

C++ Programming
For BCA 4th Semester

Lecture 2
[Pointer, Pointer and Array, Pointer to Pointer, Void
Pointer, Invalid Pointer, Null Pointer, Pointer to

Function]

Compiled
By

Subhadip Mukherjee
Dept. of Computer Science and BCA

Kharagpur College,
Kharagpur 721305

Pointer in C++

As just seen, a variable which stores the address of another variable is called a pointer. Pointers are said to
"point to" the variable whose address they store.

An interesting property of pointers is that they can be used to access the variable they point to directly. This
is done by preceding the pointer name with the dereference operator (*). The operator itself can be read as

"value pointed to by".

Therefore, following with the values of the previous example, the following statement:

 baz = *foo;

This could be read as: "baz equal to value pointed to by foo", and the statement would actually assign the

value 25 to baz, since foo is 1776, and the value pointed to by 1776 (following the example above) would

be 25.

It is important to clearly differentiate that foo refers to the value 1776, while *foo (with an

asterisk * preceding the identifier) refers to the value stored at address 1776, which in this case is 25. Notice

the difference of including or not including the dereference operator (I have added an explanatory comment
of how each of these two expressions could be read):

1

2

baz = foo; // baz equal to foo (1776)

baz = *foo; // baz equal to value pointed to by foo (25)

The reference and dereference operators are thus complementary:

 & is the address-of operator, and can be read simply as "address of"

 * is the dereference operator, and can be read as "value pointed to by"

Thus, they have sort of opposite meanings: An address obtained with & can be dereferenced with *.

Earlier, we performed the following two assignment operations:

1

2

myvar = 25;

foo = &myvar;

Right after these two statements, all of the following expressions would give true as result:

1

2

3

4

myvar == 25

&myvar == 1776

foo == 1776

*foo == 25

Example 1

// my first pointer

#include <iostream>

using namespace std;

int main ()

{

 int firstvalue, secondvalue;

 int * mypointer;

 mypointer = &firstvalue;

 *mypointer = 10;

 mypointer = &secondvalue;

 *mypointer = 20;

 cout << "firstvalue is " << firstvalue <<

'\n';

 cout << "secondvalue is " << secondvalue

<< '\n';

 return 0;

}

firstvalue is 10

secondvalue is 20

 Edit &
Run

Notice that even though neither firstvalue nor secondvalue are directly set any value in the program,

both end up with a value set indirectly through the use of mypointer. This is how it happens:

First, mypointer is assigned the address of firstvalue using the address-of operator (&). Then, the value

pointed to by mypointer is assigned a value of 10. Because, at this moment, mypointer is pointing to the

memory location of firstvalue, this in fact modifies the value of firstvalue.

In order to demonstrate that a pointer may point to different variables during its lifetime in a program, the

example repeats the process with secondvalue and that same pointer, mypointer.

Example 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

// more pointers

#include <iostream>

using namespace std;

int main ()

{

 int firstvalue = 5, secondvalue = 15;

 int * p1, * p2;

 p1 = &firstvalue; // p1 = address of firstvalue

 p2 = &secondvalue; // p2 = address of secondvalue

 *p1 = 10; // value pointed to by p1 = 10

 *p2 = *p1; // value pointed to by p2 = value

pointed to by p1

 p1 = p2; // p1 = p2 (value of pointer is

copied)

 *p1 = 20; // value pointed to by p1 = 20

 cout << "firstvalue is " << firstvalue << '\n';

 cout << "secondvalue is " << secondvalue << '\n';

 return 0;

}

firstvalue is 10

secondvalue is 20

Each assignment operation includes a comment on how each line could be read: i.e., replacing ampersands

(&) by "address of", and asterisks (*) by "value pointed to by".

http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/

Pointers and Arrays

The concept of arrays is related to that of pointers. In fact, arrays work very much like pointers to their first

elements, and, actually, an array can always be implicitly converted to the pointer of the proper type. For

example, consider these two declarations:

1

2

int myarray [20];

int * mypointer;

The following assignment operation would be valid:

 mypointer = myarray;

After that, mypointer and myarray would be equivalent and would have very similar properties. The main

difference being that mypointer can be assigned a different address, whereas myarray can never be

assigned anything, and will always represent the same block of 20 elements of type int. Therefore, the

following assignment would not be valid:

 myarray = mypointer;

Let's see an example that mixes arrays and pointers:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// more pointers

#include <iostream>

using namespace std;

int main ()

{

 int numbers[5];

 int * p;

 p = numbers; *p = 10;

 p++; *p = 20;

 p = &numbers[2]; *p = 30;

 p = numbers + 3; *p = 40;

 p = numbers; *(p+4) = 50;

 for (int n=0; n<5; n++)

 cout << numbers[n] << ", ";

 return 0;

}

10, 20, 30, 40, 50,

 Edit

&

Run

Pointers and arrays support the same set of operations, with the same meaning for both. The main
difference being that pointers can be assigned new addresses, while arrays cannot.

In the chapter about arrays, brackets ([]) were explained as specifying the index of an element of the

array. Well, in fact these brackets are a dereferencing operator known as offset operator. They dereference
the variable they follow just as * does, but they also add the number between brackets to the address being

dereferenced. For example:

1

2

a[5] = 0; // a [offset of 5] = 0

*(a+5) = 0; // pointed to by (a+5) = 0

These two expressions are equivalent and valid, not only if a is a pointer, but also if a is an array.

Remember that if an array, its name can be used just like a pointer to its first element.

http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/

Pointer to pointer

C++ allows the use of pointers that point to pointers, that these, in its turn, point to data (or even to other

pointers). The syntax simply requires an asterisk (*) for each level of indirection in the declaration of the

pointer:

1

2

3

4

5

6

char a;

char * b;

char ** c;

a = 'z';

b = &a;

c = &b;

This, assuming the randomly chosen memory locations for each variable of 7230, 8092, and 10502, could be

represented as:

With the value of each variable represented inside its corresponding cell, and their respective addresses in
memory represented by the value under them.

The new thing in this example is variable c, which is a pointer to a pointer, and can be used in three

different levels of indirection, each one of them would correspond to a different value:

 c is of type char** and a value of 8092

 *c is of type char* and a value of 7230

 **c is of type char and a value of 'z'

void pointers

The void type of pointer is a special type of pointer. In C++, void represents the absence of type.

Therefore, void pointers are pointers that point to a value that has no type (and thus also an undetermined

length and undetermined dereferencing properties).

This gives void pointers a great flexibility, by being able to point to any data type, from an integer value or

a float to a string of characters. In exchange, they have a great limitation: the data pointed to by them

cannot be directly dereferenced (which is logical, since we have no type to dereference to), and for that

reason, any address in a void pointer needs to be transformed into some other pointer type that points to a

concrete data type before being dereferenced.

One of its possible uses may be to pass generic parameters to a function. For example:

1

2

3

4

5

6

7

8

9

10

11

// increaser

#include <iostream>

using namespace std;

void increase (void* data, int psize)

{

 if (psize == sizeof(char))

 { char* pchar; pchar=(char*)data;

++(*pchar); }

 else if (psize == sizeof(int))

y, 1603

 Edit

&

Run

http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/

12

13

14

15

16

17

18

19

20

21

 { int* pint; pint=(int*)data; ++(*pint);

}

}

int main ()

{

 char a = 'x';

 int b = 1602;

 increase (&a,sizeof(a));

 increase (&b,sizeof(b));

 cout << a << ", " << b << '\n';

 return 0;

}

sizeof is an operator integrated in the C++ language that returns the size in bytes of its argument. For

non-dynamic data types, this value is a constant. Therefore, for example, sizeof(char) is 1,

because char has always a size of one byte.

Invalid pointers and null pointers

In principle, pointers are meant to point to valid addresses, such as the address of a variable or the address of

an element in an array. But pointers can actually point to any address, including addresses that do not refer to

any valid element. Typical examples of this are uninitialized pointers and pointers to nonexistent elements of

an array:

1

2

3

4

int * p; // uninitialized pointer (local variable)

int myarray[10];

int * q = myarray+20; // element out of bounds

Neither p nor q point to addresses known to contain a value, but none of the above statements causes an

error. In C++, pointers are allowed to take any address value, no matter whether there actually is something at

that address or not. What can cause an error is to dereference such a pointer (i.e., actually accessing the value

they point to). Accessing such a pointer causes undefined behavior, ranging from an error during runtime to

accessing some random value.

But, sometimes, a pointer really needs to explicitly point to nowhere, and not just an invalid address. For such

cases, there exists a special value that any pointer type can take: the null pointer value. This value can be

expressed in C++ in two ways: either with an integer value of zero, or with the nullptr keyword:

1

2

int * p = 0;

int * q = nullptr;

Here, both p and q are null pointers, meaning that they explicitly point to nowhere, and they both actually

compare equal: all null pointers compare equal to other null pointers. It is also quite usual to see the defined

constant NULL be used in older code to refer to the null pointer value:

 int * r = NULL;

NULL is defined in several headers of the standard library, and is defined as an alias of some null
pointer constant value (such as 0 or nullptr).

Do not confuse null pointers with void pointers! A null pointer is a value that any pointer can take to
represent that it is pointing to "nowhere", while a void pointer is a type of pointer that can point to
somewhere without a specific type. One refers to the value stored in the pointer, and the other to the type of
data it points to.

Pointers to functions
C++ allows operations with pointers to functions. The typical use of this is for passing a function as an

argument to another function. Pointers to functions are declared with the same syntax as a regular function

declaration, except that the name of the function is enclosed between parentheses () and an asterisk (*) is

inserted before the name:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

// pointer to functions

#include <iostream>

using namespace std;

int addition (int a, int b)

{ return (a+b); }

int subtraction (int a, int b)

{ return (a-b); }

int operation (int x, int y, int

(*functocall)(int,int))

{

 int g;

 g = (*functocall)(x,y);

 return (g);

}

int main ()

{

 int m,n;

 int (*minus)(int,int) = subtraction;

 m = operation (7, 5, addition);

 n = operation (20, m, minus);

 cout <<n;

 return 0;

}

8

In the example above, minus is a pointer to a function that has two parameters of type int. It is directly

initialized to point to the function subtraction:

 int (* minus)(int,int) = subtraction;

