
LECTURE 6 For CBCS 4th Semester

Python Programming
By

Subhadip Mukherjee
Dept. of Computer Science and BCA,

Kharagpur College,

Kharagpur, India

INPUT

We’ve already seen two useful functions for
grabbing input from a user:

• raw_input()
• Asks the user for a string of input, and returns the

string.

• If you provide an argument, it will be used as a
prompt.

• input()
• Uses raw_input() to grab a string of data, but

then tries to evaluate the string as if it were a
Python expression.

• Returns the value of the expression.

• Dangerous – don’t use it.

Note: In Python 3.x, input() is now just raw_input().

>>> print(raw_input('What is your name? '))

What is your name? Caitlin

Caitlin

>>>

>>> print(input(Do some math:))

Do some math: 2+2*5

12

>>>

Note: reading an EOF will raise an EOFError.

Python Programming By Subhadip Mukherjee

FILES

Python includes a file object that we can use to manipulate files. There are two
ways to create file objects.

• Use the file() constructor.

• The second argument accepts a few special characters: ‘r’ for reading (default), ‘w’ for writing, ‘a’
for appending, ‘r+’ for reading and writing, ‘b’ for binary mode.

• Use the open() method.

• The first argument is the filename, the second is the mode.

Use the open() method typically. The file() constructor is removed in Python 3.x.

>>> f = file("filename.txt", 'r')

>>> f = open("filename.txt", 'rb')
Note: when a file operation fails,

an IOError exception is raised.

Python Programming By Subhadip Mukherjee

FILE INPUT

There are a few ways to grab input from a file.

• f.read()

• Returns the entire contents of a file as a string.

• Provide an argument to limit the number of characters
you pick up.

• f.readline()

• One by one, returns each line of a file as a string (ends
with a newline).

• End-of-file reached when return string is empty.

• Loop over the file object.

• Most common, just use a for loop!

>>> f = file("somefile.txt",'r')

>>> f.read()

"Here's a line.\nHere's another line.\n" >>>

f.close()

>>> f = file("somefile.txt",'r')

>>> f.readline()

"Here's a line.\n"

>>> f.readline()

"Here's another line.\n"

>>> f.readline()

''

>>> f.close()

>>> f = file("somefile.txt",'r')

>>> for line in f:

... print(line)

...

Here's a line.

Here's another line.

Python Programming By Subhadip Mukherjee

FILE INPUT

• Close the file with f.close()

• Close it up and free up resources.

• Another way to open and read:

• No need to close, file objects automatically close when they go out of scope.

>>> f = open("somefile.txt", 'r')

>>> f.readline()

"Here’s line in the file! \n"

>>> f.close()

with open("text.txt", "r") as txt:

for line in txt:

print line

Python Programming By Subhadip Mukherjee

STANDARD FILE OBJECTS

• Just as C++ has cin, cout, and cerr, Python has standard file objects for input, output,
and error in the sys module.

• Treat them like a regular file object.

• You can also receive command line arguments from sys.argv[].

$ python program.py here are some arguments

program.py

here

are

some

arguments

import sys

for line in sys.stdin:

print line

for arg in sys.argv:

print arg

Python Programming By Subhadip Mukherjee

OUTPUT
• print or print()
• Use the print statement or 3.x-style print() function to print to the user.

• Use comma-separated arguments (separates with space) or concatenate strings.

• Each argument will be evaluated and converted to a string for output.

• print() has two optional keyword args, end and sep.

>>> print 'Hello,', 'World', 2015

Hello, World 2015

>>> print "Hello, " + "World " + "2015"

Hello, World 2015

>>> for i in range(10):

... print i, # Do not include trailing newline

...

0 1 2 3 4 5 6 7 8 9

Python Programming By Subhadip Mukherjee

PRINT FUNCTION

Using the 3.x style print function is preferable to some people.

• Import with

• Specify the separation string using the sep argument. This is the character printed
between comma-separated objects.

• Specify the last string printed with the end argument.

• Specify the file object to which to print with the file argument.

print(*objects, sep=' ', end='\n', file=sys.stdout)

from __future__ import print_function

Python Programming By Subhadip Mukherjee

PRINT FUNCTION

>>> from __future__ import print_function

>>> print(555, 867, 5309, sep="-")

555-867-5309

>>> print("Winter", "is", "coming", end="!\n")

Winter is coming!

>>>

Python Programming By Subhadip Mukherjee

FILE OUTPUT

• f.write(str)

• Writes the string argument str to the file object and returns None.

• Make sure to pass strings, using the str() constructor if necessary.

• print >> f

• Print to objects that implement write() (i.e. file objects).

>>> f = open("filename.txt", 'w')

>>> f.write("Heres a string that ends with " + str(2015))

f = open("filename.txt","w")

for i in range(1, 10 + 1):

print >> f, i

f.close()

Python Programming By Subhadip Mukherjee

MORE ON FILES

File objects have additional built-in methods. Say I have the file object f:

• f.tell() gives current position in the file.

• f.seek(offset[, from]) offsets the position by offset bytes from from position.

• f.flush() flushes the internal buffer.

Python looks for files in the current directory by default. You can also either provide
the absolute path of the file or use the os.chdir() function to change the current
working directory.

Python Programming By Subhadip Mukherjee

MODIFYING FILES AND DIRECTORIES

Use the os module to perform some file-processing operations.

• os.rename(current_name, new_name) renames the file current_name to new_name.

• os.remove(filename) deletes an existing file named filename.

• os.mkdir(newdirname) creates a directory called newdirname.

• os.chdir(newcwd) changes the cwd to newcwd.

• os.getcwd() returns the current working directory.

• os.rmdir(dirname) deletes the empty directory dirname.

Python Programming By Subhadip Mukherjee

EXCEPTIONS

Errors that are encountered during the execution of a Python program are exceptions.

>>> print spam

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: name 'spam' is not defined

>>> '2' + 2

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: cannot concatenate 'str' and 'int' objects

Python Programming By Subhadip Mukherjee

HANDLING EXCEPTIONS

Explicitly handling exceptions allows us to control otherwise undefined behavior in our
program, as well as alert users to errors. Use try/except blocks to catch and recover
from exceptions.

>>> while True:

... try:

... x = int(input("Enter a number: "))

... except ValueError:

... print("Ooops !! That was not a valid number. Try again.")

...

Enter a number: “two”

Ooops !! That was not a valid number. Try again.

Enter a number: 100

Python Programming By Subhadip Mukherjee

HANDLING EXCEPTIONS

• First, the try block is executed. If there are no errors, except is skipped.

• If there are errors, the rest of the try block is skipped.

• Proceeds to except block with the matching exception type.

• Execution proceeds as normal.

>>> while True:

... try:

... x = int(input("Enter a number: "))

... except ValueError:

... print("Ooops !! That was not a valid number. Try again.") ...

Enter a number: “two”

Ooops !! That was not a valid number. Try again.

Enter a number: 100

Python Programming By Subhadip Mukherjee

HANDLING EXCEPTIONS

• If there is no except block that matches the exception type, then the exception is
unhandled and execution stops.

>>> while True:

... try:

... x = int(input("Enter a number: "))

... except ValueError:

... print("Ooops !! That was not a valid number. Try again.") ...

Enter a number: 3/0

Traceback (most recent call last):

File "<stdin>", line 3, in <module>

File "<string>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

Python Programming By Subhadip Mukherjee

HANDLING EXCEPTIONS

The try/except clause options are as follows:

Clause form Interpretation

except: Catch all (or all other) exception types

except name: Catch a specific exception only

except name as value: Catch the listed exception and its instance

except (name1, name2): Catch any of the listed exceptions

except (name1, name2) as value: Catch any of the listed exception and its instance

else: Run if no exception is raised

finally: Always perform this block

Python Programming By Subhadip Mukherjee

HANDLING EXCEPTIONS

There are a number of ways to form a try/except block.

>>> while True:

... try:

... x = int(input("Enter a number: "))

... except ValueError:

... print("Ooops !! That was not a valid number. Try again.")

... except (RuntimeError, IOError) as e:

... print(e)

... else:

... print("No errors encountered!")

... finally:

... print("We may or may not have encountered errors…")

...
Python Programming By Subhadip Mukherjee

RAISING AN EXCEPTION

Use the raise statement to force an exception to occur. Useful for diverting a program
or for raising custom exceptions.

try:

raise IndexError("Index out of range")

except IndexError as ie:

print("Index Error occurred: ", (str(ie)))

Python Programming By Subhadip Mukherjee

Thank You

Python Programming By Subhadip Mukherjee

