
LECTURE 7 For CBCS 4th Semester

Python Programming
By

Subhadip Mukherjee
Dept. of Computer Science and BCA,

Kharagpur College,

Kharagpur, India

STRINGS

We’ve already introduced the string data type a few lectures ago. Strings are
subtypes of the sequence data type.

Strings are written with either single or double quotes encasing a sequence of
characters.

Note that there is no character data type in Python. A character is simply
represented as a string with one character.

s1 = "This is a string!"

s2 = "Python is so awesome."

Python Programming By Subhadip Mukherjee

ACCESSING STRINGS

As a subtype of the sequence data type, strings can be accessed element-wise as
they are technically just sequences of character elements.

We can index with typical bracket notation, as well as perform slicing.

>>> s1 = "This is a string!"

>>> s2 = "Python is so awesome."

>>> print s1[3]

s

>>> print s2[5:15]

n is so aw

Python Programming By Subhadip Mukherjee

MODIFYING STRINGS

Strings are immutable – you cannot update the value of an existing string object.
However, you can reassign your variable name to a new string object to perform an
“update”.

>>> s1 = "Python is so awesome."

>>> s1 = "Python is so cool."

“Python is so awesome.”s1

s1 “Python is so awesome.”

“Python is so cool.”
Python Programming By Subhadip Mukherjee

MODIFYING STRINGS

Alternatively, we could have done the following:

This will create a substring “Python is so ”, which is concatenated with “cool.”, stored in
memory and associated with the name s1.

The “+” operator can be used with two string objects to concatenate them together.
The “*” operator can be used to concatenate multiple copies of a single string object.

We also have in and not in available for testing character membership within a
string.

>>> s1 = "Python is so awesome."

>>> s1 = s1[:13] + "cool."

Python Programming By Subhadip Mukherjee

ESCAPE CHARACTERS

As a side note, there are a number of escape characters supported by Python strings.
The most common ones are:

• ‘\n’ – newline

• ‘\s’ – space

• ‘\t’ – tab

Python Programming By Subhadip Mukherjee

BUILT-IN STRING METHODS

Python includes a number of built-in string methods that are incredibly useful for
string manipulation. Note that these return the modified string value; we cannot
change the string’s value in place because they’re immutable!

• s.upper() and s.lower()

>>> s1 = "Python is so awesome."

>>> print s1.upper()

PYTHON IS SO AWESOME.

>>> print s1.lower()

python is so awesome.

Python Programming By Subhadip Mukherjee

BUILT-IN STRING METHODS

• s.isalpha(), s.isdigit(), s.isalnum(), s.isspace() – return True if string s is

composed of alphabetic characters, digits, either alphabetic and/or digits, and entirely whitespace
characters, respectively.

• s.islower(), s.isupper() – return True if string s is all lowercase and all uppercase,
respectively.

>>> "WHOA".isupper()

True

>>> "12345".isdigit()

True

>>> " \n ".isspace()

True

>>> "hello!".isalpha()

False

Python Programming By Subhadip Mukherjee

BUILT-IN STRING METHODS

• str.split([sep[, maxsplit]]) – Split str into a list of substrings. The sep
argument indicates the delimiting string (defaults to consecutive whitespace). The
maxsplit argument indicates the maximum number of splits to be done (default is -1).

• str.rsplit([sep[, maxsplit]]) – Split str into a list of substrings,
starting from the right.

• str.strip([chars]) – Return a copy of the string str with leading and
trailing characters removed. The chars string specifies the set of characters to remove
(default is whitespace).

• str.rstrip([chars]) – Return a copy of the string str with only trailing
characters removed.

Python Programming By Subhadip Mukherjee

BUILT-IN STRING METHODS

>>> "Python programming is fun!".split()

['Python', 'programming', 'is', 'fun!']

>>> "555-867-5309".split('-')

['555', '867', '5309']

>>> "***Python programming is fun***".strip('*')

'Python programming is fun'

Python Programming By Subhadip Mukherjee

BUILT-IN STRING METHODS

• str.capitalize() – returns a copy of the string with the first character
capitalized and the rest lowercase.

• str.center(width[, fillchar]) – centers the contents of the string str
in field-size width, padded by fillchar (defaults to a blank space). See also
str.ljust() and str.rjust().

• str.count(sub[, start[, end]]) – return the number of non-
overlapping occurrences of substring sub in the range [start, end]. Can use slice
notation here.

• str.endswth(suffix[, start[, end]])– return True if the string str
ends with suffix, otherwise return False. Optionally, specify a substring to test. See
also str.startswith().

BUILT-IN STRING METHODS

>>> "i LoVe pYtHoN".capitalize()

'I love python'

>>> "centered".center(20,'*')

'******centered******'

>>> "mississippi".count("iss")

2

>>> "mississippi".count("iss", 4, -1)

1

>>> "mississippi".endswith("ssi")

False

>>> "mississippi".endswith("ssi", 0, 8)

True

Python Programming By Subhadip Mukherjee

BUILT-IN STRING METHODS

• str.find(sub[, start[, end]]) – return the lowest index in the string where substring sub is

found, such that sub is contained in the slice str[start:end]. Return -1 if sub is not found. See also
str.rfind().

• str.index(sub[, start[, end]]) – identical to find(), but raises a ValueError exception
when substring sub is not found. See also str.rindex().

• str.join(iterable) – return a string that is the result of concatenating all of the elements of

iterable. The str object here is the delimiter between the concatenated elements.

• str.replace(old, new[, count]) – return a copy of the string str where all instances of the

substring old are replaced by the string new (up to count number of times).

Python Programming By Subhadip Mukherjee

BUILT-IN STRING METHODS
>>> "whenever".find("never")

3

>>> "whenever".find("what")

-1

>>> "whenever".index("what")

Traceback (most recent call last):

File “<stdin>”, line 1, in <module>

ValueError: substring not found

>>> "-".join(['555','867','5309'])

'555-867-5309'

>>> " ".join(['Python', 'is', 'awesome'])

'Python is awesome'

>>> "whenever".replace("ever", "ce")

'whence'

Python Programming By Subhadip Mukherjee

THE STRING MODULE

All of these built-in string methods are methods of any string object. They do not
require importing any module or anything – they are part of the core of the
language.

There is a string module, however, which provides some additional useful string tools.
It defines useful string constants, the string formatting class, and some deprecated
string functions which have mostly been converted to methods of string objects.

Python Programming By Subhadip Mukherjee

STRING CONSTANTS

>>> import string

>>> string.ascii_letters

'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'

>>> string.ascii_lowercase

'abcdefghijklmnopqrstuvwxyz'

>>> string.ascii_uppercase

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

>>> string.digits

'0123456789'

>>> string.hexdigits

'0123456789abcdefABCDEF'

Python Programming By Subhadip Mukherjee

STRING CONSTANTS

>>> import string

>>> string.lowercase #locale-dependent

'abcdefghijklmnopqrstuvwxyz'

>>> string.uppercase #locale-dependent

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

>>> string.letters # lowercase+uppercase

'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'

>>> string.octdigits

'01234567'

>>> print string.punctuation

!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

Python Programming By Subhadip Mukherjee

STRING CONSTANTS

• string.whitespace – a string containing all characters that are considered
whitespace. On most systems this includes the characters space, tab, linefeed, return,
formfeed, and vertical tab.

• string.printable – string of characters which are considered printable. This
is a combination of digits, letters, punctuation, and whitespace.

Python Programming By Subhadip Mukherjee

STRING FORMATTING

String formatting is accomplished via a built-in method of string objects. The signature is:

Note that the *args argument indicates that format accepts a variable number of positional arguments,
and **kwargs indicates that format accepts a variable number of keyword arguments.

The string on which this method is called can contain literal text or replacement fields delimited by
braces {}. Each replacement field contains either the numeric index of a positional argument, or the name
of a keyword argument. A copy of the string is returned where each replacement field is replaced with
the string value of the corresponding argument.

str.format(*args, **kwargs)

Python Programming By Subhadip Mukherjee

STRING FORMATTING

>>> '{0}, {1}, {2}'.format('a', 'b', 'c')

'a, b, c'

>>> '{}, {}, {}'.format('a', 'b', 'c')

'a, b, c'

>>> '{2}, {1}, {0}'.format('a', 'b', 'c')

'c, b, a'

>>> '{2}, {1}, {0}'.format(*'abc')

'c, b, a'

>>> '{0}{1}{0}'.format('abra', 'cad')

'abracadabra'

Python Programming By Subhadip Mukherjee

STRING FORMATTING

>>> 'Coords: {lat}, {long}'.format(lat='37.24N', long='-115.81W')

'Coords: 37.24N, -115.81W'

>>> coord = {'lat': '37.24N', 'long': '-115.81W'}

>>> 'Coords: {lat}, {long}'.format(**coord)

'Coords: 37.24N, -115.81W'

You can also use keyword arguments to the format function to specify the value for

replacement fields

Python Programming By Subhadip Mukherjee

STRING FORMATTING

>>> c = 2+3j

>>> '{0} has real part {0.real} and imaginary part {0.imag}.'.format(c)

'(2+3j) has real part 2.0 and imaginary part 3.0.'

Within the replacement field, you are able to access attributes and methods of the

object passed as an argument to format. Here, we pass a complex number as an

argument, but we access its member attributes in the replacement field.

>>> coord = (3, 5)

>>> 'X: {0[0]}; Y: {0[1]}'.format(coord)

'X: 3; Y: 5'

Python Programming By Subhadip Mukherjee

STRING FORMATTING

There are reserved sequences for specifying justification and alignment within a
replacement field.

>>> '{:<30}'.format('left aligned')

'left aligned '

>>> '{:>30}'.format('right aligned')

' right aligned'

>>> '{:^30}'.format('centered')

' centered '

>>> '{:*^30}'.format('centered') # use '*' as a fill char

'***********centered***********'

Python Programming By Subhadip Mukherjee

STRING FORMATTING

There are a number of options for formatting floating-point numbers.

>>> '{:+f}; {:+f}'.format(3.14, -3.14) # show sign always

'+3.140000; -3.140000'

>>> '{: f}; {: f}'.format(3.14, -3.14) # show space for positive

' 3.140000; -3.140000'

>>> '{:-f}; {:-f}'.format(3.14, -3.14) # show only minus

'3.140000; -3.140000'

>>> '{:.3f}'.format(3.14159) # limit to three dec places

'3.142'

Python Programming By Subhadip Mukherjee

Thank You

Python Programming By Subhadip Mukherjee

