

C++ Programming
For BCA 4th Semester

Lecture 6
[Operator Overloading in C++ in Details]

Compiled
By

Subhadip Mukherjee
Dept. of Computer Science and BCA

Kharagpur College,
Kharagpur 721305

“Dear students, as we know Operator Overloading a very important topic of C++ programming,

therefore, this lecture note is designed in such a way that describes Operator Overloading in C++ in

a better way of understanding through Problems, Solutions and Coding”

 ____ Subhadip Mukherjee.

What’s the deal with operator overloading?
It allows you to provide an intuitive interface to users of your class, plus makes it possible for

templates to work equally well with classes and built-in/intrinsic types.

Operator overloading allows C/C++ operators to have user-defined meanings on user-defined types

(classes). Overloaded operators are syntactic sugar for function calls:

class Fred {

public:
 // ...

};

#if 0

 // Without operator overloading:

 Fred add(const Fred& x, const Fred& y);

 Fred mul(const Fred& x, const Fred& y);

 Fred f(const Fred& a, const Fred& b, const Fred& c)
 {
 return add(add(mul(a,b), mul(b,c)), mul(c,a)); // Yuk...

 }

#else

 // With operator overloading:

 Fred operator+ (const Fred& x, const Fred& y);

 Fred operator* (const Fred& x, const Fred& y);

 Fred f(const Fred& a, const Fred& b, const Fred& c)
 {

 return a*b + b*c + c*a;

 }

#endif

What are the benefits of operator overloading?
By overloading standard operators on a class, you can exploit the intuition of the users of that class.

This lets users program in the language of the problem domain rather than in the language of the

machine.

The ultimate goal is to reduce both the learning curve and the defect rate.

What are some examples of operator overloading?
Here are a few of the many examples of operator overloading:

myString + yourString might concatenate two std::string objects

myDate++ might increment a Date object

a * b might multiply two Number objects

a[i] might access an element of an Array object

x = *p might dereference a “smart pointer” that “points” to a disk record — it could seek to

the location on disk where p “points” and return the appropriate record into x

What operators can/cannot be overloaded?
Most can be overloaded. The only C operators that can’t be are . and ?: (and sizeof, which is

technically an operator). C++ adds a few of its own operators, most of which can be overloaded

except :: and .*.

Here’s an example of the subscript operator (it returns a reference). First

without operator overloading:

class Array {

public:
 int& elem(unsigned i) { if (i > 99) error(); return data[i]; }

private:

 int data[100];

};

int main()
{

 Array a;

 a.elem(10) = 42;

 a.elem(12) += a.elem(13);
 // ...

}

Now the same logic is presented with operator overloading:

class Array {

public:

 int& operator[] (unsigned i) { if (i > 99) error(); return data[i]; }

private:
 int data[100];

};

int main()

{

 Array a;

 a[10] = 42;

a[12] += a[13];
 // ...

}

Why can’t I Overload . (dot), ::, sizeof, etc.?
Most operators can be overloaded by a programmer. The exceptions are

 . (dot) :: ?: sizeof

There is no fundamental reason to disallow overloading of ?:. So far the committee just hasn’t seen

the need to introduce the special case of overloading a ternary operator. Note that a function

overloading expr1?expr2:expr3 would not be able to guarantee that only one

of expr2 and expr3 was executed.

sizeof cannot be overloaded because built-in operations, such as incrementing a pointer into an

array implicitly depends on it. Consider:

 X a[10];

 X* p = &a[3];

 X* q = &a[3];
 p++; // p points to a[4]
 // thus the integer value of p must be

 // sizeof(X) larger than the integer value of q

Thus, sizeof(X) could not be given a new and different meaning by the programmer without violating
basic language rules.
What about ::? In N::m neither N nor m are expressions with values; N and m are names known to
the compiler and :: performs a (compile time) scope resolution rather than an expression evaluation.
One could imagine allowing overloading of x::y where x is an object rather than a namespace or a
class, but that would – contrary to first appearances – involve introducing new syntax (to
allow expr::expr). It is not obvious what benefits such a complication would bring.
operator. (dot) could in principle be overloaded using the same technique as used for ->. However,
doing so can lead to questions about whether an operation is meant for the object overloading . or
an object referred to by .. For example:

 class Y {
 public:

 void f();
 // ...

 };

 class X { // assume that you can overload .

 Y* p;

 Y& operator.() { return *p; }

 void f();
 // ...

 };

 void g(X& x)

 {
 x.f(); // X::f or Y::f or error?

 }

This problem can be solved in several ways. So far in standardization, it has not been obvious which

way would be best.

Can I define my own operators?
Sorry, no. The possibility has been considered several times, but each time it was decided that the

likely problems outweighed the likely benefits.

It’s not a language-technical problem. Even when Stroustrup first considered it in 1983, he knew

how it could be implemented. However, the experience has been that when we go beyond the most

trivial examples people seem to have subtly different opinions of “the obvious” meaning of uses of

an operator. A classical example is a**b**c. Assume that ** has been made to mean

exponentiation. Now should a**b**c mean (a**b)**c or a**(b**c)? Experts have thought the

answer was obvious and their friends agreed – and then found that they didn’t agree on which

resolution was the obvious one. Such problems seem prone to lead to subtle bugs.

Can I overload operator== so it lets me compare two char[] using a

string comparison?
No: at least one operand of any overloaded operator must be of some user-defined type (most of

the time that means a class).

But even if C++ allowed you to do this, which it doesn’t, you wouldn’t want to do it anyway since you

really should be using a std::string-like class rather than an array of char in the first place since arrays

are evil.

Can I create a operator** for “to-the-power-of” operations?
Nope.

The names of, precedence of, associativity of, and arity of operators is fixed by the language. There

is no operator** in C++, so you cannot create one for a class type.

If you’re in doubt, consider that x ** y is the same as x * (*y) (in other words, the compiler assumes y

is a pointer). Besides, operator overloading is just syntactic sugar for function calls. Although this

particular syntactic sugar can be very sweet, it doesn’t add anything fundamental. I suggest you

overload pow(base,exponent) (a double precision version is in <cmath>).

By the way, operator^ can work for to-the-power-of, except it has the wrong precedence and

associativity.

How do I create a subscript operator for a Matrix class?
Use operator() rather than operator[].

When you have multiple subscripts, the cleanest way to do it is with operator() rather than

with operator[]. The reason is that operator[] always takes exactly one parameter,

but operator() can take any number of parameters (in the case of a rectangular matrix, two

parameters are needed).

For example:

class Matrix {
public:

 Matrix(unsigned rows, unsigned cols);
 double& operator() (unsigned row, unsigned col); // Subscript operators often
come in pairs

 double operator() (unsigned row, unsigned col) const; // Subscript operators often
come in pairs

 // ...
 ~Matrix(); // Destructor
 Matrix(const Matrix& m); // Copy constructor
 Matrix& operator= (const Matrix& m); // Assignment operator
 // ...

private:

 unsigned rows_, cols_;

 double* data_;
};

inline

Matrix::Matrix(unsigned rows, unsigned cols)

 : rows_ (rows)
 , cols_ (cols)
//, data_ ← initialized below after the if...throw statement

{

 if (rows == 0 || cols == 0)

 throw BadIndex("Matrix constructor has 0 size");

 data_ = new double[rows * cols];
}

inline

Matrix::~Matrix()

{
 delete[] data_;

}

inline

double& Matrix::operator() (unsigned row, unsigned col)

{
 if (row >= rows_ || col >= cols_)

 throw BadIndex("Matrix subscript out of bounds");

 return data_[cols_*row + col];

}

inline

double Matrix::operator() (unsigned row, unsigned col) const

{

 if (row >= rows_ || col >= cols_)

 throw BadIndex("const Matrix subscript out of bounds");

 return data_[cols_*row + col];

}

Then you can access an element of Matrix m using m(i,j) rather than m[i][j]:

int main()

{

 Matrix m(10,10);
 m(5,8) = 106.15;

 std::cout << m(5,8);
 // ...

}

How can I overload the prefix and postfix forms of operators ++ and

--?
Via a dummy parameter.

Since the prefix and postfix ++ operators can have two definitions, the C++ language gives us two

different signatures. Both are called operator++(), but the prefix version takes no parameters and

the postfix version takes a dummy int. (Although this discussion revolves around the ++ operator,

the -- operator is completely symmetric, and all the rules and guidelines that apply to one also apply

to the other.)

class Number {

public:
 Number& operator++ (); // prefix ++

 Number operator++ (int); // postfix ++

};

Note the different return types: the prefix version returns by reference, the postfix version by value.
If that’s not immediately obvious to you, it should be after you see the definitions (and after you
remember that y = x++ and y = ++x set y to different things).

Number& Number::operator++ ()

{
 // ...

 return *this;

}

Number Number::operator++ (int)

{

 Number ans = *this;
 ++(*this); // or just call operator++()

 return ans;
}

The other option for the postfix version is to return nothing:

class Number {
public:

 Number& operator++ ();

 void operator++ (int);

};

Number& Number::operator++ ()

{
 // ...

 return *this;

}

void Number::operator++ (int)

{
 ++(*this); // or just call operator++()

}

However you must not make the postfix version return the this object by reference; you have been
warned.
Here’s how you use these operators:

Number x = /* ... */;
++x; // calls Number::operator++(), i.e., calls x.operator++()
x++; // calls Number::operator++(int), i.e., calls x.operator++(0)

Assuming the return types are not ‘void’, you can use them in larger expressions:

Number x = /* ... */;

Number y = ++x; // y will be the new value of x

Number z = x++; // z will be the old value of x

Example 1: Overloading Unary Operator
#include <iostream>

using namespace std;

class Height {

public:

// Member Objects

int feet, inch;

// Constructor to initialize the object's value

Height(int f, int i)

{

feet = f;

inch = i;

}

// Overloading(-) operator to perform decrement

// operation of Height object

void operator-()

{

feet--;

inch--;

cout << "Feet & Inches after decrement: " << feet << " ' " << inch <<endl;

}

};

int main()

{

//Declare and Initialize the constructor of class Height

Height h1(6, 2);

//Use (-) unary operator by single operand

-h1;

return 0;

}

Example 2: Overloading Binary Operator
#include <iostream>

using namespace std;

class Height

{

public:

int feet, inch;

Height()

{

feet = 0;

inch = 0;

}

Height(int f, int i)

{

feet = f;

inch = i;

}

// Overloading (+) operator to perform addition of

// two distance object using binary operator

Height operator+(Height& d2) // Call by reference

{

// Create an object to return

Height h3;

// Perform addition of feet and inches

h3.feet = feet + d2.feet;

h3.inch = inch + d2.inch;

// Return the resulting object

return h3;

}

};

int main()

{

Height h1(3, 7);

Height h2(6, 1);

Height h3;

//Use overloaded operator

h3 = h1 + h2;

cout << "Sum of Feet & Inches: " << h3.feet << "'" << h3.inch << endl;

return 0;

}

Rules for Operator Overloading
 Only the existing operators can be overloaded and new operators cannot be overloaded

 The overloaded operator must contain at least one operand of the user-defined data type.

 We do not use a friend function to overload certain operators. However, the member

functions can be used to overload those operators.

 When unary operators are overloaded through a member function they take no explicit

arguments, but, if they are overloaded by a friend function they take one argument.

 When binary operators are overloaded through a member function they take one explicit

argument, and if they are overloaded through a friend function they take two explicit

arguments.

