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VU CBCS Semester-IV 2019: Planck’s quantum, Planck’s constant and light as a collection of
photons; Blackbody Radiation: Quantum theory of Light; Photo-electric effect and Compton scattering.
De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles
by wave packets. Group and Phase velocities and relation between them. Two-Slit experiment with
electrons. Probability. Wave amplitude and wave functions.

Historical Note
1. Situation towards the end of the 19th century and the beginning of the 20" century
1.1 Advancement in Physics:

o  (Classical mechanics:

Newtonian Mechanics (Principia 1687-1713-1726; Sir Isaac Newton, English, 1643-1727) >
Lagrangian Formulation (1750s) (Joseph-Louis Lagrange, Italian-French, 1736-1813) >
Hamiltonian Formulation (1833) (William Rowan Hamilton, Irish, 1805-1865)

o FElectrodynamics:

Maxwell’s (James Clerk Maxwell, Scottish, 1831-1879) Equations of Electromagnetic waves
[1861]. [In present form by Oliver Heaviside (English), Josiah W Gibbs (American), Heinrich
Hertz (German, 1857-1894) in 1884]

Lorentz (Dutch, 1853-1928) Force Equation [1861 Maxwell > 1881J. J. Thomson' (English) >
1884 Heaviside > 1895 Lorentz]

o Thermodynamics:

Carnot Theorem (1824) [Nicolas Leonard Carnot, French 1796-1832], Maxwell-Boltzmann
(Ludwig Eduard Boltzmann, German, 1844-1906) Statistics (1868).

1.2. Major unsolved Questions:
e Energy Distribution [u(v)dv or u(1)dA] of Blackbody Radiation.
e Photo electric effect: Experiment by Hertz in 1887.
e Stability of Rutherford’s (New Zealand-born British) atom (1911 Gold Foil Expt.).

o Existence of acther: Michelson (American) —Morley (American) Experiment (1887, at Western
Reserve University, Ohio).

e Atomic Spectra: Balmer (Swiss Mathematician) series:

Balmer formula (1885) A = B( n ) = B( " )

nZ_mZ n2_22
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Rydberg (Swedish Physicist) Formula (1888) v = 173 (22 nz) =Ry (22 nz)

With Ry = 1.09737309 x 107 m™1.

Anomalous Zeeman (Dutch) effect, Fine structures and other observation in atomic
spectroscopy.

1.3 End of the era of triumph of classical physics.

1900 Planck (German) distribution formula of Blackbody Radiation > Assumption of radiation quanta
of energy hv, where v is the frequency of radiation and h is a constant determined by Planck to fit the
experimental distribution curve and is called Planck constant.

1 William Thomson is a different scientist having other name Lord Kelvin, Scots-Irish, 1824-1907.



1905 Einstein (German Jewish)> Photo electric effect > Particle nature of light/radiation > Photon.

1905 Einstein Special Theory of Relativity > Non existence of aether; dependence of mass, length and
time on velocity.

1913 Niels Bohr (Danish) > Model of Hydrogen Atom> quantisation of angular momentum of atomic
electron > explanation of atomic stability, Balmer formula, atomic spectroscopy.

1923 New observations: Compton (American) Effect > recoil of electron which scatters X-ray. X-ray
photon has momentum hv/c > Radiation has particle nature.

1923 de Broglie (French) hypothesis: Electron and all matter have wave nature.
1925 Heisenberg (German): Matrix Formulation.
1926 Schrodinger (German): Schrodinger Equation > Wave mechanics.

1927 Heisenberg: Uncertainty Relation (Earle Hesse Kennard in late 1927 & Hermann Wey in 1928
gave the formal relation involving standard deviations as uncertainties: oy, = f/2).

1923-27 Davisson (American) and Germer (American) experiment and explanation > Diffraction of
electrons > Confirmation of wave nature of electrons i.e. de Broglie hypothesis.

1927 Max Born (German Jewish) probabilistic interpretation of wave mechanics > P(x,t)dx =
f;‘lhp(x, t)|2dx, where x; and x, are the limits within which the particle exists. In 3D P(#,t)dx =
1

[[J 1p(#, t)|?dt, where the integration is over the region of space in which the particle exists.
1928 Paul Dirac (English): Relativistic Quantum Mechanics > Prediction of Positron > Proof in 1932;

1939 bra ket notation by Dirac: Both Heisenberg’s matrix formulation and Schrodinger’s wave
mechanics formulation can be handled with this.

1.3.1 Blackbody Radiation
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Figure 1.1 Spectral energy density u(v, T') of blackbody radiation at different temperatures as
a function of the frequency v.

Quantum Mechanics Concepts and Applications - Nouredine Zettili

1879 J. Stefan (Carinthian Slovene) established from Tyndall’s experimental results of IR emissions
by platinum filament and its colour:

Per unit area of the surface of a radiating solid at absolute temperature T radiates normally
(perpendicularly) a power (or energy per second)-

P=acT* ... (1)



where o = 5.670367 x 10" Wm? K™ is called Stefan’s constant; a is a coefficient < 1. For ideal
blackbody a = 1. Equation (1) is called Stefan’s law or Stefan-Boltzmann Law.

In 1884 a theoretical derivation of the law was done by Boltzmann (German).

Up to a temperature 1535 K this law accurately matches experimental observations. But at higher
temperature deviation from experimental results are observed.

1893 Wien ( Wilhelm Wien, 1864-1928, German Physicist) displacement law:
AmaxT = constant = 2900 um. K
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1894 Wien energy density distribution:

Wien proposed (from thermodynamic consideration) that, Stefan-Boltzmann law and Wien
displacement law can be derived if the energy density of blackbody radiation at temperature T per unit
wavelength at A i.e. u(4, T) must be given by a relation:

u(A,T)dA = % f(AT)dA, where f(AT) is any function of AT.

From some arbitrary assumptions regarding mechanisms of emission he proposed that f(AT) =
ae P/AT and so

a —
u(,T)dA = e b/AT 4.

In terms of frequency u(v, T)dv = Av3e #V/Tqdy.
Unit of u(v, T) is Jm 3Hz ™ or Jm™3s and unit of u(4, T) is Jm™*.
Constants a, b or A, f were determined to fit these equations to experimental curves.

Failure of Wien distribution: Wien’s distribution satisfies experimental curve at lower wavelengths or
higher frequencies but fails to explain them at higher wavelengths or lower frequencies. [In those days

producing radiation of higher frequencies or lower wavelengths was not easy.] Thus Wien’s
distribution was insufficient to satisfy observations.
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Figure 1.2 Comparison of various spectral densities: while the Planck and experimental dis-
tributions match perfectly (solid curve), the Rayleigh—Jeans and the Wien distributions (dotted
curves) agree only partially with the experimental distribution.

Quantum Mechanics Concepts and Applications - Nouredine Zettili

1900 Rayleigh’s (Lord Rayleigh, 1842-1919, British physicist) energy density distribution:

Rayleigh assumed that in the cavity of a blackbody radiation exists in the form of electromagnetic
standing waves with their nodes at the walls of the cavity. Density of states (or vibrational modes) of

these standing waves i.e. number of states (or modes) per unit volume per frequency range of such
8mv?

standing waves is equal to e

The electromagnetic standing waves are excited by the linear oscillation of the tiny electric dipoles of
atomic or molecular dimension in the walls of the cavity. The energy of an oscillating dipole can have
any value between 0 & oo i.e. the energy spectrum of an oscillator is continuous. At temperature T, the
number of electric dipoles having energy E is given by M-B statistics, i.e. N(E) = Nye E/¥T_ where
N, is the number of oscillators with zero energy and k (= 1.38 JK~1) is Boltzmann constant. Then it
can be shown that at temperature T, the average energy of the oscillators in the walls is (E) = kT.

In equilibrium the energy distribution of the standing waves is same as the energy distribution of the
oscillators over the frequency range. Therefore the average energy of the vibrational modes of the
standing waves will also be (E) = kT.

So, according to Rayleigh, the energy density distribution is given by:

8nv?

u(v,T)dv = n(v,T)(E)dv =

kTdv;

C3
. 8
Or, in terms of wavelength u(4,T)dA = FdeA.

Density of states of vibrations in a cubical cavity of side L filled with a continuous elastic medium:

9% 9%, 0% 1 0%y
3D wave equation: oz T 372 t 32 = a2 reveeeeeenn(A)

Standing wave solution: P(x,y, z,t) = Asin (nanx) sin (nyLny) sin (nanz) cos(2mvt). ........ (B)

Ny, Ny, N, are integers = 1. A vibrational mode is determined by the set of integers (nx, ny, nz).

What is the number of such modes within frequency rangev tov + dv ?



Consider a coordinate system in which coordinates are the positive integers and zero. This is the
first octant of the 3D integer space. Each point in this space will be at unit distance from its
nearest neighbours, in other words each point will share unit volume of this space.

_aL?v?

Substituting (B) in (A) and simplifying: n,% + ny2 +n,? = = = R? (say).

. . . 2Lv
Above equation represents the portion of a sphere of radius R = Tv in the first octant of the

integer space. In this space a spherical shell between radii R and R + dR corresponds to the
frequency range v to v + dv. Volume of such a shell in integer space is:
1 4L%v? 2L 4mL3v?

1 2 1 2
§X4T[R dRZET[R dR:ET[X 2 X?dV: 3

dv

The number of coordinate points (nx, ny, nz) in this shell will also be %TL’RZdR, since each point

shares unit volume in integer space. But this is equal to the number of vibrational modes in the
frequency range v to v + dv. Thus the number of modes in the frequency rangev to v + dv per
unit volume of the cavity will be

1 4ml3v? 4mv?

Vi X 3 dv = 3 dv
Now unpolarised electromagnetic waves contains two types of circularly polarised waves with
the plane of polarisation rotating in clockwise and anticlockwise sense. Now two modes of the
electromagnetic standing waves with plane of polarisation rotating in opposite sense but
identical in all other respect will have same set of (nx, Ny, nz), i.e. each point in the integer space
represents two states. Therefore number of states per unit volume of the cavity in the frequency
rangeV to v + dv will be

4mrv? 8mv?
n(v)dv =2 X ——dv =——dv.
c c
8mv?
nw) = e . (0)

is called the density of states.

Though for simplicity here we derive this result for a cubical medium, it is applicable to any
shape.

Average energy per vibrational mode:

According to M-B statics the number of oscillators (or vibrational states in this case) having
energy E at temperature T is Ny = Nye "E/KT wwhere Ny is the number of oscillators in the state
of zero energy (ground state) and k is Boltzmann constant (k = 1.38 X 10723]JK~1). Therefore
for a continuous energy distribution:

Jy ENoe B/KTdE  (kT)? [°(E/kT)e E/¥Td(E/KkT) r'Q2)

[T Noe B/MTdE — (kT) [ e E/Td(E/kT) - T(D)

(E) = kT ... (D).

Rayleigh formula satisfies experimental curves at higher wavelengths or lower frequencies but deviates
badly from the experimental curves towards lower wavelengths or higher frequencies i.e. towards
ultraviolet region of the spectrum. This failure is known as ultraviolet catastrophe.

Particle nature of wave
1905 Planck blackbody radiation formula:

Planck’s quantisation rule / Planck’s quantum hypothesis / Planck’s postulate: According to classical
mechanics, a harmonic oscillator of frequency v can have any amount of energy E [ = 4m?ma?v?],
which is proportional to the square of its amplitude a. And it can have any energy between 0 & oo. But
to explain blackbody radiation Planck made the following revolutionary assumptions:



1) An oscillator frequency v in the wall of the blackbody can have only discrete energies given
by &, = nhv, where n = 0,1,2 ..... and h is a constant, which was determined by him to fit
his formula with the experimental distribution curves of blackbody radiation.

ii) When an oscillator of frequency v absorbs or emits energy in the form of radiation its
energy can change only in the steps of hv. Since the radiation absorbed or emitted by an
oscillator have same frequency as that of the oscillator therefore it follows from Planck
assumptions that an oscillator of frequency v can absorb or emit radiation of frequency v
and this emitted or absorbed radiation can have only an amount of energy hv, no less no
more.

Regarding the nature and density of states of the radiation inside the cavity of blackbody, Planck’s
assumption was same as that of Rayleigh.

Average energy of the oscillators of frequency v in the walls of the blackbody:

Oscillators of frequency v have discrete energies &, = nhv,n = 0,1,2... . According to M-B statics the
number of such oscillators at temperature T is N,, = Noe En/kT = Nye ™W/k  Therefore the average
energy of the oscillators of frequency v will be:

) —&n/kT 0o —&n/kT
ano EnNOe n/ _ ano En€ n/
00 —en/kT 00 —en/kT *
n=0 NOe n/ Zn=0 e n/

(5v> =

Note that the integrations of equation (D) have been replaced here by summations since in this case
discrete energies are assumed for the oscillators in place of continuous energies of the oscillators in
Rayleigh theory.

Now
D epeEn/kT _ T, nhve hv/k _ hve~MV/KT 4 o hye=20V/KT L 3pye—30v/k | ...
<EV) - Z;?zoe—en/kT - Z;?zoe—nhv/k - 1+e—hv/kT o—2hv/k 4o—3hv/kT ...
hvx(1+2x+3x%4+4x3... _

_ ol ) (where x = e~W/KT)

1+x+x2+x3...

(1—x)2 1 hv hv
= hvx =hvx—=1—=——.

(1-x)"1 1-x i_l ehv/kT 1

Since the radiation in the cavity of the blackbody is in equilibrium with the oscillators in the wall so
this above expression will also give the average energy of the vibrational modes of the standing waves
in the cavity.

The number of vibrational modes or states per unit volume of the cavity in the frequency range v fo
v + dv can be determined as before and is given by:

8mv?

dv.

n(v)dv =

c3

2
Thus the energy distribution of the radiation is given by: u(v)dv = (g, )n(v)dv = Scﬂ—: . ehv/’;(—VT_l dv.

8mhv3 1
u(v)dv = pEa Y av ... (1)
In terms of wavelength:
8mhc 1
u()da = dA e (2)

A5 ehc/ZkT — 1

Note that the discreteness of vibrational modes indexed by (nx, ny, nz) arises here from purely classical
considerations. But the discreteness of possible energies of an oscillator is due to the assumptions of a
new type, called Planck’s quantum conditions.

Fitting his equation with experimental curves Planck determined the value of h. Its value is 6.626 X
1073* J.s and it is a universal constant of immense importance as was revealed later years with
the advancement of quantum mechanics.



Derivations from Planck’s law:

Stefan-Boltzmann law: Total energy (in all wavelength range) per unit volume of the cavity
of a black body is

r 8wh [ 3 8h (kT\* [ x°
u=Ju(v)dv= 3 J hv/kT_ld 3 (h) fex—ldx [where x = hv/kT]
0 0 0
_87‘[h kT v 3,—Xx 1 —X —1d _87‘[h kT v 3,—x 1 X 4 —2x_|_ —3x+,,, d
_C_3 T x-e ( —e ) .X—C—3 T x-e ( +e e e ) X
0 0
_ 8mh (kT)‘*f 30— 4 g=2% 4 o= 4 o4 4 . \g _8nh(kT)4ijo 30X
=— (7 (e e e e - )dx =\ 1 x3e PXdx
0 p=10

8nhkT NE N V. 8rh KT\ < 1 B KT 31
- Ejj(px) e d(PX)— 3 (h) ijr(4)=—(7) —_
0

p=1p r=1 p=1

4

_ 48mh (kT)4 nt  8mSk*
90

3 \n ~ 15¢3K3

It can be shown that the energy radiated normally per unit area from a blackbody is E = ui. Thus

8okt ¢4 (Zn k* )
= .= T*or E oo T,
15c3h3 4 15 2h3

Wien displacement law:

8mhc 1 8mhc

u) =5 w1 = 2 S Where z(2) = 25(e"“/4¢T — 1),

The value of A for which u(2) is maximum is obtained from the condition:

ou(d) 0
ar B
A=Amax
This is equivalent to:
dz(A)
a2 =0
A=Amax
h
Or, 5/1max4 . (ehC/ﬂmaka _ 1) _ Amaxs . CZ ehc/lmaka — O,
Amax” kT
Or,1— e‘hc/’lmaka = he ;
5AmaxkT
Or, with = x, this equation can be writtenas: 1 —e ™™ = ad
maxkT 5

This equation can not be solved analytically, but can be solved numerically. Or by writing as a pair of
equationny=1—e™*; and y = g it can also be solved graphically. The curves represented by these
equations intersect for x ~ 4.965.

hc 6.626x1073 x3x108

~ 4.965; AnaT = 1965k = avesxiioioB 0.0029 m.K = constant

Thus

Amax



Wien and Rayleigh-Jeans distribution law:

8mhv3 1

Planck’s law: u(v)dv = — Mdv
At high frequencies e™/kT — 1 ~ ehV/kT
Sou(w)dv = m e /KT gy = Av3e=BY/Tdy where A = CLJL and B = h/k are constants.

[Wien’s distribution law. ]
(hv/kT)2 (hv/kT)3

At low frequencies e™/*T — 1 = (1 + hv/kT + 3 ) — 1= hv/kT
8mwhv3 1 8mV2KkT

Sou(v)dv = = T/t dv = dv [Rayleigh-Jeans law].

Problems:

JAM 2017

Q.23 In the radiation emitted by a black body, the ratio of the spectral densities at frequencies 2v and v

will vary with v as:

(A) [ehv/kBT — 1]- (C) [ehv/kBT —_— 1]
®) [™hsr 1] (D) [¢"am + 1]
8mhv® 1
Ans.: u(v) = T3 eh/kTq
w@v) 8h(2v)? 1 ) c3 . elv/kT _q Ca. ew/kT _1 _a. ew/kT _1
) — = 'ezhv/kT_l P— 1 - e2hv/kT_1 — (ehv/kT_l)(ehv/kT+1)
B 1 hv/kT -1
_8.—ehv/kT+1_8-(e v/kT 4 1)
2 -1
_’;((VV)) oM/ + 1) = (B).
JAM 2014

Q.42

Ans.:

According to Wien’s theory of black body radiation, the spectral energy density in a blackbody
cavity at temperature T is given as

up(A)dA = e 1T gz
c /1
where @ and f are constants and ¢ is the speed of light. Further, the intensity of radiation

coming out of the cavity is %, where uy =Iur(l)dl is the total energy density of
0

radiation. Given that Stefan-Boltzmann constant o =5.67x10"° Wm2K™* and

max

AT =2.90x107 m.K, find the values of & and B . The value of integral jx3e_" dx =6.
0

@) =0

max

—-B/AT e—B/AT _aB e—B/AT _
So, from ur() = /15 e P/AT we have [ 3 ,16 t e ]/'lmax 0
>-5+-F __—p = B = 5maxT =5x29 %1073 = 0.0145 m. K

)LmaxT



oT*=E

=M= S [Pur(DdA = 5 [ e /M)

4 4 c3J0 25
2
Let B/AT = x. Then dx = —(/A*T)dA =>dA= _ATde-
o = F = i e = (1)451 w(£)3 e dx = (Z)4££f°°x3e—xdx
B 4c3Jo}3 B) 4c3Jo \ar 5) 1530
T 4(: a 3/T 4 a
() i50=3() &
3T4a— 4 3_a _ _2c%0p*
25(5) C—Z—O'T :262[5’4_0- :a_—g
8)?2 _g 4 .
aq= 2x(3x108) ><5.673><10 x(0.0145)* _ 2><9><5.6;><(1.45) — 150.3856.
JAM 2013

Q.6 A blackbody at temperature 7 emits radiation at a peak wavelength A. If the temperature of the
blackbody becomes 47, the new peak wavelength is

1 1 1 1
= By —A C) —A4 o)y -4
&) 256‘& 5 64 ) 16 4
Ans.:  ApaxT = constant = (Apax)2T2 = Amax)1Ts = Amax)2 = Umaaly 2T _2 = (D).

T, 4T~ 4

JAM 2012

Q.8 When the temperature of a blackbody is doubled. the maximum value of its spectral energy
density. with respect to that at initial temperature, would become

1 .. _ . .
(A) I tunes (B) 8 times (C) 16 times (D) 32 times
8mhc 1 8mh 1
Ans.: u(d) = =5 Jam—] = 5 ST
8mhc 1
For A = Anax  We have u(Apay) = Arj;xs " ohc/KAmaxT —1 °
AlSO Aoy T = constant = [ApaxloTo = [Amaxi T = % = %
maxli2 1
u([Amaxlz) _ _8mhc | 1 maxs® | ehe/MAmaxhTi_g ([Amaxh)s _ (Q)S
ulAmaxl)  [Amaxl,” €/MAmaxl2T2—1  smhc 1 T \Mmaxl2/ — \1y
=25=32 = (D).
JAM 2007:

7.  The black body spectrum of an object O; is such that its radiant intensity (i.e., intensity
per unit wavelength interval) is maximum at a wavelength of 200 nm. Another object O

has the maximum radiant intensity at 600 nm. The ratio of power emitted per unit area by
O1to that of O2is

() C) 9
81

(B) (D) 81

QO =



Ans.: Clearly the temperatures of the two blackbody will be different. If T; and T, are the
temperatures then:

T; [Amaxls 200 ’

R
Pz UT24 Tz ’

Photoelectric effect:

In 1888 Hertz and afterwards other scientists observed that when the surface of metals like zinc is
irradiated with ultraviolet light the metal gets positively charged i.e. the metal loses negative charge. 1n
1899 P. Lenard (Philipp Lenard, German Physicist, 1862-1947, Supporter of Hitler) showed that the
loss of negative charge is due to emission of negatively charged electrons from the metal surface. The
following laws were discovered experimentally prior to 1905:

e [f the frequency of the incident radiation is smaller than the metal’s threshold frequency - a
frequency that depends on the properties of the metal—no electron can be emitted regardless
of the radiation’s intensity (Philipp Lenard, 1902).

e No matter how low the intensity of the incident radiation, electrons will be ejected instantly the
moment the frequency of the radiation exceeds the threshold frequency v,.

Ai<Aa<A;

i . >L>

l/l\ VI>Vo>V3 11\ I> 15> 1 eVo
E
I
1;

A 2 A3 i
Vor Voo Vo3 O >V -V o >V Vo —>v
light intensity = constant A or v = constant —W
(a) (b) ’ (©)
Fig.X

e At any frequency above v, the photo current and hence the number of electrons ejected per
second increases with the intensity of the light but does not depend on the light’s frequency.

e The stopping potential (V) and so the kinetic energy of the ejected electrons depends on the
frequency but not on the intensity of the beam; V; and so the maximum kinetic energy of the

. 1 . . . .
ejected electrons (5 mvy,% = eVO) increases linearly with the incident frequency.

Einstein showed that the plot of maximum kinetic energy of the electrons or of eV, with frequency (v)
of the incident light is a straight line (Fig.-X(c)) which can be given by:

eVO = hV_WO

The slope of the straight line graph does not depend on the metal and as determined from experimental
results, it is equal to Planck’s constant h. If the electron emitting metal surface is clean and oxide free
then the intercept W, is characteristic of the metal and it is equal to hv,.

Einstein, extending Planck’s quantum condition to radiation, proposed that light is made up of discrete
energy packets or quanta — photons — each of which have energy hv, where v is the frequency of light.
In photo electric effect a photon, incident on an electron, is completely absorbed by it. At normal
temperatures the maximum energy of an electron inside the metal is less than the minimum energy
required by an electron to come out of the metal surface by an amount equal to W, which is called work
function. So if hv < W, the photon absorbing electron cannot come out of the metal surface. But if
hv > W, the electron can emit from the metal surface. And the emitted electron possesses a kinetic



energy hv — W, with which it can reach to the anode even if the anode is given no positive potential
with respect to the cathode. Moreover to stop such an emitted electron from leaving the metal surface a
negative potential (say —Vj) should be applied to the anode with respect to the cathode. Vj is called
stopping potential. Clearly eVy = hv — W, and it is equal to the maximum kinetic energy of the
electrons.

The equation: eV, = hv — W, is Einstein’s photoelectric equation.

Problems:

JAM 2014

Q.8 In a photoelectric effect experiment, ultraviolet light of wavelength 320 nm falls on the
photocathode with work function of 2.1 eV. The stopping potential should be close to

(A) 18V B) 16V © 22V D) 24V
hc 1240
Ans. elVy=hv—-W, = T Wy = 20 2.1 electron Volt = 1.775 electron Volt

=>V,= 17775 electron Volt = 1.775 Volt = (4).

JAM 2011

Q.6 Light described by the equation E= (90 V/m)[sin(6.28 x 10" s'l) t +sin(12.56 x 10" s'l) t]is
incident on a metal surface. The work function of the metal is 2.0 eV. Maximum kinetic energy
of the photoelectrons will be

(A)) 2.14 €V (B) 4.28 eV (C) 6.28 eV (D) 12.56 eV

Ans.: E = E,sinwt represents the electric field vector of light having angular frequency w i.e.
frequency v = w/2m where E; is the amplitude of the electric field vector.
So E = (90 V/m)[sin(6.28 x 10°s~ )¢t + sin(12.56 x 101557 1)¢t]
= (90 V/m)sin(6.28 x 10>s )¢t + (90 V/m)sin(12.56 x 10°s~ )¢t

6.28x1015

represents two light waves of frequencies v; = Ts_l = 105! = 10'®Hz and
15
v, = 2220571 = 2x10%s7! = 2x 10'5Hz

Clearly the maximum kinetic energy will be determined by the larger frequency. So, in this
problem the maximum kinetic energy will be:

hv W,
hv, — W, Joule = 72—70 eV
_6.626X10734x2x1015

1.6x1071°

—2.0 eV =828eV —2.0eV =6.28 eV = (C)
JAM 2007:

20. A beam of light of wavelength 400 nm and power 1.55 mW is directed at the cathode of a
photoelectric cell. (given: hc = 1240 eV nm, e = 1.6 x107°C ). If only 10% of the incident
photons effectively produce photoelectrons, find the current due to these electrons. If the
wavelength of light is now reduced to 200 nm, keeping its power the same, the kinetic
energy of the electrons is found to increase by a factor of 5. What are the values of the
stopping potentials for the two wavelengths? : [21]



Ans. P =155x1073 X — W = 1.55x 107* W
100
Number electrons emitted from the cathode per second is equal to the number of photons

participating in photoemission per second:

__ effective power _ 1.55x107* _ 1.55x107*
" photon energy hv T he/2

_ 1.55x107* __ 0.5x107*
T [1240/400]x1.6x10-1 ~ 1.6x10-19

-4
Current = 05X—10_ X 1.6 X 10_19 = 0.05 mA.
1.6x10°1
h h n
(K-E)max=€V0=hv—WO=TC_WO :eV01=A_:_Woi eVozz/l_z_WO

hc  hc _ (124—0 1240
200 400

eVOZ —€V01 = -

= ) electron Volt = 3.1 electron Volt

= 5ely; — eV, = 3.1electronVolt = 4eV,; = 3.1electronVolt =V,; =3.1/4V

= Vy, =0.7525V; Vyp, =5x0.775eV = 3.875V

Problem of estimation of Plank Constant (Example 1.2, Zettili):
When two ultraviolet beams of wavelengths /2 = 80nm and /1, = 110 nm fall on a lead surface,
they produce photoelectrons with maximum energies 11.390 eV and 7.154 eV, respectively.
(a) Estimate the numerical value of the Planck constant.
(b) Calculate the work function, the cutoff frequency, and the cutoff wavelength of lead.

Salution

(a) From (1.22) we can write the kinetic energies of the emitted electrons as ) = he/d1 —
W and K7 = he/dz — W ; the difference between these two expressions is given by K1 — K7 =
he(dz — 41)/(4142) and hence

_ K -K 44
o < Ar—A1

h (1.24)

Since 1 eV = 1.6 x 1071? J, the numerical value of i follows at once:

—19 — 0 _q
11390 — 7.154) x 1.6 x 107°J (80 x 10" m){110 x 10 m "
T { ) ( X ) ~ 6.627x10 47 s,

x
3 x 108 ms—! 110x 1077 m—80x 10~ %m
(1.25)
This 15 a very accurate result indeed.
(b} The work function of the metal can be obtained from either one of the two data
ke 6.627 x 10734 J s x 3 x 108 ms~1 i
W=——EK = —11.390x 1.6 x 1071%7
A1 80x 10 %m
= 6.627x10 P J=4.14eV. (1.26)
The cutoff frequency and wavelength of lead are
W 6627x 107107 ¢ 3x10%8m/s
My = — =101 Hz, Ty =i =300 om. (127}

B 6627 x103%7s ve 100 Hz




Compton Effect:

#

L.

Before starting to study this topic, solve the following problems:

An electron has energy E eV. Obtain the expression of de Broglie wavelength (1 = h/p) of
the electron, considering the problem to be (i) relativistic and (ii) non relativistic. Find the
value of A for (a) E = 10eV and (b) E = 10 MeV for both relativistic and nonrelativistic
treatments.

An electron is accelerated through a potential difference V. Obtain the expression of de
Broglie wavelength (4 = h/p) of the electron after acceleration, considering the problem to
be (i) relativistic and (ii) non relativistic. Find the value of A for (a) V = 10V and (b) E =
100 kV for both relativistic and nonrelativistic treatments.

e Detector

Collimating
slits

m L.
Graphite

X-ray l | target
source

incident photon

VNN

_' x target electron 6
Te

0 %
/ ' recoiled electron

———d e

Intensity

A —| |+~ Ar=6.0X10"4nm f—=]AA =22 X 1073 m
J\ 6=0° 45° 90°
I T T T T T 1 I T T T T T 1 I T T T T T 1

Wavelength

*Photons require high energy to produce Compton Effect. Such photons are X-ray and y-ray
photons.

*Electron participating in Compton Effect is assumed to be free.

*Collision is considered to be elastic, i.e. both the total kinetic energy and total linear
momentum of the colliding particles remain unchanged through the collision.

Conservation of energy:

hv = hv' + T, = hv' + mc? — myc?

hc hc 2 _ 2 h h _

7—7+moc =mc =>I—7+m00—mc.

Squaring

h? K2 h? 1 1 2 2 2 2

1—2 F_ZW-}_szCh(i_T)-}_mOC =m-c
h?  h? h?  2mgch

= —+ +—0(1'—A)=m262—m02c2

PR Y VUL PY



h2 h? 5 R | 2mych o, ct 2 2 mp%cip?  my?v
t7 23 ax ot . A=A =10 32 Mo-¢ 1-p2 1-p2
[Where B =v/c]
h? h h? 2 h .
>=te— 25 ’;‘;f A=) =m?v% ... (A)
Conservation of momentum:
Relativistic energy relation = E2 = p%c? + my2c*.
For photon, E = hv and rest mass my = 0. Therefore hv = pc.
= photon momentump = h—cv = % .
Therefore
L h,cos<p+mvcos€ =>E—£,COS(p=mUC059 ............ (B) and
22 PR
h h
0= 27 Sing —mvsin 0 = 7sing = mvsin 6. ©
Squaring and adding (B) and (C):
h?  h? h?cos ¢
ﬂ_2+17_2 FY =m?v? ... (D)
(A)—-(D)
_ 5 k7 _ moch ’ _
2/1/1'(1 cos Q) + —-— YT A -1=0
Wavelength shift:
:>A’—A=L(1—c05(p)=AC(1—c05(p) ........... (E)
mgyc
> A =1+2.1—-cosp). ........... (F)
h 6.626x1073%
Ac = —— = Compton wavelength = -——"————g5 = 0.02424 A
» 7
AA 3

3

14

Recoil angle of electron:




We have % — 2 cos @ =mvcosf ... B)

AI
ho. :
and 2 Sing = mvsin 6. ©)
h sing i
37 sin
tan g = ;2 = £

h - A
2 a7 cose Fcos¢

From(F),%= 1+%(1—cos<p) =14 a(1— cos).

I ) [
_ sing _ sing _ 2sinjcosy cos=
Then tan ¢ = 1+a(1—cos @)—cos - (1+a)(1—cos ) - 2(1+a) sinzg - (1+a) sin%
cotd =(1+a) tan% .............. (G)

Recoil energy of electron:
T,=hv—hv' = hv(l—v?,) = hv(l—%) = hv(l—m)

_ a(l—cos )
= h 1+a(1-cos )’

Useful way to calculate T, if A (or v) and ¢ are given:

First find A" = 2+ A.(1 — cos @)

hc hc
NOWTe=hV—hV,=7—7

Use hc = 1240 nm. eV

hc hc 1 1 1 1
Then: Te = 7 - 7 = he (Z - 7) = 1240 (/’l in nm - A innm) ev
Plot T, = %% vs. @. Givend=0.709 A.
—34
Ans. @ = —— = 6:626x10 = 342328 x 1073

mocd ~ 9.1x10~31x3x108%0.709x10~1

he _ 6.626x1073*x3x108

K 0.709%10-1 = 28.036671 x 10716

__hc a(l-cos ) _ hc 34.2328x1073(1—cos )

T, =— =—,
€ A 1+a(l-cose) A "1+34.2328x1073(1—cos )
0.034(1—cos ¢)
lot ——————vs.
Wepo 140.034(1—cos @) 4
0ne. e

ﬂ
\

\

o
)

4 2 3T‘I'f4




(Te)r =

hc a(l1—-cosm)
A 1+a(1-cos )

hc Za
2 142a’ s (Tedny2 =

a

A 1+a’

Comparison between Photoelectric Effect and Compton Effect:

Photoelectric Effect Compton Effect
Participating Visible or UV light X-Rays and y-Rays
Radiation A~10%nm A~10"1—-1073
(photon) E~eV E~ keV — MeV
Completely absorbed by the electron Energy pa'rtly transferred to elecfron,
. . Direction changes up to 180°,
What happens to (or other scattering particle) .
the phot Energy completely transferred to the Wavelength increases,
¢ photon gy P elec};ron For electrons AA may be up to
21, = 2% 0.002426 nm
Participating Conduction electrons or electrons Loosely bound atomic electrons of non-metals
electron loosely bound the atoms of a metal e.g. graphite

Electrons free or

Electrons have negative energy of
several eV
In magnitude equal or slightly greater
than the work function.
Work function of Ag and Na are

Several eV. Magnitude may be greater than that
of electrons of Photoelectric effect.
Ionisation potential of Carbon is 11.26 eV
Magnitude of electron energy is small

bound 454 eV &2.28¢eV
Magnitude of electron energy is compared to the photon energy (keV). So
comparable to the energy of photon electrons are considered as free.
(eV). So electrons are considered as
bound.
What happens to Emits from the metal Recoils. If recoil energy is h1gh then emits from
the electron the material.
Energy of
18y S.ev.ergl ev. . Several eV to keV.
emitted / Non-relativistic treatment is N ) .
X Relativistic treatment is requlred
recoiled electron allowable

Problems:

JAM 2017

Q.31

¢, the photon loses half of its energy.

(are) true?

(A) cosg
(B) sinf =

(-2

A photon of frequency v strikes an electron of mass m initially at rest. After scattering at an angle
If the electron recoils at an angle 6, which of the following is

(C} The ratio of the magmtudes of momenta of the recoiled electron and scattered photon i 5= = n¢

(D) Change in photon wavelength i i (1 — 2 cosg).

, h 11 h
Ans.: (A) A —A=m—oc(1—c05(p) :c(——;)=—(1—cos<p)
2 1
=>c(———) ——(1—c05(p)

v v/ myc

[Since loss of energy=hv—hv' =hv/2 =v' =v/2]

c_ h _ mocc _ mgc?
=-=— (1 cos<p) = (1—-cosp) =—+ =
=>cosp=1——— =>: (4) is correct.

hv



Loss of energy of Compton scattered photon
= kinetic energy gained by the recoiled electron

a(l—cos A h/mgyc h/myc hv
QAC0SD) here q = A€ = B/ _ B/moc WV
1+a(1—cos @) A yh c/v mgc?

=T, =hv

_ Q _ a(l—cos @) _ _ _ .
Here T, = S = hv—“a(l_cow) = 2a(l —cosep) =1+ a(l — cosp);

1 1 moc? .
=>1—cos<p=; =>cos<p=1—;=1—— == (A) is correct.

1)? 2_ 1 2a-1
3B) tanf = sin ¢ _ yi-cos?¢ _ 1_(1_3) _Na a2 _ N a? _ V2a-1
T +@(-cos ) (+a)/a | (Q+a)/a | EL @ T Ty
a a
sinf = 1 _ o 1 _ [2a1
T4 ltcot2g |, 0+02 T laP+aa T 4|g2+4a
2a-1 2a-1
. . . . mocz 1 .
Given relationin (B) : sinf =1 — =1—-- == (B)iswrong.
hv a

ho. .
sing = mvsin@.

(©) We have 7

mv __ sing
h/A' " sin@

== (C) is correct.

m

(D) Change in photon wavelength ' — 4 = LC (1—-cosp) == (D)iswrong.
0
JAM 2016

Q.57 X-rays of 20 keV energy is scattered @?lastically from a carbon target. The kinetic energy
transferred to the recoiling electron by photons scattered at 90° with respect to the incident beam is
keV.
(Planck constant = 6.6x10°* Js, Speed of light = 3x10° mV/s, electron mass = 9.1x107" kg,
Electronic charge = 1.6x107°C)

. hv 20%x1000%1.6x1071%  2x1.6
Ans.: Given: hv = 20keV; Alsoa = = — = =0.039072
mgc? 9.1x10731x(3%x108)2 9.1X9

T, = py 2a-cose) T, = 20keV x —2272_ 1+ 0.75keV
1+a(1—cos ) 1+0.039072
Alternately: hv = 20keV = A = —=2_ = 0.062 nm
20x1000
6.626x10734

V=21+ # (1— cosg) = 0.062 nm + = 0.062 nm + 0.002427nm
0

9.1x10731x3x108

= 0.064427nm
' = —22_ oy =19.25 keV
0.064427

T, = hv —hv' = 0.75 keV
JAM 2015: Section C

Q.8 X-rays of wavelength 0.24 nm are Compton scattered and the scattered beam 1s observed at an
angle of 60° relative to the incident beam. The Compton wavelength of the electron is 0.00243 nm.
The kinetic energy of scattered electrons in eV 1s :

Ans.: A —A1= hc (1 —cos¢p) =2.(1 —cos¢e) = 0.00243 x (1 — cos 60°)
0

m

= 0.00243/2 = 0.001215 nm



A'=0.241215nm

Loss of energy of the X-ray is the gain in kinetic energy of the electron. So:

1240 1240 _ _ _
T, = (024 0241215) eV = (5166.67 — 5140.64) eV = 26.03 eV

JAM 2013

Q.18 A beam of X-rays of wavelength 0.2 nm is incident on a free electron and gets scattered in a
direction with respect to the direction of the incident radiation resulting in maximum
wavelength shift. The percentage energy loss of the incident radiation is

Ans.: A —21= %(1 —cos@) = A, (1 —cos¢p) =0.002426 X (1 — cos180°)
0
= 0.004856 nm

A’ =0.204856 nm

% loss of energy of the X-rays:

(124—0 1240

— 0204856)/1240 % = (6200 — 6053.03)/6200 % = 2.37 %.

JAM 2010

Q.19 (a) A photon of initial momentum p, collides with an electren of rest mass m, moving
with relativistic momenium P and energy E. The change in wavelength of the
photon after scattering by an angle & is given by, Ad=2¢c 4, -g—g+—isin2 g—, where

—
¢ 18 Lhe speed of light and 4; is the wavelength of the incident photon before
scattering. What will be the value of A2 when the electron is moving in a direction
opposite to that of the incident photon with momentum P and energy E? Show that
the value of A4 becomes independent of the wavelength of the incident photon
when the electren is at rest before collision. (12}

(b} In a Compton experiment, the ultraviolet light of wavelenpth 2000 A is scattered
from an electron at rest, What should be the minimum resolving power of an optical

instrument to measure the Compton shift, if the observation is made at 90° with
respect te the direction of the incident light? {9) .

Ans.: (a) Incase of head on collision the photon will bounce back by 180°.

Pot Dot T Do+P
ThenAA—ZcACE Psm ——ZCACE Psm 2—2 ACE s
If the electron is initially at rest then: P = 0.
Then AX = 2¢A, po S = 2cA, po = ZC/ICh—Msin22
(b) Resolving power = A= A = 2900 =299 _ g2440.23

AL~ Ac(1—-cos ) 0.02426Xx(1-cos90°)  0.02426

JAM 2008

Q.11 A photon of wavelength A is incident on a free electron at rest and is scattered in the backward
direction. The fractional shift in its wavelength in terms of the Compton wavelength A, of the
electron is

A, 24, 34 22,
S ® 35 © 0 —



A=A A A _22¢
Ans.: = 1(1 cosQ) = 1(1 COST) = T
JAM 2006:
23. A photon of energy Ey collides with an electron at rest and gets scattered at an angle 60°

with respect to the direction of the incident photon. The ratio of the relativistic kinetic
energy T of the recoiled electron and the incident photon energy E,; 1s 0.05.
(a) Determine the wavelength of the incident photon in terms of the Compton

1
}, where h, m,, ¢ are Planck’s constant. electron rest mass
m._c

e

wavelength A [
and velocity of light respectively. [12]

(b) What 1s the total energy E. of the recoiled electron m units of its rest mass ?

(9]

) _Te _hv-n'__ Vv 2
Ans.: (a) 0.0S—hv— P =1 v—l 7

A =0.951" =0.95A1 + 0954 = 0.054 =0.95A1 = 1 =19A2

A=19A2 =192.(1 — cosp) = 191.(1 — cos 60°) = ?)lc = 9.54..

0.05hc 0.05hc
(b) E, =T, +myc? = 0.05hv + myc? = —+ myc? = YT myc?
. (4
0.05hcmc 2 _ 005 ,c? 2 _ myc? 2
=———+myc° = + myc® = ——+ myc”.
9.5h 0 9.5 0 190 0
191mgc? 191c? .
= J= in the units of rest mass
190 190

Zettili: Page-21

Calculate the de Broglie wavelength for
(a) a proton of kinetic energy 70 MeV kinetic energy and
(b) a 100 g bullet moving at 900 ms™".




Wave nature of particle

Davisson-Germer Experiment (1923-27):

Bombarding the surface of nickel single crystal normally with collimated beam of electrons and
detecting the number of electrons scattered in different angles with the incident beam. It was observed
that scattering was maximum for an angle ¢ = 50° when the electron energy was 54 eV.

!

i
7
.
i

/
/
/
//

D = 2.15A,d = Dsin25° = 0.914

To explain their result Davisson and Germer used the concept of wave nature of particle, here electrons,
postulated by de Broglie. So the de Broglie wavelength of the electrons:

h h 6.626 x 10734

P J2mE, V2x9x10731x54x1.6x10"1°

Verify for relativistic relations

Again when waves, like X-rays, are incident on the atomic planes of a crystal at different angles they
suffers intense reflection like scattering for some particular angles given by Bragg’s equation:

2dsin 0 = na

where 6 is the angle of the incident beam with the set of parallel atomic planes (glancing angle)
responsible for scattering, d is the inter-planar spacing between these planes and n is a positive integer,
called order number. It is to be noted that intensity of scattered beam is small for large n.

In the Davisson-Germer experiment angle of incident ¢ /2 = 50A/2 = 25° andso 8 = 90° — /2 =
65°. Thus the atomic planes responsible for the Bragg like scattering are oriented at an angle 25° with
the surface of the crystal. Inter planer spacing of these planes was d = 0.91A.

Thus taking n = 1, since a single scattering maximum was observed,
A=2dsin@ =2x0.91xsin65° A=1.654

which matches quite well with the de Broglie wavelength of the electrons (1.67 A) within experimental
errors. Thus the results of Davisson-Germer experiment confirms de Broglie relation A = h/p.

***Story (Wikipedia): Davisson began work in 1921 to study electron bombardment and secondary electron
emissions. A series of experiments continued through 1925.

Davisson and Germer's actual objective was to study the surface of a piece of nickel by directing a beam of
electrons at the surface and observing how many electrons bounced off at various angles. They expected that
because of the small size of electrons, even the smoothest crystal surface would be too rough and thus the
electron beam would experience diffused reflection.

The experiment consisted of firing an electron beam at a nickel crystal, perpendicular to the surface of the
crystal, and measuring how the number of reflected electrons varied as the angle between the detector and the
nickel surface varied. To measure the number of electrons that were scattered at different angles, an electron
detector that could be moved on an arc path about the crystal was used. The detector was designed to accept
only elastically scattered electrons.



During the experiment, air accidentally entered the chamber, producing an oxide film on the nickel surface. To
remove the oxide, Davisson and Germer heated the specimen in a high temperature oven, not knowing that this
caused the formerly polycrystalline structure of the nickel to form large single crystal areas with crystal planes
continuous over the width of the electron beam.

When they started the experiment again and the electrons hit the surface, they were scattered by nickel atoms
in crystal planes (so the atoms were regularly spaced) of the crystal. This, in 1925, generated a diffraction pattern
with unexpected peaks.

On a break, Davisson attended the Oxford meeting of the British Association for the Advancement of Science in
summer 1926. At this meeting, he learned of the recent advances in quantum mechanics. To Davisson's surprise,
Max Born gave a lecture that used diffraction curves from Davisson's 1923 research which he had published
in Science that year, using the data as confirmation of the de Broglie hypothesis.

He learned that in prior years, other scientists — Walter Elsasser, E. G. Dymond, and Blackett, James Chadwick,
and Charles Ellis — had attempted similar diffraction experiments, but were unable to generate low enough
vacuums or detect the low-intensity beams needed.

Returning to the United States, Davisson made modifications to the tube design and detector mounting, adding
azimuth in addition to colatitude. Following experiments generated a strong signal peak at 65 V and an angle 6
=45°. He published a note to Nature titled, "The Scattering of Electrons by a Single Crystal of Nickel".

Questions still needed to be answered and experimentation continued through 1927.

By varying the applied voltage to the electron gun, the maximum intensity of electrons diffracted by the atomic
surface was found at different angles. The highest intensity was observed at an angle 6 = 50° with a voltage of
54V, giving the electrons a kinetic energy of 54 eV.

According to the de Broglie relation, electrons with kinetic energy of 54 eV have a wavelength of 0.167 nm. The
experimental outcome was 0.165 nm via Bragg's law, which closely matched the predictions.

Davisson and Germer's accidental discovery of the diffraction of electrons was the first direct evidence
confirming de Broglie's hypothesis that particles can have wave properties as well.***

Double slit experiment with light (photons) and with electrons:

Double slit experiment with parallel monochromatic beam of light:

<>
=
)

Path difference: § = (a + b) sin 8, where a & b are respectively the widths of the slits and the
separation between the slits. 8 is the angular position of a point on the screen with respect to the central
line between the slits.

Condition of maximum intensity:



. , 2 .
(a+b)sing, =nl =sinf, = #; Now for small 8,,, sinf, = tan@, = y;”

Yn _ nd _ D
So D a+b’ yn—a+bn/1

D

D
a+b/1 = E/l = constant.

Fringewidth=f =y, —yn_1 =
where d = a + b is the distance between the centres of the slits.

Resultant intensity on the screen (considering the slits to be extremely narrow):
by = Aeitr=w); 1 = geitk(et8)-wt)

Y=+

I=Y)% = @1 +P)@1" +927) = [P1]* + Y, |* + |¢1||¢2|(e_ik6 + eiks)
= |11 + [2|? + 2|9 |1, | cos(ks)

I=L+1,+ ZJEcos[k(a + b) sin 6]

For I; = I, = I, we have:

k(a+b) si

I = 2I, + 2Iy cos[k(a + b) sin @] = 41, cos? B, where B = ——siné.

VAR'E RUR A

Again the intensity distribution on the screen, for a single slit of finite width a, is given by:

sin? a ka . na .
I =Ily——, where a = —sinf = —sin6 .
a? 2 yh

It can be shown that in case of the double slit experiment if the finite width of the slits is considered,
then intensity distribution will be given by:

sin? a

1 =4I, cos? B.

a2
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Double slit experiment with macroscopic particles:
I = 11 + 12
I I=h+5h

S_s S S S, sl
%sig gs:;; gszlg

I

Only slit 1 is open Only slit 2 is open Both slits are open

Quantum Mechanics Concepts and Applications - Nouredine Zettili

Double slit experiment with parallel mono-energetic beam of electrons:
1. I+, +1,
2. Count distribution pattern on the screen is similar to the double slit diffraction pattern of
light of wavelength A = h/p, where p is the linear momentum of the electrons and h is

Planck constant.

3. The count distribution pattern remains same if even one electron at a time is fired from the
electron gun.

|
A I#h+h
s 8 5‘;’ s 8 e
HHEH —u

3::::::&2 ~ g el 2'

~ .

Jo)
Only slit 1 is open Only slit 2 is open Both slits are open

Quantum Mechanics Concepts and Applications - Nouredine Zettili



Single slit diffraction of light:

Y

7y
i
Y

The intensity of light on the screen is given by:

in? ka . . . .. o
=1, 512—2“, where a = 7(1 sinfg = % sin 8, 0 being the angular position on the slit with respect to the
centre of the slit.
.. .. . dl d?1 . na .
Condition of minima is — = 0,— = +4ve = sina =0 > a=—sinf =nn
da da? A
=asinf =nl; n=+1,42,43 ...;n # 0,asn = 0 corresponds to the central maximum.

.. . . . A
For the first minimum on the both sides of the central maximum |sin 6| = p

Before passing through the slit, the beam of light is parallel and so have no angular spread. But after
passing through the narrow slit, the beam of light gets some angular spread. In the figure the angular

spread of the central maximum is 20 ~ 2sin@ (since 0 is small) = % Thus the angular spread of
the central maximum increases if the width of the slit (a) decreases.

Single slit diffraction of electrons and Heisenberg uncertainty principle:

Now let in the place of light/photons electrons are used for the diffraction experiment. Let detectors are
placed at every point on the screen which can count the number of electrons hitting that point. The
distribution pattern of electron counts on the screen will be similar to that for light of wavelength 4 =
h/p, where p is the momentum of the mono-energetic electrons incident on the slits.

The electrons, emitting from the source, move in positive X direction. So we can write p = p,.. But
after passing through the slit the electrons gain a little momentum in Y direction, which causes angular
spread of the diffracted electron beam. Let +Ap,, are the y-components of momentum gained by the
electrons reaching to the first minima on the both sides of the central maximum. Then we can say that,
the electrons reaching the screen within the central peak AB have gained at the slit an uncertainty Ap,,
in y-component of momentum in either positive or negative y-direction. These electrons have passed
through any point in the slit of width a. So, at the slit, the uncertainty in their y-coordinate is Ay = a.
Now: Loy _ tanf =~ 0 = sin@ (since 0 is small) = i_4

Px a Ay
So, at the slit, AyAp, = Ap, = AyAp, = A% = AyAp, =~ h.

i.e. the product of the uncertainties in y-component of momentum and position is h > > Thus
Heisenberg uncertainty principle is obeyed.



From uncertainty principle show that, in the double slit diffraction of electrons, it is not possible
to determine the slit, through which the electron passes and to produce the diffraction pattern in
a single experiment.

{
! |
I#£h+0h .- I=h+1h
S Skl S5 5.....S kel ' S Sk
N —En - e o >
P S, -t 5 E" N S S 2 _ISZ P
.~ M Ry
I
Light source
|
Only slit 1 is open Only slit 2 is open Both slits are open Both slits are open
Quantum Mechanics Concepts and Applications - Nouredine Zettili
Y
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Ans.: Fringe width of the interference fringes in the double slit diffraction experiment is given by:
D
B =Yn—Yn1 =El-

For the fringe system to be stationary the uncertainty in measurement of the position (y-
coordinate) of the slit plate must be small compared to the fringe width 5.

e Ay Kp SAyKZA .o (A)

Now let we want to determine through which the electron passes to reach a point C on the screen.
If the electron passes through the lower slit, it would have to gain a momentum, say 6p,, in
+ve Y direction and if it passes through the upper slit, it would have to gain a momentum, say
dpy, in —veY direction. In the two cases the slit plate will recoil in opposite directions and
measuring the recoil momentum of the slit plate it will be possible to determine through which
slit the electron passes. But to measure the recoil momenta of the slit plate in these two cases
distinctly the uncertainty in measurement of the momentum of the slit plate must be much small
compared to the difference of these two recoil momenta.

ie. Ap, K 6py — (—6py), or, Ap, K 26p,.

Now from figure:

% =tana = dT/Z = %. Therefore 6p, = px% = %%.
So, Apy « 23—,

or, Apy K35 .. (B)

Thus to measure through which slit the electron passes and also to have a diffraction pattern at

the same time, we must have both the conditions (A) and (B) satisfied at the same time. Or in
hdD

ipa”

Or, ApyAy < h....(C).

other words: Ap,Ay <



Equation (C) is clear violation of uncertainty principle and so impossible. Therefore measuring
through which the electron passes and having a diffraction pattern at the same time is impossible.
Or in other words, any successful trial of ‘seeing’ through which slit the electrons pass will
destroy the diffraction pattern.

Problems of Waveparticle Duality, Uncertainty Principle, Two Slit Experiment:
JAM 2017

Q.57 Inan electron microscope, electrons are accelerated through a potential difference of 200 kV. What

is the best possible resolution of the microscope?
(Specify your answer in picometers to two digits after the decimal point.)

Ans.: Rest mass energy of the electron is 0.511 MeV Kinetic energy gained by the electron is
200 keV = 0.2 MeV, which is of the order of the rest mass energy. Therefore relativistic
treatment is required.

Kinetic energy gained by the electron is 200 keV = 3.2 x 10714J
K.E = E —myc? = /p%c? + my%ct — myc?
Vp%c? + my%c* = K.E + myc?
2 (K.E+mocz)2—mozc4
= —
_ J®E+myc2)2-my2ct _ JK.E(K.E+2mgyc?)
p - [ - [
_ /32x10714(3.2x10~14+2x8.187x10~14)
- 2.9979x108
— 7.91 _ x 10_14
2.9979x10
=20 %1071% =264 x10"22kg.m/s
2.9979x108 ) g-
_h _ 6626x1073* 12
A= > = Zeaxio T = 25%x107“m
Best possible resolution=1 = 2.5 x 107! m
JAM 2016
Q.17 Consider a free electron (e) and a photon (ph) both having 10 €V of energy. If 1 and P represent
I g g} P
wavelength and momentum respectively. then
(mass of electron = 9.1 x 107" kg: speed of light = 3 x 10° m/s)
(A) Ao = j‘ph and B = Pph- (B) Ap < ‘i"ph and B2 Pph-
(C) 2 > Ayp and P, < Py, (D) 2 < Ay and P, < P,
Ans.: Rest mass energy of electron is 0.511 MeV. Given kinetic energy of the electron is 10 eV is

much less than the rest mass energy of the electron. Therefore nonrelativistic treatment can be
done.

P, =V2mE =vV2x9.1x 1031 x 1.6 X 10719 x 10 = 1.7065 x 102 kg.ms™.

—-34
Ao =L = 202900 — _ 388 %1071 m = 0.388 nm
P, 1.7065x10



1240
Aph = T =124nm

h 6.626x1073* —27 -1
Pyn = on ~ 12ax10 5.34x10 kg.ms

__E _ 10x1.6x1071% —27 -1
Pph_;_W_S'BBX]-O kg.ms

Thus /16 < Aph &Pe > Pph

JAM 2016

Q.39

Ans.:

A slit has width *d” along the x-direction. If a beam of electrons, accelerated in y-direction to a
particular velocity by applying a potential difference of 100 = 0.1 KV passes through the slit. then,
which of the following statement(s) is(are) coirect?

(A) The uncertainty in the position of electrons in x-direction before passing the slit is zero.
(B) The momentum of electrons in x-direction is ~ f?/ d immediately after passing the slit.

(C) The uncertainty in the position of electrons in y-direction before passing the slit is zero.

(D) The presence of the slit does not affect the uncertainty in momentum of electrons in y-direction.

(A) If (A) would be true then the momentum of the electrons in x-direction would be completely
indeterminable. Then one could not say that they are accelerated in y- direction.

(B) From Heisenberg uncertainty relation, if the position in x-direction has an uncertainty d,

L . L . Ak .
then uncertainty in momentum in x-direction will be Ap,. = i So (B) is correct.

(C) Uncertainty in momentum along y-direction:
Energy of the electronis £ = 100 + 0.1 eV = (100 £ 0.1) x 1.6 X 107 1% eV

Nonrelativistic treatment:

Apy, = \/Zme(V +AV) — \/Zme(V —AV)

=VZx91x1031x1.6x 101 [J(V FAV) —[(V = AV)]

= 53963 x 10725 |[VV (1+35) - W (1 -37)]

=5.3963 x 1072 x+/V x AVV =5.3963 x 10725 x 10 X % kg.ms™1

=5.3963 x 10727 kg.ms™.

Relativistic treatment:

_ Je(V+aV)(e(V+AV)+2moc?)  e(V=AV)(e(V-AV)+2m,c?)

Apy c c
_ Je(V+AV)(eV+2myc2+eAV)  Je(V-AV)(eV+2myc2—eAV)
- c c
2 AV eAV > 2v(4 _AV ( _ eav )
B \/eV(eV+2moc )<1+V)(1+73V+2m062 B eV(eV+2mye )(1 V) 1 VizmgcZ
c c

= e[ WY (1 ) (1) (1 e )]

c 2v 2(eV+2moyc?) 2v) " 2(eV+2mgc?)

.
ATTIRD (v (v )

2V 2(eV+2mgyc?)



_ Jev(ev+2myc?) [A_V n eAV ]

c %4 (eV+2mgyc?)

_ \/100 (100e+2x51100 )[0.1 0.1e

c 100  (100e+2x511000e)])’

(since myc? = 0.511 MeV = 511000 X e Joule)

= SV100x1022700 w 2022290 5 0.1 = 5.39247 x 10727 kg.m/s
[of 100%x1022100

_ _h _ 6626x1073*
Y= 20py,  2mx2x5.3963x10~2

=9.776 nm # 0

(D) The presence of the slit has no influence on the y-direction motion of the electrons. So
it does not effect the momentum of the electrons in y-direction.

JAM 2016

Q.55 The de Broglie wavelength of a relativistic electron having 1 MeV of energy 1s x 102 m
(Take the rest mass energy of the electron to be 0.5 MeV. Planck constant = 6.63x107" Js, Speed of
light= 3x10° m/s. Electronic charge = 1.6x10™°C)

EZ
Ans:  E?=p?c?+mePct =p?=—+mpPc?

E? (106x1.6x10-19)2 -
= =\/;+m0262 =JW+(9'1 X 1073 x 3 x108)?

=/(0.53 X 10721)2 + (27.3 x 1072 )2

=102 x ,/(0.53)2 + (0.273)2 = 0.59 x 1072 kg m s~!

—34
N g - % =11.23x107¥m =1.123x 1072 m.
JAM 2015: Section A

Q.26 A nucleus has a size of 101> m. Consider an electron bound within a nucleus. The estimated
energy of this electron is of the order of
(A) 1 MeV (B) 102 MeV
(C) 10* MeV (D) 10° MeV

Ans.: Minimum uncertainty in momentum = (h/2)/Maximum uncertainty in position

Ap~ =B _ 6.63x1073* 1073 107!
P~ oax T Zmxzax | zmxebx zx10-1 2

kg.ms~1.

Minimum momentum of the electron is:

10-19 -1
Pmin = Ap = —— kg.ms™".

If non relativistic treatment is done then the velocity of the electron comes to be:

1071

————— =~ 10" m/s » ¢ and is impossible.
2%9.1x10731

v = pmin/mo ~

Therefore relativistic treatment is to be done.

— 2,2 24
Emin —\/pmin c +m0 c

e 10-19\2
Emin = ¢y/Pmin® + mo?c? =3 X 108 x ( 2 ) + (9.1 x 10731)2(3 x 108)?

=3x10%x 1071 v0.25+27.3Xx 1078 3 x 108 x 10719 x 0.5 = 1.5 x 10711/

_ 1.5x10711
T 1.6x10-19

eV =108eV = 10°MeV



JAM 2007:

12. The speed of an electron, whose de Broglie wavelength is equal to its Compton wavelength,
is (c is the speed of light)

(A) ¢
B) /2
(C) /2
D) /3
Ans.: 1 = Compton wavelength = 1, = 2
mgc
h
p= E =mqcC
= my = mov — mov
p Ji-v2/c2 J1-v2/c?
Y _—myc v/t =1-v%/c? 22v%/ct=1 =v=-—
J1-v2/c? 0 V2’

QX. Zero point energy of harmonic oscillator from uncertainty principle:
If Ap, is the standard deviation of measurement of p, then: (Ap,)? = (p52) — (py)? = (p,2)
Similarly if Ax is the standard deviation of measurement of x then: (Ax)? = (x2) — (x)? =
(x?)

2
Now E =pi+lkx2
2m 2

xZ 1 sz 1 sz 2
So (E) ="l 2p(x?) = CPE 4 Dp(ax)? = BRI (pxy2

Uncertainty Principle: (Ax)(Ap,) = g

hZ
> (A0 (ap)? =2

2 h?
= (Apx) 2 4(Ax)2
Thus (E) > —o + 797 (Ax)2
us — 8m(Ax)?2 2 ( x)
. .. o O(rhs) . P mw? . . 2 _
The r.h.s will be minimum if 6[(Ax)2]_0’ i.e. if —Sm(Ax)4+ > =0; i.e if (Ax)° =
_h
2mw
h% 2m mw? h
So <E)min—a 3 2 2m

1 . . .
=3 hw = zero point energy of quantum harmonic oscillator.



SOME PROBLEMS ON WAVE PACKET



Eigen functions of particle in a one dimensional infinite potential well:

n2m2p2

V() = T eatha (. 0) = g e/ = [1552 c, sim (1) o (G )/

Where ¢, (x) = f sin ( ) are the eigen functions or stationary states.

vale| SR OXT I~/

[/\\ \ AN
, \

\ S
_J2/a Mo | B

Plotofwn(x)=f51n( )fora—l n=123

AN
AN,

PlotofP(x)——sm( )fora—l n=123

The functions ¥, (x,t) = \/_ sin (nzx)e_i(n;;zgz)t/ h, are not of the form f(x + vt) or
f(kx + wt). So they do not represent propagating waves. They actually represent standing
waves with amplitude \/zsin (nf:x) and wavelength %a The probability density is B,(x) =
Zsin? (") for=1, n=123....

ks sk sosk skoskoskok

Free particle:

—hz 0%y (x, t)
2m  9x?

in allf(x t)

Using separation of variables: W (x,t) = Y (x)n(t)



i an(®) _ an_ _iE _ et
o ar = :>n_ ndt =>n()=e

Since n(t) must not blow up at t = oo, so E must have to be real.

-h?  d?P(x) _ d 1/) d? 1/) 2 ’ _ —ikx
2mp(x)  dx? =E dxz l/) =0 => + k [ ] = l/J(x) Ae +

Be+ikx

= P, (x) = A e with k=+ f for waves travelling to right and to left
respectively... (A)

Since Py, (x) must not blow up at x = too, so k must have to be real.

(0 E i + M;r—5t>
Wi(x, ) = Agel(eit) =Ake< A

. o\ n%k?
For free particle there are no boundary conditions. Therefore values of k or E = 5, are not
discrete. Rather they have continuous values.

E
Comparing the equation Y, (x,t) = Axe (K x"t) Age' te(x—35¢) with the standard wave
equation f = f(x — vt) we see that the velocity of the wave is:

E E | h2 E
v =—== ’— = ’— ......... .
wave — pk  h\ 2mE 2m ©

But the particle velocity Vparticie = [— ... (D) [From E = %mvz] .

Therefore, —ware_
Vp artlcle Zm

The ‘eigen function’ (A) [or (B)] do not represent the stationary states of a free particle since:

6) P, = | (x,t)|? = |A,|? is independent of x and the probability of finding the particle
at anywhere between x = —oo to 400 is the same (see Fig.). Therefore the eigen function does
not represent a localised particle.

Py (X)T

—00 €— 0 X —> 4o
(ii) ffooo P (x)dx = |A|? ffooo dx = . ie the ‘eigen functions’ 1, are not square
integrable and total probability becomes infinite which is impossible.

(ii1) The wave, representing the particle, moves with a velocity which is half of the velocity
of the particle.

Thus these ‘eigen functions’ [eqn. (A) or (B)] “do not represent the physically realisable
states”’[ Griffiths]. In other words “a free particle cannot exist in a stationary state” or “there is
no such thing as a free particle with a definite energy”[Griffiths].

Now the general solution will be the linear combination of all the eigen functions or of all the

. . hk? . . . .
solutions exp <l (kx — Et)> Since k or E are continuous so the summation in the linear

combination will be replaced by integration:



_hk?

W(x,t) = o(k)e (=5mt) g ,

1 (+oo
NeT f_
where \/% @ (k) play the role of the coefficients of the linear combination.

¢ (k) can be determined from the initial wave function ¥ (x,0) = % f_t:o p(k)e™™ dk with
the help of Fourier Transform:

1 ([t ,
k) =— W(x, 0)e kx gy
@ (k) NzA (x,0)

Fourier Transform:

If f(x) = \/_f F(k)e**dk ... ... .. (i) then F(k)= \/_f C e kg .. .. ... (i)
and vice versa. (ii) is called the Fourier Transform of (i) and (i) is called inverse Fourier
transform of (ii).

Thus the free particle wave function at £ = 0 and at £ = ¢ are:

W(x,0) = «% [ o(k)et™™ di
1+ i(kx—7t) ( hkzt)
and  ¥(x,0) = = [0 p(k)e’ dk = — f o(k)e dk

with (k) = \/%f::o Y(x,0)e kx dx.
Now we see that  |¥(x,0)|? = P(x,0) = ifj:fl(p(k)lz dk and

% f:;o P(x,0)dx = f_+;° f:';0|(p(k)|2 dkdx is not infinite essentially.

What does ¥ (x,0) = % f:;o @ (k)e** dk represent?

The type or shape of the wave represented by ¥(x,0) = \/% f_J:o @(k)e™ ™ dk depends on

@ (k). To have an idea about what is represented by ¥ (x, 0), let us first solve the following
problems (A) to (D).

Problem A. (From: Int. to Q. M. 2" edn. D. J. Griffiths Problem 2.20 (a)):

Dirichlet’s theorem says that ‘any’ function f(x)on the interval [—a, a]can be expanded as a
Fourier series:

f@) = ¥ an sin (=) + by cos (2]

inmx

Show that this can be written equivalently as: f(x) = Yp-_0Cn€ @ .oov ..., (A)
where ¢, = b, forn = 0; Cp = %(—ian +b,) forn=1,2,... o
and ¢, = %(ia_n +b_,) forn=-1,-2,.. — .

intx _inmx intx _inmx
a —e a e a +e a

Ans.: f(x) =Yn0 [an sm( ) + b, cos( Zx)] = Y=o [an z Y + b, >

b inmx a b _inmx
=Sio|(G+)e e +(5+g)e e




inmx

w 1, . inmx o 1,. _
= anoz(_lan + bn)e a + anoz(lan + bn)e a

1, . 1., o 1. . inmx o 1. _inmx
= 3 (_lao + bO) + 3 (laO + bO) + Zn:lg (_lan + bn)e a + Zn=15 (lan + bn)e a
inmx 1.0.mx inmx

= Vi (—ian +by)e @ +bge @ +¥aZ -~ (ia_, +b_p)et

inmx 1.0.mx inmx

= Yl (@ +b_)et o +boe o + X5 (—iay +bye o

inmx

= Yn=—wCne @

Problem B. (From: Int. to Q. M. 2" edn. D. J. Griffiths Problem 2.20 (b)):

Show that: ¢, = i f_+aa f (x)e_% dx ... (B)

inmx
Ans.: f(x)=Yn-_wCpe @
a _imnx - a inmtx _immx - a i(n—-m)mx
Jo fe @ dx =37 o[ cpea e @ dx =37 o[ cne @ dx... (X)
Forn =m,

i(n-m)mx

a _ a 0 _
Jo ene” @ dx = [ cpe’dx = 2acy,

Forn #m,
a i(n-m)mx a i(n-m)ma i(n-m)ma a i(n—m)m
f—a che @ dx = iln-m)m n ¢ —€ ¢ T itn-m)m n [e B

e—i(n—m)n]

=—" ¢, [(-DO™ — (=1)~(™]  (Since '™ = —1)

i(ln-m)m
=0
Therefore all the terms of the summation of the r.h.s of (X) vanish except for n = m and:

i(n-m)mx

[CfO0e™ @ dx =35 o [* cne @ dx = 2acy.

inmwx

Hence ¢,, = if_aaf(x)e_de.

Problem C. (From: Int. to Q. M. 2" edn. D. J. Griffiths Problem 2.20 (¢)):

Let k = %, Ak is the increment in k for incrementinnby 1 and ¢, = %\EF(I(). Show
that (A) and (B) reduce to:

Flx) = «%Zfbw F(k)e* Ak ... (C) and F(k) = «% [T fe dx. .. (D)

Ans.: Wehave f(x) = Yp-_wCne a

With the substitutions k = nTZT, and ¢, = % \/gF (k) we have:

FG) = B ot [FR0 = 2 L IVER [TF(06% = 88 L TR(e

Now Ak is the increment in k for incrementinn by 1. i.e. Ak = g Then:



fO) = =B o T F(k)e™™ = =T o F(k)e™ak. ....... (€)

Also we have: ¢, = %f_aaf(x)e_%dx = %\/gp(k) — %f_aaf(x)e_ikxdx

> Fk)=—a \/% [& f)e ®*dx = J% [° foe ™ dx ... (D)

Problem D. (From: Int. to Q. M. 2" edn. D. J. Griffiths Problem 2.20 (d)):

Show that for a = oo (C) and (D) reduce to:

fx) = «% [T F()etk*dk ... (E) and F(k) = % I72 fe®dx. ... (F)
Ans.: For a - o, from (D) we have: F(k) = «% [ foe e dx = «% I72 fe **dx
From (C) f(x) = \/%Z?f:_wF(k)eikxAk. Now for a - o, Ak = g — 0. Therefore the
summation is to be replaced by integration: f(x) = \/% f_+;° F(k)e**dk.
Wave Packet:

Now let us plot the wave obtained by adding sine waves having uniformly varying propagation
constants within a finite range [for example, we may take 1 < k < 1.1]i.e. Y} sin kx, where
1 < k < 1.1. Wesee that [Fig.1-7] the resultant wave is a series of wave groups. As the number
of component waves within the finite range of propagation constants increases, the resultant
wave groups increase in height, decrease in width and the separation between the groups
increases. The small wave groups in between can be neglected in the present discussion since
they decrease in height and thus become insignificant with increase in the number of component
waves. If the number of component waves tends to infinity then the separation between the
groups will increase to infinity and we will get a single wave group or wave packet. The height
of the group or packet will be very large and width will be very small. If the resultant wave
represents the wave function of a particle, then the probability density of the particle, i.e. the
square of the resultant wave function will be very high at a very narrow region i.e. within the
width of the wave group and the particle will be well localised.

|
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y = sin(x) y = sin(x) + sin(1.1x)
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y = sin(x) + sin(1.05x) + sin(1.1x) y = sin(x) + sin(1.025x) + sin(1.05x) + sin(1.075x) +
sin(1.1x)

i
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m
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y = sin(x) + sin(1.0125x) + sin(1.025x) + sin(1.0375x) + sin(1.05x) + sin(1.0625x) + sin(1.075x) + sin(1.0875x) + sin(1.1x)

100

il 1000 1500 2000 2500 3000 3500 4000 4500 5000 550%:
L. 100
y = ) sin((1+ 0.001n)x)
n=1

—-100

We see that the wave packet is composed of waves of smaller wavelength modulated by a
profile or envelope which gives the shape of the group (Fig.-8).
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QQ: Let two superposing sine waves have wave lengths 1, and 1,. Let at any particular
instant of time their peaks coincide at x = 0. Show that at the same instant their peaks will also
coincide at:

x = n X LCM(44, 4,), where n is an integer.



From the problems (A) to (D) it is clear that the set of sine waves forming the above wave
groups can be obtained as special case from f(x) = % f_J:o F(k)e™**dk in proceeding back

from problem (D) to (A) ie from f(x)= \/% f_+:: F(k)e**dk to f(x)=

Y=o [an sin (%) + by, cos (%)] and by suitably choosing n and the coefficients a,, and b,,.

Therefore ¥(x,0) = \/% f_+;° @ (k)e™ ™ dk represents a localised wave packet or group, whose

shape depends on ¢ (k) and may be different from those given in the above figures. This will
be clear from the following problems (E) & (F). However since the wave packet

Problem E. (From: Int. to Q. M. 2" edn. D. J. Griffiths Problem 2.21):

Ans.:

A free particle has initial wave function ¥ (x, 0) = Ae~%*|, where A and a are constants with
a real and positive.

(1)
(i)
(iii)

(i)

(i)

(ii1)

Normalise ¥ (x, 0).
Find ¥ (x, t) in integral form.
Discuss the cases for a very large and a very small.

Normalise ¥ (x,0):
FowenPR=1 =42 [t e 2alkgy = 1
0 too 1 0 +o0  _
= A? (f_ooezaxdx +f, e 2‘”‘dx) =1 = Azz(f_meydy +[ e ydy) =1
= A2 ([e¥]% — [e ]9 =1
S A2 (e —e®—e 4+ =1
2a
242

> =1= A=+a.
2a

So ¥(x,0) = Vae @l
le(x, 0) = \/Ee_alxl
p(k) = \/%fj:: Y(x, O)e_i dx = \/%\/af:: e~ alxl g=ikx gy

_ |e [f—ooo e~ (max+ikx) g, 4 f0+°° o~ (ax+ikx) dx]

1 [eax—ikx]o_00 1 [e—(ax+ikx)]:°)

( —(a+ik)
= \/% (a—lik - —(a%l—ik))
(4t

a3/? o0 1 i(kx—f;—

1 +00 i kx—ﬁt
Yoot =5l <P(k)el( o) i = = o e

For very large a, ¥(x,0) = Ae~%*lis a very narrow spike at x = 0. But for small a,
WY(x,0) = Ae~ ¥l is flat.



il P(x,0) =Vae ™ witha=1

-20 -15 -10 15 20
1
a 2a .
000 = |3 (s ) witha=1
-20 -15 5 10 k _,15 20

Problem F. (From: Int. to Q. M. 2" edn. D. J. Griffiths Problem 2.22, with modification):

A free particle has initial wave function ¥(x,0) = %

Toy2)1/4

where A and a are constants with a real and positive.

@

(i)
(iii)
(iv)

(v)
(vi)
(vii)

1

—— 2 .
Show that ¥(x, 0) = ; e 2007 giko¥ ig normalised.

1
T0y2)1/4
1

Normalise ¥ (x,0) = Ae~%" gikoX (o show that A = (z?a)Z
Plot Im(‘{’(x, 0)) and |¥(x,0)| fora = 1,k, = 100.
Show that the expression of ¢ (k) in the Fourier expansion of ¥
1
2a\z _—(k_ko)z

1
90 = = (5) e
Plot ¢ (k) vs. k fora = 1.
Find the expression of ¥ (x, t).

L x? 2
T 2002 ikox — —ax“ ,ikyx
e 2907 el = Ae e ot

(x,0) is:

Find the expression of |¥(x, t)|2. Comment on it. Plot |¥ (x, t)|? vs. t. What happens

to |¥(x,t)|? as time goes on.




Ans.:

(viii)

(1)
(i)

(iii)

(iv)

At what time does the system come closest to uncertainty limit?

Normalise ¥ (x,0) = Ae~%*"¢
= A? f_+

[221w(x,0))2 = 1

Let2ax? =y = 4axdx =dy = dx =

ZVZa

f+°° 1/2-1e=Ydy =1 =

1

1

Im(‘{’(x, 0)) = (z?a)ze_a"z

IR

|‘1’(x, 0)| = (2—a)4e—ax2 _

T

ik()x.

o _ 2
e 2 gy =1

242
2V/2a

1
sin(kyx) = (;)4 e sin(100x).

1

2\2 2
(—)ex.
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Phase velocity, group velocity and particle velocity:
Phase velocity:
p2 h2k2

. . . (lx— E
Eigen functions of free particle: 1, (x, t) = A, e (*~®8: where k = %, w=sE=—=—

Let the wave form, which was at position x at time t, appears at position x + dx at time t + dt.
In other words:

Y (x, t) =Y (x + dx, t +dt),

Or, Ake"(kx-%) = Akei<k(x+dx)—§(t+dt))

Or, k(x+dx)—%(t+dt) = kx—%t;

dx _E _ Rh’k%*/2m Rk _ p _ v

oLl = == e mam 2
Thus the velocity of the wave form, or phase velocity, is equal to half of the particle velocity.

We see that the phase velocity of the monochromatic (particular k) eigen functions of the free
particle is half of the particle velocity. Now let us calculate the group velocity i.e. the velocity
of the envelope of the wave group or packet in the following cases:

Group velocity:

1. Wave packet composed of two plane waves: Consider two sine waves of equal
amplitudes but slightly different propagation constants and frequencies —

P1(x, t) = Asin(kx + wt) and



Yo(x,t)=A sin((k +dk)x+ (w + dw)t)
The wave group formed by these waves will be: ¥, (x, t) = sin(kx + wt) and
Y =9v(x,t) +Py(x,t) = Asin(kx + wt) + A sin((k +dk)x + (w + dw)t)

. dk dw dk dw
= 2Asm[(k+?)x+ (a) +T)t] cos(?x +7t)

. dk dw
~ 2Asin(kx + wt) cos (?x + Tt)

dk dw \ .

= 2A cos (73( + Tt) sin(kx + wt)
This is not a plane wave, but a sine wave [sin(kx + wt)] of propagation constant k and
frequency w whose amplitude is modulated or enveloped by the function 24 cos (% x + dTw t).
The sin(kx + wt) = sink (x +2 t) part oscillates with frequency w and moves with Velocity
w/k as the component waves but its amplitude or envelope 2A cos ( x +22 t)
24 cos% (x + t) is slowly varying with small frequency dw/2 moves with Veloc1ty E'

vpn = w/k represents the velocity of the phase of the part sink (x + 2t) and is called the

phase velocity and v, = d— represents the velocity of the envelope of the wave and is called
the group velocity of the wave

2. Fourier Packet:

Y(x,t) = \/% f:: @(k)el*kx=0 ql where propagation vector k = 2

% i(2x—E
= \/% [ o (et gk
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The Gaussian wave packet ¥(x,0) = Ae can be written in terms of Fourier transform as:

1

—ax? 1 ©o i . 1 2a\a _E
¥ (x,0) = Ae™™" = — [ = p(k)e ™™ dle, with ¢ (k) =E(f)4e

Where ¥, (x) = e™** are plane wave solutions of the Schrodinger eqn. for a free particle.

Question:
ap” *dwk) _ﬁ( dw*_ *d_'#) .
Let: Ji = (wk X Y —) and J = o U4 = and in a problem of step
_ lrkl |J e 1l | ¢l
otential R}, = == andR =—/, T =—
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Verify whether: R, =R, T, =T.



