
LECTURE 3 For CBCS 4th Semester

Python Programming
By

Subhadip Mukherjee
Dept. of Computer Science and BCA,

Kharagpur College,

Kharagpur, India

MODULES

So, we just put together our first real
Python program. Let’s say we store
this program in a file called fib.py.

We have just created a module.

Modules are simply text files
containing Python definitions and
statements which can be executed
directly or imported by other
modules.

''' Module fib.py '''

from __future__ import print_function

def even_fib(n):

total = 0

f1, f2 = 1, 2

while f1 < n:

if f1 % 2 == 0:

total = total + f1

f1, f2 = f2, f1 + f2

return total

if __name__ == "__main__":

limit = raw_input(“Max Fibonacci number: ")

print(even_fib(int(limit)))

Python Programming By Subhadip Mukherjee

MODULES

• A module is a file containing Python definitions and statements.

• The file name is the module name with the suffix .py appended.

• Within a module, the module’s name (as a string) is available as the value of the
global variable __name__.

• If a module is executed directly however, the value of the global variable __name__
will be “__main__”.

• Modules can contain executable statements aside from definitions. These are
executed only the first time the module name is encountered in an import statement as
well as if the file is executed as a script.

Python Programming By Subhadip Mukherjee

MODULES

I can run our module directly at the
command line. In this case, the module’s
__name__ variable has the value
“__main__”.

$ python fib.py

Max Fibonacci number: 4000000

4613732

''' Module fib.py '''

from __future__ import print_function

def even_fib(n):

total = 0

f1, f2 = 1, 2

while f1 < n:

if f1 % 2 == 0:

total = total + f1

f1, f2 = f2, f1 + f2

return total

if __name__ == "__main__":

limit = raw_input(“Max Fibonacci number: ")

print(even_fib(int(limit)))

Python Programming By Subhadip Mukherjee

MODULES

I can import the module into the
interpreter. In this case, the value of
__name__ is simply the name of the
module itself.

$ python

>>> import fib

>>> fib.even_fib(4000000)

4613732

''' Module fib.py '''

from __future__ import print_function

def even_fib(n):

total = 0

f1, f2 = 1, 2

while f1 < n:

if f1 % 2 == 0:

total = total + f1

f1, f2 = f2, f1 + f2

return total

if __name__ == "__main__":

limit = raw_input(“Max Fibonacci number: ")

print(even_fib(int(limit)))

Python Programming By Subhadip Mukherjee

MODULES

I can import the module into the
interpreter. In this case, the value of
__name__ is simply the name of the
module itself.

$ python

>>> import fib

>>> fib.even_fib(4000000)

4613732

Note that we can only access the
definitions of fib as members of the fib
object.

''' Module fib.py '''

from __future__ import print_function

def even_fib(n):

total = 0

f1, f2 = 1, 2

while f1 < n:

if f1 % 2 == 0:

total = total + f1

f1, f2 = f2, f1 + f2

return total

if __name__ == "__main__":

limit = raw_input(“Max Fibonacci number: ")

print(even_fib(int(limit)))

Python Programming By Subhadip Mukherjee

MODULES

I can import the definitions of the
module directly into the interpreter.

$ python

>>> from fib import even_fib

>>> even_fib(4000000)

4613732

To import everything from a module:

>>> from fib import *

''' Module fib.py '''

from __future__ import print_function

def even_fib(n):

total = 0

f1, f2 = 1, 2

while f1 < n:

if f1 % 2 == 0:

total = total + f1

f1, f2 = f2, f1 + f2

return total

if __name__ == "__main__":

limit = raw_input(“Max Fibonacci number: ")

print(even_fib(int(limit)))

Python Programming By Subhadip Mukherjee

MINI MODULE QUIZ

I have two modules, foo.py and bar.py.

By convention, all import statements should appear at the top of the .py file.
Let’s try to guess the output for each of the following execution methods.

''' Module foo.py'''

import bar

print "Hi from foo's top level!"

if __name__ == "__main__":

print "foo's __name__ is __main__"

bar.print_hello()

''' Module bar.py '''

print "Hi from bar's top level!"

def print_hello():

print "Hello from bar!"

if __name__ == "__main__":

print "bar's __name__ is __main__"

Python Programming By Subhadip Mukherjee

MINI MODULE QUIZ

$ python bar.py

''' Module foo.py'''

import bar

print "Hi from foo's top level!"

if __name__ == "__main__":

print "foo's __name__ is __main__"

bar.print_hello()

''' Module bar.py '''

print "Hi from bar's top level!"

def print_hello():

print "Hello from bar!"

if __name__ == "__main__":

print "bar's __name__ is __main__"

What is the output when we execute the bar module directly?

Python Programming By Subhadip Mukherjee

MINI MODULE QUIZ

$ python bar.py

Hi from bar's top level!

bar's __name__ is __main__

''' Module foo.py'''

import bar

print "Hi from foo's top level!"

if __name__ == "__main__":

print "foo's __name__ is __main__"

bar.print_hello()

''' Module bar.py '''

print "Hi from bar's top level!"

def print_hello():

print "Hello from bar!"

if __name__ == "__main__":

print "bar's __name__ is __main__"

Python Programming By Subhadip Mukherjee

MINI MODULE QUIZ

$ python foo.py

''' Module foo.py'''

import bar

print "Hi from foo's top level!"

if __name__ == "__main__":

print "foo's __name__ is __main__"

bar.print_hello()

''' Module bar.py '''

print "Hi from bar's top level!"

def print_hello():

print "Hello from bar!"

if __name__ == "__main__":

print "bar's __name__ is __main__"

Now what happens when we execute the foo module directly?

Python Programming By Subhadip Mukherjee

MINI MODULE QUIZ

$ python foo.py
Hi from bar's top level!
Hi from foo's top level!
foo's __name__ is __main__
Hello from bar!

''' Module foo.py'''

import bar

print "Hi from foo's top level!"

if __name__ == "__main__":

print "foo's __name__ is __main__"

bar.print_hello()

''' Module bar.py '''

print "Hi from bar's top level!"

def print_hello():

print "Hello from bar!"

if __name__ == "__main__":

print "bar's __name__ is __main__"

Python Programming By Subhadip Mukherjee

MINI MODULE QUIZ

$ python

>>> import foo

''' Module foo.py'''

import bar

print "Hi from foo's top level!"

if __name__ == "__main__":

print "foo's __name__ is __main__"

bar.print_hello()

''' Module bar.py '''

print "Hi from bar's top level!"

def print_hello():

print "Hello from bar!"

if __name__ == "__main__":

print "bar's __name__ is __main__"

Now what happens when we import the foo module into the interpreter?

Python Programming By Subhadip Mukherjee

MINI MODULE QUIZ

$ python
>>> import foo
Hi from bar's top level!
Hi from foo's top level!
>>> import bar

''' Module foo.py'''

import bar

print "Hi from foo's top level!"

if __name__ == "__main__":

print "foo's __name__ is __main__"

bar.print_hello()

''' Module bar.py '''

print "Hi from bar's top level!"

def print_hello():

print "Hello from bar!"

if __name__ == "__main__":

print "bar's __name__ is __main__"

And if we import the bar module into the interpreter?

Python Programming By Subhadip Mukherjee

MINI MODULE QUIZ

$ python
>>> import foo
Hi from bar's top level!
Hi from foo's top level!
>>> import bar
>>>

''' Module foo.py'''

import bar

print "Hi from foo's top level!"

if __name__ == "__main__":

print "foo's __name__ is __main__"

bar.print_hello()

''' Module bar.py '''

print "Hi from bar's top level!"

def print_hello():

print "Hello from bar!"

if __name__ == "__main__":

print "bar's __name__ is __main__"

Python Programming By Subhadip Mukherjee

SURPRISING BEHAVIOR

An easy fix is to use a sentinel default value that tells you when to create a new
mutable argument.

$ python

>>> from adder import *

>>> add_item(3, [])

[3]

>>> add_item(4)

[4]

>>> add_item(5)

[5]

''' Module adder.py '''

def add_item(item, item_list = None):

if item_list == None:

item_list = []

item_list.append(item)

print item_list

Python Programming By Subhadip Mukherjee

FUNCTIONS

Consider again our connecting function.

The following call utilizes positional arguments. That is, Python determines which
formal parameter to bind the argument to based on its position in the list.

def connect(uname, pword, server = 'localhost', port = 9160):

connecting code

connect('admin', 'ilovecats', 'shell.cs.fsu.edu', 6379)

Python Programming By Subhadip Mukherjee

FUNCTIONS

When the formal parameter is specified, this is known as a keyword argument.

By using keyword arguments, we can explicitly tell Python to which formal parameter
the argument should be bound. Keyword arguments are always of the form kwarg =
value.

If keyword arguments are used they must follow any positional arguments, although
the relative order of keyword arguments is unimportant.

connect(uname='admin', pword='ilovecats',

server='shell.cs.fsu.edu', port=6379)

Python Programming By Subhadip Mukherjee

FUNCTIONS

Given the following function signature, which of the following calls are valid?

def connect(uname, pword, server = 'localhost', port = 9160):

connecting code

1. connect('admin', 'ilovecats', 'shell.cs.fsu.edu‘)

2. connect(uname='admin', pword='ilovecats', 'shell.cs.fsu.edu')

3. connect('admin', 'ilovecats', port=6379, server='shell.cs.fsu.edu')

Python Programming By Subhadip Mukherjee

FUNCTIONS

Given the following function signature, which of the following calls are valid?

def connect(uname, pword, server = 'localhost', port = 9160):

connecting code

1. connect('admin', 'ilovecats', 'shell.cs.fsu.edu') -- VALID

2. connect(uname='admin', pword='ilovecats', 'shell.cs.fsu.edu') -- INVALID

3. connect('admin', 'ilovecats', port=6379, server='shell.cs.fsu.edu') -- VALID

Python Programming By Subhadip Mukherjee

FUNCTIONS

Parameters of the form *param contain a variable number of arguments within a
tuple. Parameters of the form **param contain a variable number of keyword
arguments.

This is known as packing.

Within the function, we can treat args as a list of the positional arguments provided
and kwargs as a dictionary of keyword arguments provided.

def connect(uname, *args, **kwargs):

connecting code here

Python Programming By Subhadip Mukherjee

FUNCTIONS

Output: ?

def connect(uname, *args, **kwargs):

print uname

for arg in args:

print arg

for key in kwargs.keys():

print key, ":", kwargs[key]

connect('admin', 'ilovecats', server='localhost', port=9160)

Python Programming By Subhadip Mukherjee

FUNCTIONS

Output:

def connect(uname, *args, **kwargs):

print uname

for arg in args:

print arg

for key in kwargs.keys():

print key, ":", kwargs[key]

connect('admin', 'ilovecats', server='localhost', port=9160)

admin

ilovecats

port : 9160

server : localhost

Python Programming By Subhadip Mukherjee

FUNCTIONS

We can use *args and **kwargs not only to define a function, but also to call a
function. Let’s say we have the following function.

def func(arg1, arg2, arg3):

print "arg1:", arg1

print "arg2:", arg2

print "arg3:", arg3

Python Programming By Subhadip Mukherjee

FUNCTIONS

We can use *args to pass in a tuple as a single argument to our function. This tuple
should contain the arguments in the order in which they are meant to be bound to the
formal parameters.

We would say that we’re unpacking a tuple of arguments here.

>>> args = ("one", 2, 3)

>>> func(*args)

arg1: one

arg2: 2

arg3: 3

Python Programming By Subhadip Mukherjee

FUNCTIONS

We can use **kwargs to pass in a dictionary as a single argument to our function.
This dictionary contains the formal parameters as keywords, associated with their
argument values. Note that these can appear in any order.

>>> kwargs = {"arg3": 3, "arg1": "one", "arg2": 2}

>>> func(**kwargs)

arg1: one

arg2: 2

arg3: 3

Python Programming By Subhadip Mukherjee

LAMBDA FUNCTIONS

One can also define lambda functions within Python.

• Use the keyword lambda instead of def.

• Can be used wherever function objects are used.

• Restricted to one expression.

• Typically used with functional programming tools – we will see this next time.

>>> def f(x):

... return x**2

...

>>> print f(8)

64

>>> g = lambda x: x**2

>>> print g(8)

64

Python Programming By Subhadip Mukherjee

LIST COMPREHENSIONS

List comprehensions provide a nice way to construct lists where the items are
the result of some operation.

The simplest form of a list comprehension is

Any number of additional for and/or if statements can follow the initial for
statement. A simple example of creating a list of squares:

[expr for x in sequence]

>>> squares = [x**2 for x in range(0,11)]

>>> squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Python Programming By Subhadip Mukherjee

LIST COMPREHENSIONS

Here’s a more complicated example which creates a list of tuples.

The initial expression in the list comprehension can be anything, even another list
comprehension.

>>> squares = [(x, x**2, x**3) for x in range(0,9) if x % 2 == 0]

>>> squares

[(0, 0, 0), (2, 4, 8), (4, 16, 64), (6, 36, 216), (8, 64, 512)]

>>> [[x*y for x in range(1,5)] for y in range(1,5)]

[[1, 2, 3, 4], [2, 4, 6, 8], [3, 6, 9, 12], [4, 8, 12, 16]]

Python Programming By Subhadip Mukherjee

Thank You

Python Programming By Subhadip Mukherjee

