

molecules. 

 

Based on these similarities, Weizsacker in 1935 and Bohr and Wheeler in 1939 

developed liquid drop model. They ignored the finer features of nuclear forces 

but strong internucleon attraction is stressed. 

Assumptions of the Liquid Drop Model 

 

1. The nucleus consists of incompressible matter. 

2. The nuclear force is identical for every nucleon. 

3. The nuclear force saturates. 

4. In an equilibrium state, the nuclei of atom remain spherically symmetric 

under the action  of strong attractive nuclear forces. 

 

3.1.1 Semiempirical Mass Formula 

The analogy between nucleus and liquid drop has been used to set up a 

semiempirical formula for mass (or binding energy) of a nucleus in its ground 

state. The formula has been obtained by considering different factors of the 

nucleus binding. 

The mass of the nucleus can be expressed in terms of the total binding energy 

B and the masses of Z protons and N neutrons as 

 

The binding energy B of a nucleus is given by the sum of five terms as 

B = B1 + B2 + B3 + B4  + B5 (2.2) 

which are explained in the following sections. 



Volume Energy Term (B1) 

The volume term arises from the interaction of the nucleons through the strong 

force. When a liquid drop evaporates, the energy required for this process is 

the product of mass of the drop Mm and latent heat of vaporization L. This 

energy is used to break all the molecular bonds. This is same as the binding 

energy of the drop B. So 

B = LMm N (2.3) 

where N is the number of molecules in the drop. Equation (2.3) can also be 

written as 

 

This means that B/N is independent of the number of molecules present in 

the liquid drop. As we know that in the liquid drop, a molecule interacts only 

with its nearest neighbours and number of neighbours is independent of the 

size of the drop. This characteristics of the system shows that range of 

interaction among the molecules is much smaller than the dimensions of  the 

drop. 

In SLM 44, we have seen that neutrons and protons are held together in 

nuclei by short- range attractive forces. These forces reduce the mass of the 

nucleus below that of its constituents by an amount proportional to the number 

of nucleons A. Since the volume of the  nucleus is proportional to A, hence 

this term is regarded as a volume binding energy and in analogy to 

Eq. (2.4) is given by 

 

where av is a proportionality constant and subscript v is for volume. 

Surface Energy Term (B2) 

The surface term is a correction to the volume term to take into account that 

the nucleons at   the surface of the nucleus do not have the same level of 

interactions as nucleons in the interior  of the nucleus. In the above discussion, 

we have assumed that all the molecules are surrounded by its neighbours, 

while in actual practice the molecules at the surface do not have any 

neighbours on all the sides. So these molecules are not as tightly bound as the 

molecules in the interior. Extending this argument to the nuclear case, some 

nucleons are nearer to the surface, and so they interact with fewer nucleons. 

Thus, the binding energy is reduced by an amount proportional to the surface 

area of the nucleus of radius r as the nucleons on the surface are   less tightly 

bound than those in the interior. This term is proportional to the surface area 

of the nucleus of radius r(= r0A1/3). Therefore, 

B2  –4 r2 

Or   𝐵2 ∝ −4𝜋𝑟𝑜
2𝐴2/3 

which is usually expressed as 



 

where negative sign is for decrease in energy and as is constant. 

Coulomb Energy Term (B3) 

The Coulomb term represents the energy incorporated in the nucleus as a 

result of the positive charge present in the nucleus. The only long-range force 

in the nucleus is the  Coulomb  repulsion between protons. The total work 

done in assembling a nucleus consisting of Z protons is given by 

 

For a single-proton nucleus no work is done against Coulomb repulsion in 

assembling the nucleus. Thus, the true Coulomb energy term for a nucleus 

containing Z protons is W – w. 

 

The negative sign indicates the repulsive term. As r = r0A1/3, Eq. (2.7) can be 

written as 

 

where ac is constant. 

Asymmetry Energy Term (B4) 

The asymmetry term reflects the stability of nuclei with the proton and neutron 

numbers being approximately equal. This is a term, which depends on the 

neutron excess (N – Z) in the nucleus and it decreases with the increasing 



nuclear binding energy. For very few nuclei of low Z, N – Z = 0 and are more 

stable compared to their neighbours, i.e. their binding energies are maximum. The 

reduction in binding energy for higher A nuclei is directly proportional to (N –        

Z)2 or square of excess of neutrons and is inversely proportional to mass number. 

So, we can write, 

 
As A = N + Z and aa is constant. 

Pairing Energy Term (B5) 

So far we have all the terms in the binding energy have smooth variation with 

respect to N or Z or A. However, in the actual binding energy versus A curve, 

there are several discontinuities, particularly when N or Z becomes equal to 2, 

4, 8, 20, 28, 50, 82 or 126. These values correspond to shell closure for N or 

Z. The nuclei having N or Z equal to one of these numbers have large binding 

energy. This fact did not appear in the liquid drop model, which does not 

consider intrinsic spin of the nucleons and the shell effects. 

It is interesting to classify all the stable nuclei into four groups, first having 

even Z–even N, second even Z–odd N, third odd Z–even N and last having odd 

Z–odd N. This classification is shown in Table 3.1. 

TABLE 3.1 Number of stable isotopes 

 

From Table 2.1, it is clear that even Z–even N nuclei, being most stable, are 

most abundant.  Accordingly, odd Z–odd N nuclei are least abundant and hence 

least stable.  The  remaining nuclei have intermediate stability. Therefore, the 

binding energy also depends upon whether   the number of protons and 

neutrons are odd or even. This pairing effect was incorporated by  putting 

 

where 

ap = 33.5 MeV for even–even nuclei 

= 0 for odd–even (or odd A) nuclei 

= –33.5 MeV for odd–odd nuclei 



Substituting the values of B1, B2, B3, B4 and B5 from Eqs. (2.5), (2.6), (2.8), 

(2.9) and (2.10) in Eq. (2.2), we get 

Substituting the value of B from the above equation in Eq. (2.1), we get the 

semiempirical mass formula as 

 

The various constants found are, 

 

 
 

The contribution of various terms for few cases are given (in MeV) in Table 

3.2. 

TABLE 3.2 Contribution of various terms of semiempirical mass formula 

for some isotopes 

 

 

The semiempirical mass formula reproduces masses of various nuclei quite 

accurately, but does not account for all the features of the nuclear binding 

energy. 

3.1.2 Mass of Most Stable Isobar 

Isobars are nuclides that have same mass number A. The semiempirical mass 

formula can predict the atomic number Z0 of most stable isobar for given mass 

number A. 

Neglecting 1 in comparison to Z in the Coulomb term and rewriting Eq. (2.11) 

as 



 

Let us find the atomic number of most stable isotope for a given A. This can 

be calculated by taking the partial derivative of Eq. (2.12) with respect to Z 

keeping A as constant and equating the resultant equation to zero, i.e. 

 

where Z0 is the atomic number of most stable isotope for given A. Substituting 

the values of b and c, we obtain 

 

Since all the quantities in this expression are known, atomic number for most 

stable isobar can be calculated. 

3.1.3 Achievements of Liquid Drop Model 

 

• It predicts the atomic masses and binding energies of various nuclei 

accurately. 

• It predicts emission of a- and b-particles in radioactivity. 

• The theory of compound nucleus, which is based on this model, explains 

the basic features of the fission process. 

 

3.1.4 Failures of Liquid Drop Model 

 

• It fails to explain the extra stability of certain nuclei, where the numbers 

of protons or neutrons in the nucleus are 2, 8, 20, 28, 50, 82 or 126 

(these numbers are called magic numbers). 

• It fails to explain the measured magnetic moments of many nuclei. 

• It also fails to explain the spin of nuclei. 



• It is also not successful in explaining the excited states in most of the 

nuclei. 

• The agreement of semiempirical mass formula with experimentally 

observed masses and binding energies is poor for lighter nuclei 

compared to the heavy ones. 

 

3.2 Bohr- Wheeler Theory of Fission 

 

Bohr and J. A. Wheeler put forward the theory of nuclear fission based on the liquid drop model 

the nucleus (1939). It is possible to calculate the activation energy E for fission of different nuclei 

on the basis of this theory. 

If mechanical vibrations are set up within a liquid drop, it can lead to the break-up of the drop. To 

do this, energy must be supplied from outside. Since an atomic nucleus behaves like a charged 

liquid drop, similar vibrations may be generated in it if it gains some excitation energy which is 

possible if, for instance, the nucleus absorbs a neutron.  

The vibrations set up in the nucleus deform it due to which its surface energy Es, and electrostatic 

energy Ec are both changed.  

In the fission process, the splitting of the nucleus is preceded by severe deformation of the 

original nucleus The surface forces tend to restore the original shape, while the electrical forces 

have the effect of increasing the deformation, because the surface energy is a minimum for the 

sphere while the electrical energy decreases with increased deformation. The various stages of 

deformation, leading to the final splitting of a liquid drop into two fragments are shown in Fig 

3.1. We shall consider the cases of the lighter and heavier nuclei separately. 

 
Fig. 3.1 (a) Various stages of deformation leading to the final splitting of a liquid drop. (b) 

Different modes of axially symmetric deformation of a liquid drop. 

 

For a light nucleus, the electrical forces are small compared to the forces of surface tension. 

The final separation in this case can take place only if the stage is reached in which the two 

fragments are connected by a very narrow neck of the liquid. So the critical energy necessary to 

separate the two parts is given by the difference in energy between the original nucleus and the 

total energy of the fragments just separated.  

In case of very heavy nucleus, the electrostatic forces within the nucleus play a predominant 

role. Hence even a slight initial deformation of the drop will tend to build up against the forces of 



surface tension. Thus, a complete separation of the fragments may be expected at an early stage 

of deformation. The surface and Coulomb’s energies of an undeformed spherical nuclear droplet 

are given as below.  

𝐸𝑠𝑜 = 𝑎2𝐴
2

3 = 4𝜋𝑟𝑜
2𝑆𝐴

2

3   (2.13) 

𝐸𝐶𝑜 =
𝑎3𝑍2

𝐴1/3 =
3𝑍𝐴2

4𝜋𝜀𝑜5𝑟𝑜𝐴1/3   (2.14) 

 Where, S is the surface energy per unit area and ro = 1.2 fm. 

If Es and Ec represent the corresponding energies of the deformed nucleus, then the change in the 

combined surface and electrostatic energies due to deformation will be,  

∆𝐸 = ∆𝐸𝑠 − ∆𝐸𝑐 = (𝐸𝑠 − 𝐸𝑠𝑜) + (𝐸𝑐 − 𝐸𝑐𝑜)  (2.15) 

Bohr and Wheeler, by straight forward calculation shown that, 

∆𝐸 = 𝛼2
2 (

2

5
𝑎2𝐴2/3 −

1

5
𝑎3

𝑍2

𝐴1/3)  (2.16) 

For Z sufficiently large, E will become negative which means that spontaneous fission will 

occur instantaneously. The limiting condition for this to happen is, 

1

5
𝑎3

𝑍2

𝐴1/3
>

2

5
𝑎2𝐴2/3 

Substituting the values of the parameters 𝑎2 and 𝑎3 in equation (2.17), we get 

(
𝑍2

𝐴
)

𝑙𝑖𝑚

≅ 50 

So, nuclei with Z2/A >50 will be unstable against spontaneous fission. For the heaviest natural 

element, uranium, Z2/A =36, which is well below the limiting value, so that all naturally 

occurring nuclei are stable w.r.t. small deformation.  

Bohr and Wheeler on the basis of liquid drop model calculated the critical energy Ecrit that 

must be supplied with the neutron. According to their calculation, 

𝐸𝑐𝑟𝑖𝑡 = 0.89𝐴2/3 − 0.02
𝑍(𝑍−1)

𝐴1/3  MeV, 

Where, A is the atomic mass of the compound nucleus and Z is the atomic number.  For, 𝑈92
236 -

fission one gets A=236 and Z=92; Ecrit = 6.9 MeV. 

   

 

3.3       SHELL MODEL 

Atomic theory based on the shell model has provided remarkable clarification 

of the complicated details of atomic structure. Nuclear physicist, therefore, 

attempted to use a similar theory to study nuclear structure. In the atomic shell 

model, we fill the shells with electrons in order of increasing energy consistent 

with the requirement of the Pauli principle. When we do so, one obtains an 

inert core of filled shells, containing 2, 10, 18, 36, 54 and 86 electrons (atomic 

numbers of inert gases) and some valence electrons; the atomic properties are 

determined primarily by the valence electrons. When we compare some 

measured properties of atomic system with the predictions of the model, one 

finds remarkable agreement. The same kind of effect has been observed in 

nuclei. Experimentally it was found that nuclei that have 2, 8, 20, 28, 50, 82 

and 126 nucleons (protons or neutrons), called magic numbers, are more 

abundant than other nuclei. 

However, there exist several significant differences between atomic and 

nuclear cases. In the atomic case, the potential is provided by the Coulomb 



field of the nucleus; the orbits are generated by the external agent i.e. 

interaction between electrons and nucleus. We can solve   the Schrödinger 

equation for this potential and calculate the energies of the sub-shells into 

which electrons can then be placed. In case of nucleus, there is no such 

external agent, the nucleons move in a potential which is not well defined that 

they themselves create. 

Another appealing aspect of atomic shell theory is the existence of spatial 

orbits. It is often very useful to describe atomic properties in terms of spatial 

orbits of the electrons. The electrons can move in those orbits relatively free 

of collisions with other electrons. Nucleons which have a mass about 2000 

times larger than that of electrons have a diameter comparable to the size of 

the nucleus, which is about 105 times smaller than that of an atom. How can 

we regard the nucleons as moving in well-defined orbits when a single 

nucleon can make many collisions during each orbit? 

All these observations tempted nuclear physicists (Barlet, Guggenheimer et 

al.) to devise an independent particle model formally called the shell model. 

A shell structure means that nucleons move freely inside the nucleus similar 

to the electron motion in atom. This approach could explain the existence of 

first few magic numbers. However, physicist lost interest in this model till 

1948 due to its failure to explain higher magic numbers. 

In 1948, M.G. Mayer in USA brought together a considerable amount of  

convincing information showing the evidence for the closed shells, which led 

to the development of nuclear shell model which could explain all the magic 

numbers, namely 2, 8, 20, 28, 50, 82 and 126, which apparently represent 

closed shells in the nucleus. Some of the main aspects of this evidence based 

on the study of stable nuclei are as under: 

1. Binding energy per nucleon vs. A curve. If we plot binding energy per 

nucleon versus A curve, it shows that binding energy suddenly increases 

when the number of nucleons is  either 2, 8, 20, 28, 50, 82 or 126 

indicating that these nuclei are exceptionally stable. 

2. Number of stable isotopes. Relative stabilities of different elements are 

also indicated by the number of stable isotopes per element. 

 

1.  

 19K = 3 

49In = 

2 

81Tl = 

2 

20Ca = 6 

50Sn = 

10 

82Pb = 4 

21Sc = 1 

51Sb = 2 

83Bi = 1 

It is clear that number of stable isotopes for z = 20, 50 and 82 are much 

larger compared to neighbouring isotopes. 

3. Number of stable isotones. The numbers of stable isotones for N = 19, 

20, 21; 49, 50, 51 and 81, 82, 83 are shown in Table 3.3. 

TABLE 3.3 Number of stable isotones around different magic numbers 



 

It is clear from the above table that the numbers of stable isotones for N = 

20, 50 and 82 are much larger as compared to neighbouring stable 

isotones. 

4. A table of relative abundances of nuclei compiled from data on the 

composition of earth, sun, stars and meteorites shows pronounced peaks 

at 

 

16O (N = Z = 8) 

40Ca (N = Z = 20) 

118Sn (Z = 50) 

88Sr, 89Y, 90Zr (N = 50) 

138Ba, 139La, 

140Ce 

(N = 82) 

208Pb (Z = 82, N = 126) 

5. Binding energy of next neutron after a magic number is small. The 

separation energy of the last neutron for N = 7, 8, 9; 19, 20, 21 and 27, 

28 29 is shown in Table 3.4. 

TABLE 3.4 Binding energy of the last neutron around magic numbers 

 

 

From the above table it is clear that for neutron numbers = 9, 21 and 29, 

the separation energy of the last neutron suddenly decreases as 

compared to the case, when neutron numbers are 8, 20 and 28. 

6. It is found that some isotopes are spontaneous neutron emitters. They are: 

17
8O9, 81

36Kr51, 137
54Xe83, 89

36Kr53 

 

The end product of each series ends in N or Z equal to either 82 or 126. 

7. Neutron absorption cross-section s, the probability of absorption of 

neutron by the nucleus is small for nuclides containing magic number of 

neutrons 

 



N 19 20 21 49 50 51 

s 2.0 0.4

1 

12.

0 

19.

0 

0.6

5 

6.

4 

8. -decay energies are rather smooth functions of A for a given Z, but it 

shows striking discontinuities at N = 126 or Z = 82, the energy of -

particles increases. For example, 

212
84Po128 → 208

82Pb126 +  (9 MeV) Half-life t1/2 = 

3 x 10–7s where N = 126, Z = 82 

210
84Po126 → 206

82Pb124 + (6 MeV) t1/2 = 3 x 10–7s 

where N = 126, Z = 82 

9. Similar behaviour is exhibited by b-emitters. 

10. The electric quadrupole moment measures the departure of nuclear 

charge distribution from sphericity. This departure is a measure of nuclear 

deformation. A spherical nucleus has no or nearly zero quadrupole 

moments. It has been found that nuclei with proton or neutron number 

equal to one of the magic numbers are spherical in nature, i.e. all the three 

axes x, y and z are equal like that of a tennis ball. For such nuclei the 

quadrupole moment is either zero or nearly zero which is also observed 

experimentally. 

However, in some nuclei, out of three, two axes are equal. In the case, where 

the unequal axis is shorter than the others, the nucleus has somewhat of a 

pumpkin shape, it is called oblate. Extreme case is that of a Hamburger as 

shown in Figure 1.7. In the other case where the third unequal axis is longer 

than the other two, the nucleus has somewhat of a football shape, it is called 

prolate. Extreme case is that of a cigar or Hot Dog as shown in Figure 1.6. In 

general, unequal axis differs in length by about 20%. However, in lighter 

nuclei, deformations are more. For example, in 24Mg, all the three axes are 

unequal. 

Thus all the facts given above show that magic numbers 2, 8, 20, 28, 50, 82 

and 126 correspond to closed shells. The nuclei having any one of these magic 

number of protons or neutrons or both show more stability than the other 

nuclei. 

Basic Assumptions of the Shell Model 

Calculations similar to atoms were also performed for the nucleus also. 

Following assumptions were made for these calculations: 

 

Nucleons in a nucleus move independently in a common (mean) 

potential determined by the average motion of all the other nucleons. 

Protons and neutrons separately fill levels in the nucleus. 

Most of the nucleons are paired and a pair of nucleons contributes zero spin 

and zero magnetic moment. The paired nucleons thus form an inert core. 

The properties of odd A nuclei are characterized by the unpaired nucleon 

and odd–odd nuclei by the unpaired proton and neutron. 

 



These assumptions indicate that the nucleus might have a shell structure. It 

means that nucleons moving in different shells inside the nucleus do not suffer 

any collisions similar to electrons in different shells in the atom. This 

assumption is apparently not acceptable as the nucleons have almost the same 

size as that of the nucleus. So obviously a question arises, why do not so many 

nucleons moving inside the nucleus suffer any collisions? How can we regard 

the nucleons as moving in well-defined orbits when a single nucleon can make 

many collisions during each orbit? 

The answer to this question comes from Pauli’s exclusion principle. 

Consider in a heavy nucleus, a collision between two nucleons in a state near 

the very bottom of the potential well. When the nucleons collide, they transfer 

energy to one another, but if all of the energy levels   are filled up to the level 

of valence nucleon, there is no way for one of the nucleons to gain energy 

except to move up to the valence level. The other levels near the original level 

are filled and cannot accept an additional nucleon. Such a transfer from a low-

lying level to the higher- lying level requires more energy than the nucleons 

are likely to transfer in a collision. Thus, the collisions cannot occur and the 

nucleons can indeed orbit as if they were transparent to one another! 

The first step in developing the shell model is the choice of the potential. 

Different forms of potential V(r) have been employed in order to obtain the 

required magic numbers. In the following, we consider two potentials to solve 

the Schrödinger equation. 

3.3.1 The Square Well Potential 

The problem can be mathematically simplified, if we assume a potential well 

with infinite walls as 

V(r) = –V0  r < r0 

= 0   r > r0 

The shape of the finite square well potential is shown in Figure 3.2. 

Figure 3.2 Square well potential. –V0 is the depth of the well. 

If we solve Schrödinger equation for square well potential, we get the 

following sequence of levels: 

• 1s 

• 1p 

• 1d 

• 2s 

• 1f 

• 2p 

• 1g 



• 2d 

• 1h 

• 3s 

• 2f 

• 1i 

• 3p 

• 2g 

 

and so on, where s, p, d, f, g, h, i, …, etc. stand for usual spectroscopic 

notation L = 0, 1, 2, 3, 4, 5, 6, …, respectively. 

Because of the two different spin orientation of the nucleon, a level can 

contain (2L + 1) protons or neutrons. For example, number of nucleons in 

1s (L = 0) shell will be 2(2 x 0 + 1) =    2 and number of nucleons in 1f (L = 3) 

shell will be 2(2 x 3 + 1) = 14. This model predicts the shell closures at 

nucleon number 2, 8, 18, 20, 34, 40, 58, etc. as shown in Table 3.5. 

 

TABLE 3.5 Nuclear levels and magic numbers predicted by square well 

potential 

 

 

The numbers shown in column 3 of the above table are not the observed the 

magic numbers. The level sequence for square well potential is shown in figure 

3.3. 



   

 

Figure 3.3 Sequence of levels of the square well potential. 

The level sequence for squares well potential can be remembered in the 

following way. First in a vertical column write the level sequence 1s, 1p, 1d, 1f, 

1g, 1h, 1i, etc. as shown in Figure 2.3. Then leave two vertical spaces as blank 

and again write the level sequence 2s, 2p, 2d, 2f,  2g,   etc. Again, leave two 

vertical blank spaces and write the level sequence 3s, 3p, 3d, 3f, etc. as shown 

in Figure 3.4. In this sequence, 3s level will shift between 1h and 2f, similarly, 

1i level will shift between 2f and 3p as indicated by arrow in the Figure 3.3. The 

resulting sequence will look as shown in Figure 3.5. 



 

Figure 3.4 Way to remember the square well potential levels. 

 

Figure 3.5 The resulting sequence is the sequence of square well potential 

levels. 

Now, starting from the top and move horizontally from left to right, the 

first level is 1s, second 1p, third 1d, fourth 2s, fifth 1f, and so on. 

3.3.2 The Harmonic Oscillator Potential 

The shape of this potential is shown in Figure 3.6. 

This potential and the square well potential provide two contrasting viewpoints. 

The square well has infinite sharp edges. The harmonic oscillator potential 

diminishes steadily at the edges. 

 

Figure 3.6 Harmonic oscillator potential. 



Again solving Schrödinger equation for harmonic oscillator potential, we 

get the following sequence of levels as shown in first column of Table 3.6. 

The first level is 1s, second is 1p, third level contains two sub-shells 2s, 1d, 

having same energy, fourth level again contains two sub-shells, 2p and 1f, 

and so on. 

TABLE 3.6 Nuclear levels and magic numbers predicted by harmonic 

oscillator potential 

 

In this case also each sub-shell contains 2(2L + 1) protons or neutrons. For 

example, in fourth shell, we have two sub-shells, 2p and 1f. For 2p (L = 1), 

it contains 2(2 L 1 + 1) = 6 nucleons and 2f (L = 3), it contains 2(2 L 3 + 1) 

= 14 nucleons. Total number of nucleons in fourth shell = 6 + 14 = 20. These 

numbers are shown in the third column of the Table 3.6. 

This level sequence again does not reproduce experimentally observed 

magic numbers. The sequence of harmonic oscillator levels is shown in Figure 

3.7. The levels are equally spaced. Harmonic oscillator level sequence can 

also be remembered in almost similar way as that of square well potential as 

shown below. 

 

Figure 3.7 Level sequence as obtained for the harmonic oscillator levels. 



As shown in Figure 3.8, write in the first vertical column the level 

sequence 1s, 1p, 1d, 1f, 1g, 1h, 1i, etc. Then leave two vertical spaces as 

blank and again write the level sequence 2s, 2p, 2d, 2f, 2g, etc. Again, leave 

two vertical blank spaces and write the level sequence 3s, 3p, 3d, 3f, etc. 

Now, these sequences read horizontally are the harmonic oscillator levels. 

For example, first level is 1s, second is 1p, third is 1d, 2s and so on. 

 

Figure 3.8 Way to remember the harmonic oscillator levels. 

The other potential, which is a compromise between square well and harmonic 

oscillator potential, is 

This potential is known as Woods–Saxon potential. In this equation d = 

0.524 fm, R is the mean nuclear radius and r =  r0  A
1/3.  Unlike square well potential, 

the Woods–Saxon potential does not have any sharp edges at all. The harmonic 

oscillator potential also does not have any edges. The shape of this potential 

is shown in Figure 3.9. This potential closely approximates the nuclear 

charge and matter distribution, falling smoothly to zero beyond the mean 

radius R. When the Schrödinger equation was solved for this potential, it 

predicted 2, 8, 20, 40, 58, 92, 112 as magic numbers. We again get the 

magic numbers 2, 8, and 20, but the higher magic numbers do not emerge 

from the calculations. 

 
Figure 3.9   Wood-Saxon Potential



A way out of this difficulty, which proved to be remarkably successful was 

proposed independently in 1949 by M.G. Mayer in USA and O. Haxel, 

J.H.D. Jensen and H.E. Suess 

in Germany. We have seen in Chapter 1 that each nucleon has a spin angular 

momentum   and orbital angular momentum . It was 

proposed that there is a strong coupling between the orbital and spin angular 

momentum of each individual nucleon; referred as spin-orbit coupling. As a 

result of the spin-orbit coupling, the nucleon energy level for a given value ℓ 

of the orbital quantum number (except ℓ = 0) splits into two sub-levels, 

characterized by total angular momentum quantum number j = ℓ + 1/2 and j 

= ℓ – 1    /     2            corresponding to spin components of +1/2  and  –1/2  respectively.  The  

sign  of  this  term  is  chosen in such a way that ℓ + 1/2 level goes down in 

energy whereas ℓ – 1/2 goes up. Further, the   total splitting is proportional to ℓ 

and becomes so large that for a given  n,  the  level  with largest ℓ value slides 

down to energy as low as those of the multiplet with quantum number n – 1. 

The sequence of these levels is shown in Figure 3.10. 

3.3.3 Predictions of the Shell Model 

 

• Magic numbers. 

• Even–even nuclei have ground state angular momentum or spin 0. There 

is no known exception to this rule. 

• In odd A nuclei the spin will be determined by the last unpaired particle. 

For example, in 13
6C7 and 13

7N6 the levels fill as under 

(1s1/2)2 | (1p3/2)4 (1p1/2)1 

Thus,  in  13
6C7  unpaired  neutron  is  in  1p1/2  shell  and,  therefore,  nucleus  

has  a  spin  1/2, whereas  in  13
7N6  last  unpaired  proton  is  also  in  1p1/2  shell  

so  its  spin  should  also  be  1/2.  This is indeed observed experimentally. 

Similarly, in 17
8O9 and 17

9F8 the filling of levels will be 

(1s1/2)2 | (1p3/2)4 (1p1/2)2 | (1d5/2)1 

the predicted spin is 5/2, which is also experimentally observed. 

Similarly, for 33
16S17 (1s1/2)2 | (1p3/2)4 (1p1/2)2 | 

(1d5/2)6 (2s1/2)2 (1d3/2)1 

predicted and observed spin is 3/2. However, in 75
33As42 and 61

28Ni33 

 

 

 

 

 

 

 

 

 

  

   

 

    

     

      

       



(1s1/2)2 | (1p3/2)4 (1p1/2)2 | (1d5/2)6 (2s1/2)2 (1d3/2)4 | (1f7/2)8 | (2p3/2)4 

(1f5/2)1 

predicted spin is 5/2, whereas observed is 3/2, for both these nuclei. 

Similar kind of exceptions has been observed for neutron numbers 57, 59 and 

61 also. 

One would also expect that for a high atomic mass number A, there will be 

many stable nuclei with spin 11/2 corresponding to an odd nucleon in the 

1h11/2 state and similarly there should be many stable nuclei with spin 13/2 

corresponding to an odd nucleon in the 1i13/2 state, but not  even  a  single  

nucleus  has  ever  been  observed  with  ground  state  spin  of  11/2  or  13/2.  Many 

such exceptions have been eliminated by modifying the rules and stating that 

if the high spin shell  (say  1f5/2)  comes  after  low  spin  shell  (2p3/2),  the  high  

spin  shell  fills  faster,  pairing  its particles before the low spin shell can be 

filled completely. According to this rule, we may write for 75As and 61Ni. 



 
 

Figure 3.10 Level scheme due to spin-orbit coupling. 

(1s1/2)2 | (1p3/2)4 (1p1/2)2 | (1d5/2)6 (2s1/2)2 (1d3/2)4 | (1f7/2)8 | (2p3/2)3 

(1f5/2)2 

giving spin as 3/2 for both these nuclei. 

We can say that there is a strong tendency for particles to form pairs in higher 

ℓ states even at some expense of energy.  This can be put into the model in the 

form of pairing potential, which gives paired nucleons a lower energy than 

unpaired ones, and which increases with increasing ℓ. 



9 10 

56 81 

The higher angular momentum states are usually formed in pairs. Thus, a 

level 1h11/2 may  be filled in pairs while the odd nucleon goes to 3s1/2 or 

2d3/2 shell. For example, the measured spin of 137      Ba       is 3/2, while the 

one predicted by the shell model is 11/2. 

(1s1/2)2 | (1p3/2)4 (1p1/2)2 | (1d5/2)6 (2s1/2)2 (1d3/2)4 | (1f7/2)8 | (2p3/2)4 (1f5/2)6 

(2p1/2)2 (1g9/2)10 

| (1g7/2)8 (2d5/2)6 (2d3/2)4 (3s1/2)2 (1h11/2)11 | 

predicts spin as 11/2. 

Due to pairing in higher l states, the alternative arrangement of nucleons is as 

under 

(1s1/2)2 | (1p3/2)4 (1p1/2)2 | (1d5/2)6 (2s1/2)2 (1d3/2)4 | (1f7/2)8 | (2p3/2)4 (1f5/2)6 

(2p1/2)2 (1g9/2)10 | 

(1g7/2)8 (2d5/2)6 (2d3/2)3 (3s1/2)2 (1h11/2)12 | 

This  predicts  spin  as  3/2.  A  discrepancy  occurs  at  19   F ,  which  

according  to  the  shell  model should have spin of 5/2. 

(1s1/2)2 | (1p3/2)4 (1p1/2)2 | (1d5/2)1 (2s1/2)0 (1d3/2)0 

Experimentally  spin  is  1/2.  The  odd  proton  goes  to  2s1/2  state  instead  of  

1d5/2  state.  This discrepancy may be explained as the result of coupling 

between the nucleons outside the closed  shell,  i.e.  the  two  neutrons  each  

having  spin  5/2  and  a  proton  also  having  spin  5/2. Another discrepancy is 

for 23Na, which has a spin of 3/2 while the one predicted by the shell  model 

is 5/2. 

(1s1/2)2 | (1p3/2)4 (1p1/2)2 | (1d5/2)3 (2s1/2)0 (1d3/2)0 

Coupling between 3 protons in 1d5/2 shell gives spin of 3/2. 

Finally, the parity of the system is given by (–1)ℓ, where ℓ is the orbital 

quantum number of the last odd nucleon. For a nucleon in a state s, d, g, 

… corresponding to ℓ = 0, 2, 4, … the parity is even (+), while for the 

states p, f, h, … corresponding to ℓ = 1, 3, 5, … the parity is odd (–). 

3.3.4 Achievements of the Shell Model 

 

• It explains the ground state spin and parities of all even–even nuclei 

without any exception. 

• It explains the ground state spin and parities of most of odd A (even–odd 

or odd–even) nuclei. 

• It also explains the spin and parities of odd–odd nuclei. 

• It explains the extra stability of magic nuclei. 

• It also explains the qualitative features of magnetic dipole and electric 

quadrupole moments of different nuclei. 

• It is also able to explain many other properties, like nuclear isomerism of 



different nuclei. 

 

3.3.5 Failures of Shell Model 

 

• Shell model fails to explain spin values for certain nuclei. 

• Shell model is unable to explain the energy of first excited states in even–

even nuclei. 

• It is unable to explain magnetic moments of some nuclei. 

• This model is also unable to explain quadrupole moments of many nuclei. 

• Shell model is also unable to explain the ground states of odd A nuclei in 

the mass region 150  A  190 and A > 220. 

 

3.6 Collective Model 

 

The success of both liquid-drop and nuclear shell models leads to a dilemma, as there is a basic 

contradiction between them. The liquid-drop model accounts for the behavior of nucleus as a 

whole, as in nuclear fission. Many nuclear phenomena however show that nucleons behave as 

individual and near-independent particles. The conclusion that follows is that the two models are 

incomplete parts of a more general one. The problem of electric quadrupole moments led to such 

a model. This new model is called the collective or unified model, proposed by Aage Bohr and 

Mottelson. It is a combination of the ideas of the liquid-drop and the shell model in which all the 

nucleons participate in a collective or unified manner. 

 

In this model, the nucleons are assumed to exert a centrifugal pressure on the surface of the 

nucleus deforming it into a permanently non-spherical shape and may undergo oscillations 

(liquid-drop aspect). The nucleons then move in a non-spherical potential like that assumed to 

account for the quadrupole moments. The nuclear distortion reacts on the particles and somewhat 

modifies the independent particle aspect. The nucleus is considered as a shell structure that can 

oscillate in shape and size. 

 

The simplest type of collective motion, identified experimentally, is connected with rotation of 

deformed nuclei. The rotational energy levels are obtained when the angular momentum is 

quantized and for even-even nuclei given by, 

𝐸𝑟𝑜𝑡 =
ℏ

2𝐼
𝐽(𝐽 + 1)   (3.15) 

 

where I is the effective moment of inertia of the nucleus and J, the total angular momentum 

quantum number. 

 

For a spheroidal nucleus, the deformation is symmetric relative to reflection in the nuclear center. 

So, J is restricted to even values: J = 0, 2,4, and parity should be even. According to this theory, 

the deformation would be maximum and rotational levels easily observable for nuclei with 

number of nucleons far from closed shell. The first excited state should be a 2+ state, the second 

a 4+ state with energy (5 x 4)/(3 x 2) = 3 times that of the first excited state. The excitation energy 

of successive states of this sequence should be 1 : 3: 7: 12- etc. Many nuclei are observed to 

follow this sequence. This is shown in Fig. 3.11. The effective moment of inertia is about one half 

that of a rigid body of the same shape. 



 

Another interesting prediction of the model is that the y-ray transitions between these two states 

should be much faster, sometimes 100 times, than what the simple shell model would predict. 

This is also supported by experiments 

 

 

Fig. 3.11 Rotational states in 𝐻𝑓72
180 : (a) experimental levels  

(b) levels calculated using equation (3.15). 

 

Other forms of collective motion should also exist; for example, vibrational distortion. There is 

some evidence for this, but it is not so clear-cut as for the rotational states. A detailed study of the 

rotation and vibrational spectra of nuclei is beyond the scope of the book. 

The collective model does not deny the validity of the shell model. The individual nucleons still 

pursue their quasi-independent' motions but in an ellipsoid potential, instead of a spherical one. 

One has therefore to understand in detail why the equilibrium distortion is favoured and how so 

great a degree of collective motion can arise if the individual nucleons are not tied together 

 

4.0  Summary 

In the first section of this unit, describes the origin of Gamma rays, its energy, spectrum and 

Internal conversion, nuclear isomerism and Gamma ray spectroscopy. In the second section, 

explains, Yukawa theory of nucleon-nucleon interaction, exchange forces between nucleons, 

binding energy of deuteron and the ground state of deuteron also classification of nuclear 

reaction, conservation laws and mass energy balance in nuclear reactions, compound nuclear 

model and Ghoshal’s experiment for the confirmation of the theory of compound nucleus.  

In the third section, the different nuclear models are discussed for the stability of nucleus, for 

the determination of binding energy, nuclear masses accurately, spin - parity of the ground state 

of nucleus, also explains the stability of magic nuclei and the qualitative features of 

magnetic dipole and electric quadrupole moments of different nuclei. 

 

 

1.0 Glossary 

Gamma rays spectrum, Internal Conversions, Nuclear Isomerism, Nucleaon-Nucleon Interaction, 



Nuclear reactions, compound nucleus, Nuclear models, Liquid drop model, Shell model, Nuclear 

Fission. 

6.0 Self-assessment questions 

1. (a) Describe qualitatively how  - rays interact with matter while passing through it.   

(b) 𝑃𝑢94
240  decays by emission of two groups of -particles with kinetic energies K1 = 5.17 MeV 

and K2 = 5.12 MeV. Calculate the energy of the accompanying - rays. 

 

2.In the reaction nNHeB 1

0

14

7

4

2

11

5 +→+ , the masses of 11B, 14N and 4 He are 11.01280 u, 14.00752 u 

and 4.00387 u respectively. If the incident -particle has a kinetic energy 5.250 MeV towards 11B 

which is at rest and the kinetic energies of product nuclei 14N and 1n are 3.260 MeV and 2.139 

MeV respectively, compute the mass of neutron in kg.   

                    

1. (a) Which experimental fact indicates saturation of nuclear force ? 

 

b) Write down the asymmetry term in the Bethe-Weizsacker semiempirical formula for nuclear 

binding energy. 

c) Using the extreme single particle shell model, determine the ground state spin-parities of 𝑀𝑔12
25 

nucleus. 

d) Indicate the processes by which Gamma rays absorbed in matter. 

e) What do you mean by “Parity Violation” ? 

f) What are the Bohr’s hypothesis about a compound nucleus. 

 

4. Calculate the threshold energy required to initiate the reaction P31(n,p)Si31. Given, 𝑚𝑛 =

1.00898 𝑢, 𝑚𝑝 = 1.008144 𝑢, 𝑀𝑃 = 30.9836 𝑢, 𝑀𝑆𝑖 = 30.98515 𝑢. 

 

5. Find the Q-value of the nuclear reaction X(x,y)Y in terms of mass and kinetic energy of the 

incident, product particles and residual nucleus, if the product nucleus emitted of an angle 90o 

w.r.t. the direction of the incident particle. 

 

6. a) Obtain the expression for the binding energy of a nucleus based on the liquid drop model. 

State the semi-empirical mass formula of Bethe- Weizsacker.  

(b) What are the basic similarities between a liquid drop and a nucleus? Using semi empirical 

binding energy formula, show that nuclei with A > 160 should be  disintegrating.             

 

7. A nucleus with A = 239 and Z = 92 is deformed from the spherical shape such that the 

deformation parameter 2 = 0.1 while 3 = 4 = 0; Using Bohr-Wheeler theory, calculate the 

percentage in the surface and coulomb energy changes of the nucleus from those of the spherical 

shape.             

 

8. What are magic numbers? Name a “doubly magic” nucleus. Give the experimental evidences 

in support of magic numbers and shell structure of nucleus in nuclei.    

 

9. Predict the state of energy level of unpaired odd nucleon and spins and parities of the following 

nuclei from the single particle shell model. 



 (i) Al27

13  (ii) S33

16  (iii) Ar41

18       

 

10. a) Show that spin-orbit interaction force between nucleus overcomes the limitations of single 

particle shell model. 

b) Discuss the success and limitations of the single particle shell model. 

c) Find the total angular momentum and parity for the ground state of 𝑆16
33 

nucleus using the shell model. 

 

11.Describe Rutherford’s experiment for observing the disintegration of nitrogen nuclei by 

bombardment with  particles. 

12. Write down Bohr’s independence hypothesis on compound nuclear reaction mechanism. Also 

explain with diagram the Ghosal’s experimental results for the verification of compound nuclear 

theory.                  

 

13. In the reaction nNHeB 1

0

14

7

4

2

11

5 +→+ , the masses of 11B, 14N and 4 He are 11.01280 u, 14.00752 

u and 4.00387 u respectively. If the incident -particle has a kinetic energy 5.250 MeV towards 
11B which is at rest and the kinetic energies of product nuclei 14N and 1n are 3.260 MeV and 2.139 

MeV respectively, compute the mass of neutron in kg.                          

14. a) What are the basic similarities between a liquid drop and an atomic nucleus. Develop the 

semi empirical mass formula discussing the physical basis of each term.  

    b) Using the semi empirical mass formula, find the atomic number of the most stable nucleus 

for a given mass number A. Hence explain which is the most stable among LiBeHe 6

3

6

2

6

2 ,, .         

2+5+3 

15.  a) Predict the state of energy level of unpaired odd nucleon and spins and parities of the 

following nuclei from the single particle shell model. 

i) C13

6    (ii) Al27

13    (iii) S33

16 .                                                                                      

 

     b) Discuss the success and limitations of the single particle shell model.       

16. Explain briefly the important features of the collective model of nuclei. How does the 

collective model help in understanding the nuclear fission? 
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