

Data Structures
For BCA 2nd Semester

Lecture 2
[Insertion and Deletion Algorithms for Doubly Linked List,

Circular Linked List]

Compiled
By

Sakhi Bandyopadhyay
Dept. of Computer Science & BCA,

Kharagpur College,
Kharagpur 721305

Doubly Linked List
Doubly linked list is a type of linked list in which each node apart from storing its data has two

links. The first link points to the previous node in the list and the second link points to the next

node in the list. The first node of the list has its previous link pointing to NULL similarly the last

node of the list has its next node pointing to NULL.

Define the node:

struct node

{

 struct node *prev;

 int data;

 struct node *next;

}

Insertion in doubly linked list at beginning:

Algorithm :

Step 1: IF ptr = NULL
Write OVERFLOW
 Go to Step 9
 [END OF IF]

Step 2: SET NEW_NODE = ptr

Step 3: SET ptr = ptr -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> PREV = NULL

Step 6: SET NEW_NODE -> NEXT = START

Step 7: SET head -> PREV = NEW_NODE

Step 8: SET head = NEW_NODE

Step 9: EXIT

Insertion in doubly linked list at the end:

Algorithm:

Step 1: IF PTR = NULL
Write OVERFLOW
 Go to Step 11
 [END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> NEXT = NULL

Step 6: SET TEMP = START

Step 7: Repeat Step 8 while TEMP -> NEXT != NULL

Step 8: SET TEMP = TEMP -> NEXT
[END OF LOOP]

Step 9: SET TEMP -> NEXT = NEW_NODE

Step 10C: SET NEW_NODE -> PREV = TEMP

Step 11: EXIT

Insertion in doubly linked list after Specified node:

Algorithm:

Step 1: IF PTR = NULL
Write OVERFLOW
 Go to Step 15
 [END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET TEMP = START

Step 6: SET I = 0

Step 7: REPEAT 8 to 10 until I<="" li="">

Step 8: SET TEMP = TEMP -> NEXT

STEP 9: IF TEMP = NULL

STEP 10: WRITE "LESS THAN DESIRED NO. OF ELEMENTS"
GOTO STEP 15
 [END OF IF]
 [END OF LOOP]

Step 11: SET NEW_NODE -> NEXT = TEMP -> NEXT

Step 12: SET NEW_NODE -> PREV = TEMP

Step 13 : SET TEMP -> NEXT = NEW_NODE

Step 14: SET TEMP -> NEXT -> PREV = NEW_NODE

Step 15: EXIT

Deletion at beginning:

Algorithm:

STEP 1: IF HEAD = NULL
WRITE UNDERFLOW
GOTO STEP 6

STEP 2: SET PTR = HEAD

STEP 3: SET HEAD = HEAD → NEXT

STEP 4: SET HEAD → PREV = NULL

STEP 5: FREE PTR

STEP 6: EXIT

Deletion in doubly linked list at the end:

Algorithm:

Step 1: IF HEAD = NULL
Write UNDERFLOW
Go to Step 7
[END OF IF]

Step 2: SET TEMP = HEAD

Step 3: REPEAT STEP 4 WHILE TEMP->NEXT != NULL

Step 4: SET TEMP = TEMP->NEXT
[END OF LOOP]

Step 5: SET TEMP ->PREV-> NEXT = NULL

Step 6: FREE TEMP

Step 7: EXIT

Deletion in doubly linked list after the specified node:

Algorithm:

Step 1: IF HEAD = NULL
Write UNDERFLOW
 Go to Step 9
 [END OF IF]

Step 2: SET TEMP = HEAD

Step 3: Repeat Step 4 while TEMP -> DATA != ITEM

Step 4: SET TEMP = TEMP -> NEXT
[END OF LOOP]

Step 5: SET PTR = TEMP -> NEXT

Step 6: SET TEMP -> NEXT = PTR -> NEXT

Step 7: SET PTR -> NEXT -> PREV = TEMP

Step 8: FREE PTR

Step 9: EXIT

Searching for a specific node in Doubly Linked List:

Algorithm:

Step 1: IF HEAD == NULL
WRITE "UNDERFLOW"
 GOTO STEP 8
 [END OF IF]

Step 2: Set PTR = HEAD

Step 3: Set i = 0

Step 4: Repeat step 5 to 7 while PTR != NULL

Step 5: IF PTR → data = item
return i
[END OF IF]

Step 6: i = i + 1

Step 7: PTR = PTR → next

Step 8: Exit

Traversing in doubly linked list:

Algorithm:

Step 1: IF HEAD == NULL
WRITE "UNDERFLOW"
 GOTO STEP 6
 [END OF IF]

Step 2: Set PTR = HEAD

Step 3: Repeat step 4 and 5 while PTR != NULL

Step 4: Write PTR → data

Step 5: PTR = PTR → next

Step 6: Exit

Circular Linked List

Circular Linked List is a variation of Linked list in which the first element points to the last element
and the last element points to the first element. Both Singly Linked List and Doubly Linked List can
be made into a circular linked list.

Application of Circular Linked List:

1) The real life application where the circular linked list is used is our Personal Computers,
where multiple applications are running. All the running applications are kept in a circular
linked list and the OS gives a fixed time slot to all for running. The Operating System keeps
on iterating over the linked list until all the applications are completed.

2) Another example can be Multiplayer games. All the Players are kept in a Circular Linked List
and the pointer keeps on moving forward as a player's chance ends.

3) Circular Linked List can also be used to create Circular Queue. In a Queue we have to keep
two pointers, FRONT and REAR in memory all the time, where as in Circular Linked List,
only one pointer is required.

Advantages of Circular Linked Lists:
1) Any node can be a starting point. We can traverse the whole list by starting from any point. We
just need to stop when the first visited node is visited again.

2) Useful for implementation of queue. We don’t need to maintain two pointers for front and rear if
we use circular linked list. We can maintain a pointer to the last inserted node and front can always
be obtained as next of last.

3) Circular lists are useful in applications to repeatedly go around the list. For example, when
multiple applications are running on a PC, it is common for the operating system to put the running
applications on a list and then to cycle through them, giving each of them a slice of time to execute,
and then making them wait while the CPU is given to another application. It is convenient for the
operating system to use a circular list so that when it reaches the end of the list it can cycle around
to the front of the list.

4) Circular Doubly Linked Lists are used for implementation of advanced data structures

like Fibonacci Heap.

http://en.wikipedia.org/wiki/Fibonacci_heap

