

Software Engineering
For BCA 4th Semester

Lecture 4
[Various Software Testing Approaches in Software

Engineering]

Compiled
By

Sakhi Bandyopadhyay
Dept. of Computer Science & BCA,

Kharagpur College,
Kharagpur 721305

Software testing
Software testing is an investigation conducted to provide stakeholders with information about the

quality of the software product or service under test. Software testing can also provide an objective,

independent view of the software to allow the business to appreciate and understand the risks of

software implementation. Test techniques include the process of executing a program or application

with the intent of finding software bugs (errors or other defects), and verifying that the software

product is fit for use.

Software testing involves the execution of a software component or system component to evaluate

one or more properties of interest. In general, these properties indicate the extent to which the

component or system under test:

 meets the requirements that guided its design and development,

 responds correctly to all kinds of inputs,

 performs its functions within an acceptable time,

 it is sufficiently usable,

 can be installed and run in its intended environments, and

 Achieves the general result its stakeholder’s desire.

As the number of possible tests for even simple software components is practically infinite, all

software testing uses some strategy to select tests that are feasible for the available time and

resources. As a result, software testing typically (but not exclusively) attempts to execute a program

or application with the intent of finding software bugs (errors or other defects). The job of testing is

an iterative process as when one bug is fixed, it can illuminate other, deeper bugs, or can even create

new ones.

Software testing can provide objective, independent information about the quality of software and

risk of its failure to users or sponsors.

Purpose of Testing
A primary purpose of testing is to detect software failures so that defects may be discovered and

corrected. Testing cannot establish that a product functions properly under all conditions, but only

that it does not function properly under specific conditions.[4] The scope of software testing often

includes the examination of code as well as the execution of that code in various environments and

conditions as well as examining the aspects of code: does it do what it is supposed to do and do what

it needs to do. In the current culture of software development, a testing organization may be separate

from the development team. There are various roles for testing team members. Information derived

from software testing may be used to correct the process by which software is developed

Various Testing Approaches

White-box testing
White-box testing verifies the internal structures or workings of a program, as opposed to the

functionality exposed to the end-user. In white-box testing, an internal perspective of the system (the

source code), as well as programming skills, are used to design test cases. The tester chooses inputs

to exercise paths through the code and determine the appropriate outputs. This is analogous to testing

nodes in a circuit, e.g., in-circuit testing (ICT).

While white-box testing can be applied at the unit, integration, and system levels of the software

testing process, it is usually done at the unit level. It can test paths within a unit, paths between units

during integration, and between subsystems during a system–level test. Though this method of test

design can uncover many errors or problems, it might not detect unimplemented parts of the

specification or missing requirements.

Techniques used in white-box testing include:

 API testing – testing of the application using public and private APIs (application programming

interfaces)

 Code coverage – creating tests to satisfy some criteria of code coverage (e.g., the test designer

can create tests to cause all statements in the program to be executed at least once)

 Fault injection methods – intentionally introducing faults to gauge the efficacy of testing

strategies

 Mutation testing methods

 Static testing methods

Black-box Testing
Black-box testing (also known as functional testing) treats the software as a "black box," examining

functionality without any knowledge of internal implementation, without seeing the source code. The

testers are only aware of what the software is supposed to do, not how it does it. Black-box testing

methods include: equivalence partitioning, boundary value analysis, all-pairs testing, state transition

tables, decision table testing, fuzz testing, model-based testing, use case testing, exploratory testing,

and specification-based testing.

One advantage of the black box technique is that no programming knowledge is required. Whatever

biases the programmers may have had, the tester likely has a different set and may emphasize

different areas of functionality.

Grey-box Testing
Grey-box testing (American spelling: gray-box testing) involves having knowledge of internal data

structures and algorithms for purposes of designing tests while executing those tests at the user, or

black-box level. The tester will often have access to both "the source code and the executable binary."

Grey-box testing may also include reverse engineering (using dynamic code analysis) to determine, for

instance, boundary values or error messages. Manipulating input data and formatting output do not

qualify as grey-box, as the input and output are clearly outside of the "black box" that we are calling

the system under test. This distinction is particularly important when conducting integration testing

between two modules of code written by two different developers, where only the interfaces are

exposed for the test.

Unit Testing
Unit testing refers to tests that verify the functionality of a specific section of code, usually at the

function level. In an object-oriented environment, this is usually at the class level, and the minimal

unit tests include the constructors and destructors.

These types of tests are usually written by developers as they work on code (white-box style), to

ensure that the specific function is working as expected. One function might have multiple tests, to

catch corner cases or other branches in the code. Unit testing alone cannot verify the functionality of

a piece of software, but rather is used to ensure that the building blocks of the software work

independently from each other.

Unit testing is a software development process that involves a synchronized application of a broad

spectrum of defect prevention and detection strategies in order to reduce software development

risks, time, and costs. It is performed by the software developer or engineer during the construction

phase of the software development life cycle. Unit testing aims to eliminate construction errors before

code is promoted to additional testing; this strategy is intended to increase the quality of the resulting

software as well as the efficiency of the overall development process.

System Testing
System testing tests a completely integrated system to verify that the system meets its

requirements.[50][obsolete source] For example, a system test might involve testing a login interface,

then creating and editing an entry, plus sending or printing results, followed by summary processing

or deletion (or archiving) of entries, then logoff.

Integration testing
Integration testing is any type of software testing that seeks to verify the interfaces between

components against a software design. Software components may be integrated in an iterative way

or all together ("big bang"). Normally the former is considered a better practice since it allows

interface issues to be located more quickly and fixed.

Integration testing works to expose defects in the interfaces and interaction between integrated

components (modules). Progressively larger groups of tested software components corresponding to

elements of the architectural design are integrated and tested until the software works as a system.

Integration tests usually involves a lot of code, and produce traces that are larger than those produced

by unit tests. This has an impact on the ease of localizing the fault when an integration test fails. To

overcome this issue, it has been proposed to automatically cut the large tests in smaller pieces to

improve fault localization.

Acceptance Testing
Acceptance testing can mean one of two things:

 A smoke test is used as a build acceptance test prior to further testing, e.g., before integration

or regression.

 Acceptance testing performed by the customer, often in their lab environment on their own

hardware, is known as user acceptance testing (UAT). Acceptance testing may be performed

as part of the hand-off process between any two phases of development.

Alpha testing
Alpha testing is simulated or actual operational testing by potential users/customers or an

independent test team at the developers' site. Alpha testing is often employed for off-the-shelf

software as a form of internal acceptance testing before the software goes to beta testing.

Beta testing
Beta testing comes after alpha testing and can be considered a form of external user acceptance

testing. Versions of the software, known as beta versions, are released to a limited audience outside

of the programming team known as beta testers. The software is released to groups of people so that

further testing can ensure the product has few faults or bugs. Beta versions can be made available to

the open public to increase the feedback field to a maximal number of future users and to deliver

value earlier, for an extended or even indefinite period of time (perpetual beta).

Usability testing
Usability testing is to check if the user interface is easy to use and understand. It is concerned mainly

with the use of the application. This is not a kind of testing that can be automated; actual human users

are needed, being monitored by skilled UI designers.

Security testing
Security testing is essential for software that processes confidential data to prevent system intrusion

by hackers.

The International Organization for Standardization (ISO) defines this as a "type of testing conducted

to evaluate the degree to which a test item, and associated data and information, are protected so

that unauthorised persons or systems cannot use, read or modify them, and authorized persons or

systems are not denied access to them."

Testing Tools
Program testing and fault detection can be aided significantly by testing tools and debuggers.

Testing/debug tools include features such as:

Program monitors, permitting full or partial monitoring of program code, including:

Instruction set simulator, permitting complete instruction level monitoring and trace facilities

Hypervisor, permitting complete control of the execution of program code including:-

Program animation, permitting step-by-step execution and conditional breakpoint at source level or

in machine code

Code coverage reports

Formatted dump or symbolic debugging, tools allowing inspection of program variables on error or at

chosen points

Automated functional Graphical User Interface (GUI) testing tools are used to repeat system-level

tests through the GUI

Benchmarks, allowing run-time performance comparisons to be made

Performance analysis (or profiling tools) that can help to highlight hot spots and resource usage

Some of these features may be incorporated into a single composite tool or an Integrated

Development Environment (IDE).

