

C++ Programming
For BCA 4th Semester

Lecture 4
[Friend Function, Friend Class, Inheritance in C++,

Various Types of Inheritance in C++]

Compiled
By

Subhadip Mukherjee
Dept. of Computer Science and BCA

Kharagpur College,
Kharagpur 721305

Friend Function in C++

In principle, private and protected members of a class cannot be accessed from outside the

same class in which they are declared. However, this rule does not apply to "friends".

Friends are functions or classes declared with the friend keyword.

A non-member function can access the private and protected members of a class if it is

declared a friend of that class. That is done by including a declaration of this external

function within the class, and preceding it with the keyword friend:

 // friend functions

#include <iostream>

using namespace std;

class Rectangle {

 int width, height;

 public:

 Rectangle() {}

 Rectangle (int x, int y) :

width(x), height(y) {}

 int area() {return width * height;}

 friend Rectangle duplicate (const

Rectangle&);

};

Rectangle duplicate (const Rectangle&

param)

{

 Rectangle res;

 res.width = param.width*2;

 res.height = param.height*2;

 return res;

}

int main () {

 Rectangle foo;

 Rectangle bar (2,3);

 foo = duplicate (bar);

 cout << foo.area() << '\n';

 return 0;

}

24

The duplicate function is a friend of class Rectangle. Therefore, function duplicate is

able to access the members width and height (which are private) of different objects of

type Rectangle. Notice though that neither in the declaration of duplicate nor in its later

use in main, function duplicate is considered a member of class Rectangle. It isn't! It

simply has access to its private and protected members without being a member.

Typical use cases of friend functions are operations that are conducted between two different

classes accessing private or protected members of both.

Friend classes in C++

Similar to friend functions, a friend class is a class whose members have access to the private

or protected members of another class:

 // friend class

#include <iostream>

using namespace std;

class Square;

class Rectangle {

 int width, height;

 public:

 int area ()

 {return (width * height);}

 void convert (Square a);

};

class Square {

 friend class Rectangle;

 private:

 int side;

 public:

 Square (int a) : side(a) {}

};

void Rectangle::convert (Square a) {

 width = a.side;

 height = a.side;

}

int main () {

 Rectangle rect;

 Square sqr (4);

 rect.convert(sqr);

 cout << rect.area();

 return 0;

}

16

In this example, class Rectangle is a friend of class Square allowing Rectangle's member

functions to access private and protected members of Square. More

concretely, Rectangle accesses the member variable Square::side, which describes the

side of the square.

There is something else new in this example: at the beginning of the program, there is an

empty declaration of class Square. This is necessary because

class Rectangle uses Square (as a parameter in member convert),

and Square uses Rectangle (declaring it a friend).

Friendships are never corresponded unless specified: In our example, Rectangle is

considered a friend class by Square, but Square is not considered a friend by Rectangle.

Therefore, the member functions of Rectangle can access the protected and private members

of Square but not the other way around. Of course, Square could also be declared friend

of Rectangle, if needed, granting such an access.

Another property of friendships is that they are not transitive: The friend of a friend is not

considered a friend unless explicitly specified.

Inheritance in C++
Classes in C++ can be extended, creating new classes which retain characteristics of the base

class. This process, known as inheritance, involves a base class and a derived class: The derived

class inherits the members of the base class, on top of which it can add its own members.

For example, let's imagine a series of classes to describe two kinds of polygons: rectangles and

triangles. These two polygons have certain common properties, such as the values needed to

calculate their areas: they both can be described simply with a height and a width (or base).

This could be represented in the world of classes with a class Polygon from which we would derive

the two other ones: Rectangle and Triangle:

The Polygon class would contain members that are common for both types of polygon. In our

case: width and height. And Rectangle and Triangle would be its derived classes, with specific

features that are different from one type of polygon to the other.

Classes that are derived from others inherit all the accessible members of the base class. That

means that if a base class includes a member A and we derive a class from it with another member

called B, the derived class will contain both member A and member B.

The inheritance relationship of two classes is declared in the derived class. Derived classes

definitions use the following syntax:

class derived_class_name: public base_class_name

{ /*...*/ };

Where derived_class_name is the name of the derived class and base_class_name is the name of

the class on which it is based. The public access specifier may be replaced by any one of the

other access specifiers (protected or private). This access specifier limits the most accessible

level for the members inherited from the base class: The members with a more accessible level

are inherited with this level instead, while the members with an equal or more restrictive access

level keep their restrictive level in the derived class.

// derived classes

#include <iostream>

using namespace std;

class Polygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b;}

 };

class Rectangle: public Polygon {

 public:

 int area ()

 { return width * height; }

 };

class Triangle: public Polygon {

 public:

 int area ()

 { return width * height / 2; }

 };

int main () {

 Rectangle rect;

 Triangle trgl;

 rect.set_values (4,5);

 trgl.set_values (4,5);

 cout << rect.area() << '\n';

 cout << trgl.area() << '\n';

 return 0;

}

20

10

The objects of the classes Rectangle and Triangle each contain members inherited

from Polygon. These are: width, height and set_values.

The protected access specifier used in class Polygon is similar to private. Its only

difference occurs in fact with inheritance: When a class inherits another one, the members of

the derived class can access the protected members inherited from the base class, but not its

private members.

http://www.cplusplus.com/doc/tutorial/inheritance/

By declaring width and height as protected instead of private, these members are also

accessible from the derived classes Rectangle and Triangle, instead of just from members

of Polygon. If they were public, they could be accessed just from anywhere.

We can summarize the different access types according to which functions can access them in

the following way:

Access public protected private

members of the same class yes yes yes

members of derived class yes yes no

not members yes no no

Where "not members" represents any access from outside the class, such as from main, from

another class or from a function.

In the example above, the members inherited by Rectangle and Triangle have the same

access permissions as they had in their base class Polygon:

 Polygon::width // protected access

Rectangle::width // protected access

Polygon::set_values() // public access

Rectangle::set_values() // public access

This is because the inheritance relation has been declared using the public keyword on each

of the derived classes:

 class Rectangle: public Polygon { /* ... */ }

This public keyword after the colon (:) denotes the most accessible level the members

inherited from the class that follows it (in this case Polygon) will have from the derived class

(in this case Rectangle). Since public is the most accessible level, by specifying this

keyword the derived class will inherit all the members with the same levels they had in the

base class.

With protected, all public members of the base class are inherited as protected in the

derived class. Conversely, if the most restricting access level is specified (private), all the

base class members are inherited as private.

For example, if daughter were a class derived from mother that we defined as:

 class Daughter: protected Mother;

This would set protected as the less restrictive access level for the members

of Daughter that it inherited from mother. That is, all members that

were public in Mother would become protected in Daughter. Of course, this would not

restrict Daughter from declaring its own public members. That less restrictive access level is

only set for the members inherited from Mother.

What is inherited from the base class?

In principle, a publicly derived class inherits access to every member of a base class except:

 its constructors and its destructor
 its assignment operator members (operator=)
 its friends
 its private members

For example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

// constructors and derived classes

#include <iostream>

using namespace std;

class Mother {

 public:

 Mother ()

 { cout << "Mother: no

parameters\n"; }

 Mother (int a)

 { cout << "Mother: int

parameter\n"; }

};

class Daughter : public Mother {

 public:

 Daughter (int a)

 { cout << "Daughter: int

parameter\n\n"; }

};

class Son : public Mother {

 public:

 Son (int a) : Mother (a)

 { cout << "Son: int

parameter\n\n"; }

};

int main () {

 Daughter kelly(0);

 Son bud(0);

 return 0;

}

Mother: no parameters

Daughter: int parameter

Mother: int parameter

Son: int parameter

Even though access to the constructors and destructor of the base class is not inherited as such, they

are automatically called by the constructors and destructor of the derived class.

Notice the difference between which Mother's constructor is called when a new Daughter object is

created and which when it is a Son object. The difference is due to the different constructor

declarations of Daughter and Son:

1

2

Daughter (int a) // nothing specified: call default constructor

Son (int a) : Mother (a) // constructor specified: call this specific

constructor

Unless otherwise specified, the constructors of a derived class calls the default constructor of its

base classes (i.e., the constructor taking no arguments). Calling a different constructor of a base class

is possible, using the same syntax used to initialize member variables in the initialization list:

derived_constructor_name (parameters) : base_constructor_name (parameters)

{...}

Types of Inheritance in C++

1) Single inheritance

2) Multilevel inheritance

3) Multiple inheritance

4) Hierarchical inheritance

5) Hybrid inheritance

1) Single inheritance
In Single inheritance one class inherits one class exactly.

For example: Lets say we have class A and B

B inherits A

Example of Single inheritance:
#include <iostream>

using namespace std;

class A {

public:

 A(){

 cout<<"Constructor of A class"<<endl;

 }

};

class B: public A {

public:

 B(){

 cout<<"Constructor of B class";

 }

};

int main() {

 //Creating object of class B

 B obj;

 return 0;

}

Output:

Constructor of A class

Constructor of B class

2) Multilevel Inheritance
In this type of inheritance one class inherits another child class.

C inherits B and B inherits A

Example of Multilevel inheritance:

#include <iostream>

using namespace std;

class A {

public:

 A(){

 cout<<"Constructor of A class"<<endl;

 }

};

class B: public A {

public:

 B(){

 cout<<"Constructor of B class"<<endl;

 }

};

class C: public B {

public:

 C(){

 cout<<"Constructor of C class"<<endl;

 }

};

int main() {

 //Creating object of class C

 C obj;

 return 0;

}

Output:

Constructor of A class

Constructor of B class

Constructor of C class

3) Multiple Inheritance
In multiple inheritance, a class can inherit more than one class. This means that in this type

of inheritance a single child class can have multiple parent classes.

For example:

C inherits A and B both

Example of Multiple Inheritance:

#include <iostream>

using namespace std;

class A {

public:

 A(){

 cout<<"Constructor of A class"<<endl;

 }

};

class B {

public:

 B(){

 cout<<"Constructor of B class"<<endl;

 }

};

class C: public A, public B {

public:

 C(){

 cout<<"Constructor of C class"<<endl;

 }

};

int main() {

 //Creating object of class C

 C obj;

 return 0;

}

Constructor of A class

Constructor of B class

Constructor of C class

4) Hierarchical Inheritance
In this type of inheritance, one parent class has more than one child class. For example:

Class B and C inherits class A

Example of Hierarchical inheritance:

#include <iostream>

using namespace std;

class A {

public:

 A(){

 cout<<"Constructor of A class"<<endl;

 }

};

class B: public A {

public:

 B(){

 cout<<"Constructor of B class"<<endl;

 }

};

class C: public A{

public:

 C(){

 cout<<"Constructor of C class"<<endl;

 }

};

int main() {

 //Creating object of class C

 C obj;

 return 0;

}

Output:

Constructor of A class

Constructor of C class

5) Hybrid Inheritance
Hybrid inheritance is a combination of more than one type of inheritance. For example, A

child and parent class relationship that follows multiple and hierarchical inheritance both

can be called hybrid inheritance.

