
 

 

 

 

SOME STUDY MATERIALS 

ON QUANTUM MECHANICS PART 

OF PAPER C9T 

(VU PHYSICS HONS. CBCS 4TH SEMESTER)     

 

DEBASISH AICH  



VU CBCS Semester-IV 2019: Planck’s quantum, Planck’s constant and light as a collection of 
photons; Blackbody Radiation: Quantum theory of Light; Photo-electric effect and Compton scattering. 
De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles 
by wave packets. Group and Phase velocities and relation between them. Two-Slit experiment with 
electrons. Probability. Wave amplitude and wave functions. 

Historical Note 

1. Situation towards the end of the 19th century and the beginning of the 20th century 

1.1 Advancement in Physics: 

 Classical mechanics:  

Newtonian Mechanics (Principia 1687-1713-1726; Sir Isaac Newton, English, 1643-1727) > 
Lagrangian Formulation (1750s) (Joseph-Louis Lagrange, Italian-French, 1736-1813) > 
Hamiltonian  Formulation (1833) (William Rowan Hamilton, Irish, 1805-1865) 

 Electrodynamics: 

Maxwell’s (James Clerk Maxwell, Scottish, 1831-1879) Equations of Electromagnetic waves 
[1861]. [In present form by Oliver Heaviside (English), Josiah W Gibbs (American), Heinrich 
Hertz (German, 1857-1894) in 1884] 

Lorentz (Dutch, 1853-1928) Force Equation [1861 Maxwell > 1881J. J. Thomson1 (English) > 
1884 Heaviside > 1895 Lorentz] 

 Thermodynamics: 

Carnot Theorem (1824) [Nicolas Leonard Carnot, French 1796-1832], Maxwell-Boltzmann 
(Ludwig Eduard Boltzmann, German, 1844-1906) Statistics (1868). 

 

1.2. Major unsolved Questions: 

 Energy Distribution [𝑢(𝜈)𝑑𝜈  𝑜𝑟  𝑢(𝜆)𝑑𝜆] of Blackbody Radiation.  

 Photo electric effect: Experiment by Hertz in 1887. 

 Stability of Rutherford’s (New Zealand-born British) atom (1911 Gold Foil Expt.). 

 Existence of aether: Michelson (American) –Morley (American) Experiment (1887, at Western 
Reserve University, Ohio). 

 Atomic Spectra: Balmer (Swiss Mathematician) series: 

Balmer formula (1885)   𝜆 = 𝐵 ቀ
௡మ

௡మି௠మቁ = 𝐵 ቀ
௡మ

௡మିଶమቁ  

Rydberg (Swedish Physicist) Formula (1888)   𝜈̅ =
ଵ

ఒ
=

ସ

஻
ቀ

ଵ

ଶమ −
ଵ

௡మቁ = 𝑅ு ቀ
ଵ

ଶమ −
ଵ

௡మቁ  

With 𝑅ு = 1.09737309 × 10଻ 𝑚ିଵ. 

Anomalous Zeeman (Dutch) effect, Fine structures and other observation in atomic 
spectroscopy. 

 

1.3 End of the era of triumph of classical physics. 

1900 Planck (German) distribution formula of Blackbody Radiation > Assumption of radiation quanta 
of energy 𝒉𝝂, where 𝜈 is the frequency of radiation and ℎ is a constant determined by Planck to fit the 
experimental distribution curve and is called Planck constant. 

                                                           
1 William Thomson is a different scientist having other name Lord Kelvin, Scots-Irish, 1824-1907. 
 



1905 Einstein (German Jewish)> Photo electric effect  > Particle nature of light/radiation > Photon. 

1905 Einstein Special Theory of Relativity > Non existence of aether; dependence of mass, length and 
time on velocity. 

1913 Niels Bohr (Danish) > Model of Hydrogen Atom> quantisation of angular momentum of atomic 
electron > explanation of atomic stability, Balmer formula, atomic spectroscopy. 

1923 New observations: Compton (American) Effect >  recoil of electron which scatters X-ray. X-ray 
photon has momentum ℎ𝜈 𝑐⁄  > Radiation has particle nature. 

1923 de Broglie (French) hypothesis: Electron and all matter have wave nature. 

1925 Heisenberg (German): Matrix Formulation. 

1926 Schrodinger (German): Schrodinger Equation > Wave mechanics. 

1927 Heisenberg: Uncertainty Relation (Earle Hesse Kennard in late 1927 & Hermann Wey in 1928 
gave the formal relation involving standard deviations as uncertainties: 𝜎௫𝜎௣ ≥ ℏ 2⁄ ). 

1923-27 Davisson (American) and Germer (American) experiment and explanation > Diffraction of 
electrons > Confirmation of wave nature of electrons i.e. de Broglie hypothesis. 

1927 Max Born (German Jewish) probabilistic interpretation of wave mechanics > 𝑃(𝑥, 𝑡)𝑑𝑥 =

∫ |𝜓(𝑥, 𝑡)|ଶ𝑑𝑥
௫భ

௫భ
, where 𝑥ଵ and 𝑥ଶ are the limits within which the particle exists. In 3D 𝑃(𝑟, 𝑡)𝑑𝑥 =

∭|𝜓(𝑟, 𝑡)|ଶ𝑑𝜏, where the integration is over the region of space in which the particle exists. 

1928 Paul Dirac (English): Relativistic Quantum Mechanics > Prediction of Positron > Proof in 1932;  

1939 bra ket notation by Dirac: Both Heisenberg’s matrix formulation and Schrodinger’s wave 
mechanics formulation can be handled with this.   

1.3.1 Blackbody Radiation 

 
Quantum Mechanics Concepts and Applications - Nouredine Zettili 

 

1879 J. Stefan (Carinthian Slovene) established from Tyndall’s experimental results of IR emissions 
by platinum filament and its colour:  

Per unit area of the surface of a radiating solid at absolute temperature 𝑇 radiates normally 
(perpendicularly) a power (or energy per second)- 

𝑃 = 𝑎𝜎𝑇ସ    ……….. (1) 



where 𝜎 = 5.670367 × 10−8
 Wm2

 K−4 is called Stefan’s constant; 𝑎 is a coefficient ≤ 1. For ideal 
blackbody 𝑎 = 1. Equation (1) is called Stefan’s law or Stefan-Boltzmann Law. 

In 1884 a theoretical derivation of the law was done by Boltzmann (German). 

Up to a temperature 1535 K this law accurately matches experimental observations.  But at higher 
temperature deviation from experimental results are observed. 

1893 Wien ( Wilhelm Wien, 1864-1928, German Physicist) displacement law: 

𝜆௠௔௫𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≈ 2900 𝜇𝑚. 𝐾 

 

1894 Wien energy density distribution: 

Wien proposed (from thermodynamic consideration) that, Stefan-Boltzmann law and Wien 
displacement law can be derived if the energy density of blackbody radiation at temperature 𝑇 per unit 
wavelength at 𝜆 i.e. 𝑢(𝜆, 𝑇) must be given by a relation: 

𝑢(𝜆, 𝑇)𝑑𝜆 =
௔

ఒఱ 𝑓(𝜆𝑇)𝑑𝜆, where  𝑓(𝜆𝑇) is any function of 𝜆𝑇.  

From some arbitrary assumptions regarding mechanisms of emission he proposed that 𝑓(𝜆𝑇) =

𝑎𝑒ି௕ ఒ்⁄  and so  

𝑢(𝜆, 𝑇)𝑑𝜆 =
௔

ఒఱ 𝑒ି௕ ఒ்⁄ 𝑑𝜆. 

In terms of frequency 𝑢(𝜈, 𝑇)𝑑𝜈 = 𝐴𝜈ଷ𝑒ିఉఔ ்⁄ 𝑑𝜈. 

Unit of 𝑢(𝜈, 𝑇) is 𝐽𝑚ିଷ𝐻𝑧ିଵ or 𝐽𝑚ିଷ𝑠 and unit of 𝑢(𝜆, 𝑇) is 𝐽𝑚ିସ. 

Constants 𝑎, 𝑏 or 𝐴, 𝛽 were determined to fit these equations to experimental curves. 

Failure of Wien distribution: Wien’s distribution satisfies experimental curve at lower wavelengths or 
higher frequencies but fails to explain them at higher wavelengths or lower frequencies. [In those days 
producing radiation of higher frequencies or lower wavelengths was not easy.] Thus Wien’s 
distribution was insufficient to satisfy observations. 



 
Quantum Mechanics Concepts and Applications - Nouredine Zettili 

 

1900 Rayleigh’s (Lord Rayleigh, 1842-1919, British physicist) energy density distribution: 

Rayleigh assumed that in the cavity of a blackbody radiation exists in the form of electromagnetic 
standing waves with their nodes at the walls of the cavity. Density of states (or vibrational modes) of 
these standing waves i.e. number of states (or modes) per unit volume per frequency range of such 

standing waves is equal to 
଼గఔమ

௖య .  

The electromagnetic standing waves are excited by the linear oscillation of the tiny electric dipoles of 
atomic or molecular dimension in the walls of the cavity. The energy of an oscillating dipole can have 
any value between 0 & ∞ i.e. the energy spectrum of an oscillator is continuous. At temperature 𝑇, the 
number of electric dipoles having energy 𝐸 is given by M-B statistics, i.e. 𝑁(𝐸) = 𝑁଴𝑒ିா ௞்⁄ , where 
𝑁଴ is the number of oscillators with zero energy and 𝑘 (= 1.38 𝐽𝐾ିଵ) is Boltzmann constant. Then it 
can be shown that at temperature  𝑇, the average energy of the oscillators in the walls is 〈𝐸〉 = 𝑘𝑇.  

In equilibrium the energy distribution of the standing waves is same as the energy distribution of the 
oscillators over the frequency range. Therefore the average energy of the vibrational modes of the 
standing waves will also be 〈𝐸〉 = 𝑘𝑇.   

So, according to Rayleigh, the energy density distribution is given by:  

𝑢(𝜈, 𝑇)𝑑𝜈 = 𝑛(𝜈, 𝑇)〈𝐸〉𝑑𝜈 =
଼గఔమ

௖య 𝑘𝑇𝑑𝜈;        

Or, in terms of wavelength  𝑢(𝜆, 𝑇)𝑑𝜆 =
଼గ

ఒర 𝑘𝑇𝑑𝜆. 

Density of states of vibrations in a cubical cavity of side 𝑳 filled with a continuous elastic medium: 

3D wave equation: 
డమట

డ௫మ +
డమట

డ௬మ +
డమట

డ௫మ =
ଵ

௖మ

డమట

డ௧మ   …………(A) 

Standing wave solution: 𝜓(𝑥, 𝑦, 𝑧, 𝑡) = 𝐴𝑠𝑖𝑛 ቀ
௡ೣగ௫

௅
ቁ 𝑠𝑖𝑛 ቀ

௡೤గ௬

௅
ቁ 𝑠𝑖𝑛 ቀ

௡೥గ௭

௅
ቁ 𝑐𝑜𝑠(2𝜋𝜈𝑡).  ……..(B) 

𝑛௫ , 𝑛௬, 𝑛௭ are integers ≥ 1. A vibrational mode is determined by the set of integers ൫𝑛௫ , 𝑛௬, 𝑛௭൯.  

What is the number of such modes within frequency range 𝝂  𝒕𝒐 𝝂 + 𝒅𝝂 ? 



Consider a coordinate system in which coordinates are the positive integers and zero. This is the 
first octant of the 3D integer space. Each point in this space will be at unit distance from its 
nearest neighbours; in other words each point will share unit volume of this space.   

Substituting (B) in (A) and simplifying: 𝑛௫
ଶ + 𝑛௬

ଶ + 𝑛௭
ଶ =

ସ௅మఔమ

௖మ = 𝑅ଶ (𝑠𝑎𝑦).  

Above equation represents the portion of a sphere of radius 𝑅 =
ଶ௅ఔ

௖
 in the first octant of the 

integer space. In this space a spherical shell between radii 𝑅 and 𝑅 + 𝑑𝑅 corresponds to the 
frequency range 𝜈 to 𝜈 + 𝑑𝜈. Volume of such a shell in integer space is:  

1

8
× 4𝜋𝑅ଶ𝑑𝑅 =

1

2
𝜋𝑅ଶ𝑑𝑅 =

1

2
𝜋 ×

4𝐿ଶ𝜈ଶ

𝑐ଶ
×

2𝐿

𝑐
𝑑𝜈 =

4𝜋𝐿ଷ𝜈ଶ

𝑐ଷ
𝑑𝜈 

The number of coordinate points ൫𝑛௫ , 𝑛௬, 𝑛௭൯ in this shell will also be 
ଵ

ଶ
𝜋𝑅ଶ𝑑𝑅, since each point 

shares unit volume in integer space. But this is equal to the number of vibrational modes in the 
frequency range 𝜈 to 𝜈 + 𝑑𝜈. Thus the number of modes in the frequency range 𝜈 to 𝜈 + 𝑑𝜈 per 
unit volume of the cavity will be  

1

𝐿ଷ
×

4𝜋𝐿ଷ𝜈ଶ

𝑐ଷ
𝑑𝜈 =

4𝜋𝜈ଶ

𝑐ଷ
𝑑𝜈 

Now unpolarised electromagnetic waves contains two types of circularly polarised waves with 
the plane of polarisation rotating in clockwise and anticlockwise sense. Now two modes of the 
electromagnetic standing waves with plane of polarisation rotating in opposite sense but 
identical in all other respect will have same set of ൫𝑛௫, 𝑛௬, 𝑛௭൯, i.e. each point in the integer space 
represents two states. Therefore number of states per unit volume of the cavity in the frequency 
range 𝜈 to 𝜈 + 𝑑𝜈 will be  

 

𝑛(𝜈)𝑑𝜈 = 2 ×
4𝜋𝜈ଶ

𝑐ଷ
𝑑𝜈 =

8𝜋𝜈ଶ

𝑐ଷ
𝑑𝜈. 

 𝑛(𝜈) =
8𝜋𝜈ଶ

𝑐ଷ
… … … … . (𝐶) 

 is called the density of states. 

Though for simplicity here we derive this result for a cubical medium, it is applicable to any 
shape.  

Average energy per vibrational mode: 

According to M-B statics the number of oscillators (or vibrational states in this case) having 
energy 𝐸 at temperature 𝑇 is 𝑁ா = 𝑁଴𝑒ିா ௞்⁄ , where 𝑁଴ is the number of oscillators in the state 
of zero energy (ground state) and 𝑘 is Boltzmann constant (𝑘 = 1.38 × 10ିଶଷ𝐽𝐾ିଵ). Therefore 
for a continuous energy distribution: 

〈𝐸〉 =
∫ 𝐸𝑁଴𝑒ିா ௞்⁄ 𝑑𝐸

ஶ

଴

∫ 𝑁଴𝑒ିா ௞்⁄ 𝑑𝐸
ஶ

଴

=
(𝑘𝑇)ଶ ∫ (𝐸 𝑘𝑇⁄ )𝑒ିா ௞்⁄ 𝑑(𝐸 𝑘𝑇⁄ )

ஶ

଴

(𝑘𝑇) ∫ 𝑒ିா ௞்⁄ 𝑑(𝐸 𝑘𝑇⁄ )
ஶ

଴

= 𝑘𝑇
Γ(2)

Γ(1)
= 𝑘𝑇  … ..  (𝐷). 

Rayleigh formula satisfies experimental curves at higher wavelengths or lower frequencies but deviates 
badly from the experimental curves towards lower wavelengths or higher frequencies i.e. towards 
ultraviolet region of the spectrum. This failure is known as ultraviolet catastrophe.  

Particle nature of wave 
1905 Planck blackbody radiation formula: 

Planck’s quantisation rule / Planck’s quantum hypothesis / Planck’s postulate: According to classical 
mechanics, a harmonic oscillator of frequency 𝜈 can have any amount of energy 𝐸 [ = 4𝜋ଶ𝑚𝑎ଶ𝜈ଶ], 
which is proportional to the square of its amplitude 𝑎. And it can have any energy between 0 & ∞. But 
to explain blackbody radiation Planck made the following revolutionary assumptions: 



i) An oscillator frequency 𝜈 in the wall of the blackbody can have only discrete energies given 
by 𝜀௡ = 𝑛ℎ𝜈, where 𝑛 = 0,1,2 … .. and ℎ is a constant, which was determined by him to fit 
his formula with the experimental distribution curves of blackbody radiation.  

ii) When an oscillator of frequency 𝜈 absorbs or emits energy in the form of radiation its 
energy can change only in the steps of ℎ𝜈. Since the radiation absorbed or emitted by an 
oscillator have same frequency as that of the oscillator therefore it follows from Planck 
assumptions that an oscillator of frequency 𝜈 can absorb or emit radiation of frequency 𝜈 
and this emitted or absorbed radiation can have only an amount of energy ℎ𝜈, no less no 
more. 

Regarding the nature and density of states of the radiation inside the cavity of blackbody, Planck’s 
assumption was same as that of Rayleigh.  
 
Average energy of the oscillators of frequency 𝝂 in the walls of the blackbody:  

Oscillators of frequency 𝜈 have discrete energies 𝜀௡ = 𝑛ℎ𝜈, 𝑛 = 0,1,2… . According to M-B statics the 
number of such oscillators at temperature 𝑇 is 𝑁௡ = 𝑁଴𝑒ିா೙ ௞்⁄ = 𝑁଴𝑒ି௡௛ఔ ௞⁄ . Therefore the average 
energy of the oscillators of frequency 𝜈 will be: 

〈𝜀ఔ〉 =
∑ 𝜀௡𝑁଴𝑒ିఌ೙ ௞்⁄ஶ

௡ୀ଴

∑ 𝑁଴𝑒ିఌ೙ ௞்⁄ஶ
௡ୀ଴

=
∑ 𝜀௡𝑒ିఌ೙ ௞்⁄ஶ

௡ୀ଴

∑ 𝑒ିఌ೙ ௞்⁄ஶ
௡ୀ଴

. 

Note that the integrations of equation (D) have been replaced here by summations since in this case 
discrete energies are assumed for the oscillators in place of continuous energies of the oscillators in 
Rayleigh theory. 

Now 

〈𝜀ఔ〉 =
∑ ఌ೙௘షഄ೙ ೖ೅⁄ಮ

೙సబ

∑ ௘షഄ೙ ೖ೅⁄ಮ
೙సబ

=
∑ ௡௛ఔ௘ష೙೓ഌ ೖ⁄ಮ

೙సబ

∑ ௘ష೙೓ഌ ೖ⁄ಮ
೙సబ

=
௛ఔ௘ష೓ഌ ೖ೅⁄ ାଶ௛ఔ௘షమ೓ഌ ೖ೅⁄ ାଷ௛ఔ௘షయ೓ഌ ೖ⁄ ା⋯

ଵା௘ష೓ഌ ೖ೅⁄ ା௘షమ೓ഌ ೖ⁄ ା௘షయ೓ഌ ೖ೅⁄ ା⋯
  

=
௛ఔ௫൫ଵାଶ௫ାଷ௫మାସ௫య… ൯

ଵା௫ା௫మା௫య…
   (where 𝑥 = 𝑒ି௛ఔ ௞்⁄ ) 

= ℎ𝜈𝑥
(ଵି௫)షమ

(ଵି௫)షభ
= ℎ𝜈𝑥

ଵ

ଵି௫
=

௛ఔ
భ

ೣ
ିଵ

=
௛ఔ

௘೓ഌ ೖ೅⁄ ିଵ
 . 

Since the radiation in the cavity of the blackbody is in equilibrium with the oscillators in the wall so 
this above expression will also give the average energy of the vibrational modes of the standing waves 
in the cavity. 

The number of vibrational modes or states per unit volume of the cavity in the frequency range 𝜈 to 
𝜈 + 𝑑𝜈 can be determined as before and is given by:  

𝑛(𝜈)𝑑𝜈 =
଼గఔమ

௖య 𝑑𝜈.  

Thus the energy distribution of the radiation is given by: 𝑢(𝜈)𝑑𝜈 = 〈𝜀𝜈〉𝑛(𝜈)𝑑𝜈 =
଼గఔమ

௖య ∙
ℎ𝜈

𝑒ℎ𝜈 𝑘𝑇⁄ −1
𝑑𝜈.  

𝑢(𝜈)𝑑𝜈 =
8𝜋ℎ𝜈ଷ

𝑐ଷ
∙

1

𝑒ℎ𝜈 𝑘𝑇⁄ − 1
𝑑𝜈 … … … … (1) 

In terms of wavelength: 

𝑢(𝜆)𝑑𝜆 =
8𝜋ℎ𝑐

𝜆ହ
∙

1

𝑒ℎ𝑐 ఒ𝑘𝑇⁄ − 1
𝑑𝜆 … … … … … (2) 

Note that the discreteness of vibrational modes indexed by ൫𝑛௫, 𝑛௬, 𝑛௭൯ arises here from purely classical 
considerations. But the discreteness of possible energies of an oscillator is due to the assumptions of a 
new type, called Planck’s quantum conditions.  

Fitting his equation with experimental curves Planck determined the value of ℎ. Its value is 6.626 ×
10ିଷସ 𝐽. 𝑠 and it is a universal constant of immense importance as was revealed later years with 
the advancement of quantum mechanics.   



Derivations from Planck’s law:  

Stefan-Boltzmann law: Total energy (in all wavelength range) per unit volume of the cavity 
of a black body is  

𝑢 = න 𝑢(𝜈)𝑑𝜈 =

ஶ

଴

8𝜋ℎ

𝑐ଷ
න

𝜈ଷ

𝑒ℎ𝜈 𝑘𝑇⁄ − 1
𝑑𝜈

ஶ

଴

=
8𝜋ℎ

𝑐ଷ
൬

𝑘𝑇

ℎ
൰

ସ

න
𝑥ଷ

𝑒𝑥 − 1
𝑑𝑥

ஶ

଴

   [𝑤ℎ𝑒𝑟𝑒 𝑥 = ℎ𝜈 𝑘𝑇⁄ ] 

=
8𝜋ℎ

𝑐ଷ
൬

𝑘𝑇

ℎ
൰

ସ

න 𝑥ଷ𝑒−𝑥(1 − 𝑒−𝑥)ିଵ𝑑𝑥

ஶ

଴

=
8𝜋ℎ

𝑐ଷ
൬

𝑘𝑇

ℎ
൰

ସ

න 𝑥ଷ𝑒−𝑥൫1 + 𝑒−𝑥 + 𝑒−2𝑥 + 𝑒−3𝑥 + ⋯ ൯𝑑𝑥

ஶ

଴

 

=
8𝜋ℎ

𝑐ଷ
൬

𝑘𝑇

ℎ
൰

ସ

න 𝑥ଷ൫𝑒−𝑥 + 𝑒−2𝑥 + 𝑒−3𝑥 + 𝑒−4𝑥 + ⋯ ൯𝑑𝑥

ஶ

଴

=
8𝜋ℎ

𝑐ଷ
൬

𝑘𝑇

ℎ
൰

ସ

෍ න 𝑥ଷ𝑒−𝑝𝑥𝑑𝑥

ஶ

଴

ஶ

௣ୀଵ

 

=
8𝜋ℎ

𝑐ଷ
൬

𝑘𝑇

ℎ
൰

ସ

෍
1

𝑝ସ
න (𝑝𝑥)ସିଵ𝑒−𝑝𝑥𝑑(𝑝𝑥)

ஶ

଴

ஶ

௣ୀଵ

=
8𝜋ℎ

𝑐ଷ
൬

𝑘𝑇

ℎ
൰

ସ

෍
1

𝑝ସ
Γ(4)

ஶ

௣ୀଵ

=
8𝜋ℎ

𝑐ଷ
൬

𝑘𝑇

ℎ
൰

ସ

෍
3!

𝑝ସ

ஶ

௣ୀଵ

 

=
48𝜋ℎ

𝑐ଷ
൬

𝑘𝑇

ℎ
൰

ସ 𝜋ସ

90
=

8𝜋ହ𝑘ସ

15𝑐ଷℎଷ
𝑇ସ 

It can be shown that the energy radiated normally per unit area from a blackbody is  𝐸 = 𝑢
௖

ସ
. Thus     

𝐸 =
଼గఱ௞ర

ଵହ௖య௛య ∙
௖

ସ
𝑇ସ = ቀ

ଶగఱ௞ర

ଵହ మ௛యቁ 𝑇ସ or  𝐸 ∞ 𝑇ସ. 

Wien displacement law: 

𝑢(𝜆) =
଼గ௛௖

ఒఱ ∙
1

𝑒ℎ𝑐 ഊ𝑘𝑇⁄ −1
=

଼గ௛௖

௭(ఒ)
, say. Where 𝑧(𝜆) = 𝜆ହ൫𝑒ℎ𝑐 ఒ𝑘𝑇⁄ − 1൯. 

The value of 𝜆 for which 𝑢(𝜆) is maximum is obtained from the condition: 

𝜕𝑢(𝜆)

𝜕𝜆
ቤ

ఒୀఒ೘ೌೣ

= 0 

This is equivalent to:  

𝜕𝑧(𝜆)

𝜕𝜆
ቤ

ఒୀఒ೘ೌೣ

= 0 

Or,  5𝜆௠௔௫
ସ ∙ ൫𝑒ℎ𝑐 ఒ೘ೌೣ𝑘𝑇⁄ − 1൯ − 𝜆௠௔௫

ହ ∙
ℎ𝑐

ఒ೘ೌೣ
మ𝑘𝑇

𝑒ℎ𝑐 ఒ೘ೌೣ𝑘𝑇⁄ = 0; 

Or, 1 − 𝑒ି௛௖ 𝜆𝑚𝑎𝑥௞்⁄ =
௛௖

5𝜆𝑚𝑎𝑥௞்
; 

Or, with  
௛௖

𝜆𝑚𝑎𝑥௞்
= 𝑥, this equation can be written as:  1 − 𝑒ି௫ =

௫

5
 

This equation can not be solved analytically, but can be solved numerically.  Or by writing as a pair of 
equation: 𝒚 = 𝟏 − 𝒆ି𝒙;   and  𝒚 =

𝒙

𝟓
  it can also be solved graphically. The curves represented by these 

equations intersect for 𝑥 ≈ 4.965. 

Thus 
௛௖

ఒ೘ೌೣ௞்
≈ 4.965;  𝜆௠௔௫𝑇 =

௛௖

ସ.ଽ଺ହ௞
=

଺.଺ଶ଺×ଵ଴షయ ×ଷ×ଵ଴ఴ

ସ.ଽ଺ହ×ଵ.ଷ଼×ଵ଴షమయ ≈ 0.0029 𝑚. 𝐾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 



Wien and Rayleigh-Jeans distribution law:  

Planck’s law: 𝑢(𝜈)𝑑𝜈 =
଼గ௛ఔయ

௖య ∙
ଵ

௘೓ഌ ೖ೅⁄ ିଵ
𝑑𝜈 

At high frequencies 𝑒௛ఔ ௞்⁄ − 1 ≈ 𝑒௛ఔ ௞்⁄  

So 𝑢(𝜈)𝑑𝜈 =
଼గ௛ఔయ

௖య ∙ 𝑒ି௛ఔ ௞்⁄ 𝑑𝜈 = 𝐴𝜈ଷ𝑒ିఉఔ ்⁄ 𝑑𝜈 where 𝐴 =
଼గ௛

௖య   and 𝛽 = ℎ 𝑘⁄  are constants. 

[Wien’s distribution law.] 

At low frequencies 𝑒௛ఔ ௞்⁄ − 1 = (1 + ℎ𝜈 𝑘𝑇⁄ +
(௛ఔ ௞்⁄ )మ

ଶ!
+

(௛ఔ ௞்⁄ )య

ଷ!
… ) − 1 ≈ ℎ𝜈 𝑘𝑇⁄  

So 𝑢(𝜈)𝑑𝜈 =
଼గ௛ఔయ

௖య ∙
ଵ

௛ఔ ௞்⁄
𝑑𝜈 =

଼గఔమ௞்

௖య 𝑑𝜈   [Rayleigh-Jeans law]. 

Problems: 

JAM 2017  

 

Ans.: 𝑢(𝜈) =
଼గ௛ఔయ

௖య ∙
1

𝑒ℎ𝜈 𝑘𝑇⁄ −1
 

 
௨(ଶఔ)

௨(ఔ)
=

଼గ௛(ଶఔ)య

௖య ∙
1

𝑒2ℎ𝜈 𝑘𝑇⁄ −1
∙

௖య

଼గ௛ఔయ ∙
𝑒ℎ𝜈 𝑘𝑇⁄ −1

1
= 8 ∙

𝑒ℎ𝜈 𝑘𝑇⁄ −1

𝑒2ℎ𝜈 𝑘𝑇⁄ −1
= 8 ∙

𝑒ℎ𝜈 𝑘𝑇⁄ −1

൫𝑒ℎ𝜈 𝑘𝑇⁄ −1൯൫𝑒ℎ𝜈 𝑘𝑇⁄ +1൯
 

 = 8 ∙
ଵ

௘೓ഌ ೖ೅⁄ ାଵ
= 8 ∙ ൫𝑒௛ఔ ௞்⁄ + 1൯

ିଵ
  

 ௨(ଶఔ)

௨(ఔ)
∞൫𝑒ℎ𝜈 𝑘𝑇⁄ + 1൯

−1
   ⇒   (𝐵). 

JAM 2014 

 

Ans.: ቂ
డ

డఒ
൫𝑢்(𝜆)൯ቃ

ఒ೘ೌೣ

= 0 

So, from  𝑢்(𝜆) =
ఈ

௖యఒఱ 𝑒ିఉ ఒ்⁄ ,     we have ቂ−
ହఈ

௖యఒల 𝑒ିఉ ఒ்⁄ +
ఈఉ

௖యఒళ்
𝑒ିఉ ఒ்⁄ ቃ

ఒ೘ೌೣ

= 0 

⇒ −5 +
ఉ

ఒ೘ೌೣ்
= 0                 ⇒ 𝜷 = 5𝜆௠௔௫𝑇 = 5 × 2.9 × 10ିଷ = 𝟎. 𝟎𝟏𝟒𝟓 𝒎. 𝑲  



𝜎𝑇ସ = 𝐸  

 =
௨೅௖

ସ
=

௖

ସ
∫ 𝑢்(𝜆)𝑑𝜆

ஶ

଴
=

௖

ସ

ఈ

௖య ∫
ଵ

ఒఱ 𝑒ିఉ ఒ்⁄ 𝑑𝜆
ஶ

଴
 

 Let 𝛽 𝜆𝑇⁄ = 𝑥. Then  𝑑𝑥 = −(𝛽 𝜆ଶ𝑇⁄ )𝑑𝜆     ⇒ 𝑑𝜆 = −
ఒమ்

ఉ
𝑑𝑥. 

 𝜎𝑇ସ = 𝐸 = −
்

ఉ

௖

ସ

ఈ

௖య ∫
ଵ

ఒయ 𝑒ି௫𝑑𝑥
଴

ஶ
= ቀ

்

ఉ
ቁ

ସ ௖

ସ

ఈ

௖య ∫ ቀ
ఉ

ఒ்
ቁ

ଷ
𝑒ି௫𝑑𝑥

ஶ

଴
= ቀ

்

ఉ
ቁ

ସ ௖

ସ

ఈ

௖య ∫ 𝑥ଷ𝑒ି௫𝑑𝑥
ஶ

଴
  

 = ቀ
்

ఉ
ቁ

ସ ௖

ସ

ఈ

௖య ∙ 6 =
ଷ

ଶ
ቀ

்

ఉ
ቁ

ସ ఈ

௖మ  

 ⇒
ଷ

ଶ
ቀ

்

ఉ
ቁ

ସ ఈ

௖మ = 𝜎𝑇ସ     ⇒
ଷ

ଶ

ఈ

௖మఉర = 𝜎    ⇒ 𝛼 =
ଶ௖మఙఉర

ଷ
 

⇒ 𝛼 =
ଶ×൫ଷ×ଵ଴ఴ൯

మ
×ହ.଺଻×ଵ଴షఴ×(𝟎.𝟎𝟏𝟒𝟓)ర

ଷ
=

ଶ×ଽ×ହ.଺଻×(𝟏.𝟒𝟓)ర

ଷ
=  150.3856. 

JAM 2013 

 

Ans.: 𝜆௠௔௫𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  ⇒ (𝜆௠௔௫)ଶ𝑇ଶ = (𝜆௠௔௫)ଵ𝑇ଵ   ⇒ (𝜆௠௔௫)ଶ =
(ఒ೘ೌೣ)భ భ்

మ்
=

ఒ்

ସ்
=

ఒ

ସ
  ⇒ (𝐷). 

JAM 2012 

 

Ans.:  𝑢(𝜆) =
଼గ௛௖

ఒఱ ∙
1

𝑒ℎ𝑐 ഊ𝑘𝑇⁄ −1
=

଼గ௛

ఒఱ ∙
1

𝑒ℎ𝑐 ೖഊ𝑇⁄ −1
 

 For 𝜆 = 𝜆௠௔௫   we have  𝑢(𝜆௠௔௫) =
଼గ௛௖

ఒ೘ೌೣ
ఱ ∙

1

𝑒ℎ𝑐 ೖഊ೘ೌೣ𝑇⁄ −1
 . 

 Also 𝜆௠௔௫𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  ⇒ [𝜆௠௔௫]ଶ𝑇ଶ = [𝜆௠௔௫]ଵ𝑇ଵ   ⇒
[ఒ೘ೌೣ]భ

[ఒ೘ೌೣ]మ
= మ்

భ்
 

 
௨([ఒ೘ೌೣ]మ)

௨([ఒ೘ೌೣ]భ)
=

଼గ௛௖

[ఒ೘ೌೣ]మ
ఱ ∙

1

𝑒ℎ𝑐 ೖ[ഊ೘ೌೣ]మ೅మ⁄ −1
∙

[ఒ೘ೌೣ]భ
ఱ

଼గ௛௖
∙

𝑒ℎ𝑐 ೖ[ഊ೘ೌೣ]భ೅భ⁄ −1

1
= ቀ

[ఒ೘ೌೣ]భ

[ఒ೘ೌೣ]మ
ቁ

ହ
= ቀ మ்

భ்
ቁ

ହ
 

 = 2ହ = 32   ⇒ (𝐷). 

JAM 2007: 

 



Ans.: Clearly the temperatures of the two blackbody will be different. If  𝑇ଵ and 𝑇ଶ  are the 
 temperatures then: 

 భ்

మ்
=

[ఒ೘ೌೣ]మ

[ఒ೘ೌೣ]భ
=

଺଴଴

ଶ଴଴
= 3. 

 
௉భ

௉మ
=

ఙ భ்
ర

ఙ మ்
ర = ቀ భ்

మ்
ቁ

ସ
= 3ସ = 81. 

 

Photoelectric effect: 

In 1888 Hertz and afterwards other scientists observed that when the surface of metals like zinc is 
irradiated with ultraviolet light the metal gets positively charged i.e. the metal loses negative charge. 1n 
1899 P. Lenard (Philipp Lenard, German Physicist, 1862-1947, Supporter of Hitler) showed that the 
loss of negative charge is due to emission of negatively charged electrons from the metal surface.  The 
following laws were discovered experimentally prior to 1905: 

 If the frequency of the incident radiation is smaller than the metal’s threshold frequency - a 
frequency that depends on the properties of the metal—no electron can be emitted regardless 
of the radiation’s intensity (Philipp Lenard, 1902). 

 No matter how low the intensity of the incident radiation, electrons will be ejected instantly the 
moment the frequency of the radiation exceeds the threshold frequency 𝜈଴. 

 
Fig.X 

 At any frequency above 𝜈଴, the photo current and hence the number of electrons ejected per 
second increases with the intensity of the light but does not depend on the light’s frequency. 

 The stopping potential (𝑉଴) and so the kinetic energy of the ejected electrons depends on the 
frequency but not on the intensity of the beam; 𝑉଴ and so the maximum kinetic energy of the 

ejected electrons ቀ
ଵ

ଶ
𝑚𝑣௠

ଶ = 𝑒𝑉଴ቁ increases linearly with the incident frequency. 

   
Einstein showed that the plot of maximum kinetic energy of the electrons or of 𝑒𝑉଴ with frequency (𝜈) 
of the incident light is a straight line (Fig.-X(c)) which can be given by: 

𝑒𝑉଴ = ℎ𝜈 − 𝑊଴ 

The slope of the straight line graph does not depend on the metal and as determined from experimental 
results, it is equal to Planck’s constant ℎ. If the electron emitting metal surface is clean and oxide free 
then the intercept 𝑊଴ is characteristic of the metal and it is equal to ℎ𝜈଴.  

Einstein, extending Planck’s quantum condition to radiation, proposed that light is made up of discrete 
energy packets or quanta – photons – each of which have energy ℎ𝜈, where 𝜈 is the frequency of light. 
In photo electric effect a photon, incident on an electron, is completely absorbed by it. At normal 
temperatures the maximum energy of an electron inside the metal is less than the minimum energy 
required by an electron to come out of the metal surface by an amount equal to 𝑊଴ which is called work 
function. So if ℎ𝜈 <  𝑊଴ the photon absorbing electron cannot come out of the metal surface. But if 
ℎ𝜈 >  𝑊଴  the electron can emit from the metal surface. And the emitted electron possesses a kinetic 

 (c) 
 

eV0 

0                         

I3 > I2 > I1 

 or   constant 
(b) 

 

i 
I3 
I2 
I1 

V -V0 O 

light intensity  constant 
(a) 

i 
1< 2<3 

1> 2>3 

V 
1           2            3 

O -V01    -V02    -V03 

-W0 



energy ℎ𝜈 −  𝑊଴ with which it can reach to the anode even if the anode is given no positive potential 
with respect to the cathode. Moreover to stop such an emitted electron from leaving the metal surface a 
negative potential (say −𝑉଴) should be applied to the anode with respect to the cathode.  𝑉଴ is called 
stopping potential. Clearly 𝑒𝑉଴ = ℎ𝜈 −  𝑊଴ and it is equal to the maximum kinetic energy of the 
electrons. 
The equation: 𝑒𝑉଴ = ℎ𝜈 −  𝑊଴ is Einstein’s photoelectric equation. 
 

Problems: 

JAM 2014 

 

Ans. 𝑒𝑉଴ = ℎ𝜈 − 𝑊଴ =
௛௖

ఒ
− 𝑊଴ =

ଵଶସ଴

ଷଶ଴
− 2.1  electron Volt = 1.775 electron Volt 

⇒ 𝑉଴ =
ଵ.଻଻ହ

௘
 electron Volt = 1.775  Volt  ⇒ (𝐴).   

JAM 2011 

 

Ans.:  𝐸 = 𝐸଴ sin 𝜔𝑡   represents the electric field vector of light having angular frequency 𝜔  i.e. 
frequency 𝜈 = 𝜔 2𝜋⁄   where 𝐸଴ is the amplitude of the electric field vector. 

 So 𝐸 = (90 𝑉 𝑚⁄ )[sin(6.28 × 10ଵହ𝑠ିଵ)𝑡 + sin(12.56 × 10ଵହ𝑠ିଵ)𝑡] 

 = (90 𝑉 𝑚⁄ ) sin(6.28 × 10ଵହ𝑠ିଵ)𝑡 + (90 𝑉 𝑚⁄ ) sin(12.56 × 10ଵହ𝑠ିଵ)𝑡  

 represents two light waves of frequencies 𝜈ଵ   =  
଺.ଶ଼×ଵ଴భఱ

ଶగ
𝑠ିଵ  =  10ଵହ𝑠ିଵ  =  10ଵହ𝐻𝑧  and  

 𝜈ଶ   =  
ଵଶ.ହ଺×ଵ଴భఱ

ଶగ
𝑠ିଵ  =  2 × 10ଵହ𝑠ିଵ  =  2 × 10ଵହ𝐻𝑧  

 Clearly the maximum kinetic energy will be determined by the larger frequency. So, in this 
problem the maximum kinetic energy will be: 

 ℎ𝜈ଶ − 𝑊଴   𝐽𝑜𝑢𝑙𝑒 =
௛ఔమ

௘
−

ௐబ

௘
  𝑒𝑉 

 =
଺.଺ଶ଺×ଵ଴షయర×ଶ×ଵ଴భఱ

ଵ.଺×ଵ଴షభవ − 2.0  𝑒𝑉 = 8.28 𝑒𝑉 − 2.0 𝑒𝑉 = 6.28 𝑒𝑉 ⇒ (𝐶)    

JAM 2007:  

 



Ans. 𝑃௘௙௙ = 1.55 × 10ିଷ ×
ଵ଴

ଵ଴଴
 𝑊 = 1.55 × 10ିସ 𝑊  

 Number electrons emitted from the cathode per second is equal to the number of photons 
participating in photoemission per second:   

 =
ୣ୤୤ୣୡ୲୧୴ୣ ୮୭୵ୣ୰

୮୦୭୲୭୬ ୣ୬ୣ୰୥୷
=

ଵ.ହହ×ଵ଴షర

௛ఔ
=

ଵ.ହହ×ଵ଴షర

௛௖ ఒ⁄
 

 =
ଵ.ହହ×ଵ଴షర

[ଵଶସ଴ ସ଴଴⁄ ]×ଵ.଺×ଵ଴షభ =
଴.ହ×ଵ଴షర

ଵ.଺×ଵ଴షభవ  

 Current =
଴.ହ×ଵ଴షర

ଵ.଺×ଵ଴షభ × 1.6 × 10ିଵଽ = 0.05 𝑚𝐴.  

 (𝐾. 𝐸)௠௔௫ = 𝑒𝑉଴ = ℎ𝜈 − 𝑊଴ =
௛௖

ఒ
− 𝑊଴                 ⇒ 𝑒𝑉଴ଵ =

௛௖

ఒభ
− 𝑊଴;          𝑒𝑉଴ଶ =

௛௖

ఒమ
− 𝑊଴   

 𝑒𝑉଴ଶ − 𝑒𝑉଴ଵ =
௛௖

ఒమ
−

௛௖

ఒభ
= ቀ

ଵଶସ଴

ଶ଴଴
−

ଵଶସ଴

ସ଴଴
ቁ  electron Volt = 3.1 electron Volt  

 ⇒ 5𝑒𝑉଴ଵ − 𝑒𝑉଴ଵ = 3.1 electron Volt     ⇒ 4𝑒𝑉଴ଵ = 3.1 electron Volt   ⇒ 𝑉଴ଵ = 3.1 4⁄  V  

 ⇒ 𝑉଴ଵ = 0.7525 V;     𝑉଴ଶ = 5 × 0.775 eV =  3.875 V    

 

Problem of estimation of Plank Constant (Example 1.2, Zettili): 

 

 



Compton Effect: 

# Before starting to study this topic, solve the following problems: 

1. An electron has energy 𝐸 𝑒𝑉. Obtain the expression of de Broglie wavelength (𝜆 = ℎ 𝑝⁄ ) of 
the electron, considering the problem to be (i) relativistic and (ii) non relativistic.  Find the 
value of 𝜆 for (a) 𝐸 =  10 𝑒𝑉 and (b) 𝐸 =  10 𝑀𝑒𝑉 for both relativistic and nonrelativistic 
treatments.  

2. An electron is accelerated through a potential difference 𝑉. Obtain the expression of de 
Broglie wavelength (𝜆 = ℎ 𝑝⁄ ) of the electron after acceleration, considering the problem to 
be (i) relativistic and (ii) non relativistic.  Find the value of 𝜆 for (a) 𝑉 =  10 V and (b) 𝐸 =
100 kV for both relativistic and nonrelativistic treatments.  

 

 

*Photons require high energy to produce Compton Effect. Such photons are X-ray and 𝛾-ray 
photons. 
*Electron participating in Compton Effect is assumed to be free. 
*Collision is considered to be elastic, i.e. both the total kinetic energy and total linear 
momentum of the colliding particles remain unchanged through the collision.   
 
Conservation of energy: 
 
ℎ𝜈 = ℎ𝜈ᇱ + 𝑇௘ = ℎ𝜈ᇱ + 𝑚𝑐ଶ − 𝑚଴𝑐ଶ  

௛௖

ఒ
−

௛௖

ఒᇲ + 𝑚଴𝑐ଶ = 𝑚𝑐ଶ      ⇒
௛

ఒ
−

௛

ఒᇲ + 𝑚଴𝑐 = 𝑚𝑐.  

Squaring 

௛మ

ఒమ +
௛మ

ఒᇲమ − 2
௛మ

ఒఒᇲ + 2𝑚଴𝑐ℎ ቀ
ଵ

ఒ
−

ଵ

ఒᇲቁ + 𝑚଴
ଶ𝑐ଶ = 𝑚ଶ𝑐ଶ   

⇒
௛మ

ఒమ +
௛మ

ఒᇲమ − 2
௛మ

ఒఒᇲ +
ଶ௠బ௖௛

ఒఒᇲ
(𝜆ᇱ − 𝜆) = 𝑚ଶ𝑐ଶ − 𝑚଴

ଶ𝑐ଶ  



⇒
௛మ

ఒమ +
௛మ

ఒᇲమ − 2
௛మ

ఒఒᇲ +
ଶ௠బ௖௛

ఒఒᇲ
(𝜆ᇱ − 𝜆) =

௠బ
మ௖మ

ଵିఉమ − 𝑚଴
ଶ𝑐ଶ =

௠బ
మ௖మఉమ

ଵିఉమ =
௠బ

మ௩మ

ଵିఉమ              

[Where     𝛽 = 𝑣 𝑐⁄ ] 

⇒
௛మ

ఒమ +
௛మ

ఒᇲమ − 2
௛మ

ఒఒᇲ +
ଶ௠బ௖௛

ఒఒᇲ
(𝜆ᇱ − 𝜆) = 𝑚ଶ𝑣ଶ  …………(A) 

Conservation of momentum: 

Relativistic energy relation ⇒ 𝐸ଶ = 𝑝ଶ𝑐ଶ + 𝑚଴
ଶ𝑐ସ. 

For photon, 𝐸 = ℎ𝜈 and rest mass  𝑚଴ = 0. Therefore   ℎ𝜈 = 𝑝𝑐.  

⇒ 𝑝ℎ𝑜𝑡𝑜𝑛 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑝 =
௛ఔ

௖
=

௛

ఒ
 . 

Therefore 

௛

ఒ
=

௛

ఒᇲ cos 𝜑 + 𝑚𝑣 cos 𝜃       ⇒
௛

ఒ
−

௛

ఒᇲ cos 𝜑 = 𝑚𝑣 cos 𝜃           …………(B)  and      

0 =
௛

ఒᇲ sin 𝜑 − 𝑚𝑣 sin 𝜃        ⇒
௛

ఒᇲ sin 𝜑 = 𝑚𝑣 sin 𝜃 .                …………(C) 

Squaring and adding (B) and (C): 

௛మ

ఒమ +
௛మ

ఒᇲమ − 2
௛మ ୡ୭ୱ ఝ

ఒఒᇲ = 𝑚ଶ𝑣ଶ  …………(D) 

(A) – (D) 

−2
௛మ

ఒఒᇲ
(1 − cos 𝜑) +

ଶ௠బ௖௛

ఒఒᇲ
(𝜆ᇱ − 𝜆) = 0  

Wavelength shift: 

⇒  𝜆ᇱ − 𝜆 =
௛

௠బ௖
(1 − cos 𝜑) = 𝜆௖(1 − cos 𝜑) ……….. (E) 

⇒  𝜆ᇱ = 𝜆 + 𝜆௖(1 − cos 𝜑).   ……….. (F) 

𝜆௖ =
௛

௠బ௖
 = Compton wavelength =

଺.଺ଶ଺×ଵ଴షయర

ଽ.ଵଵ×ଵ଴షయభ×ଷ×ଵ଴ఴ = 0.02424 Å. 

 

 

Recoil angle of electron: 

 

 



 We have  
௛

ఒ
−

௛

ఒᇲ cos 𝜑 = 𝑚𝑣 cos 𝜃           …………(B)   

 and     
௛

ఒᇲ sin 𝜑 = 𝑚𝑣 sin 𝜃 .                …………(C) 

tan 𝜃 =
೓

ഊᇲ ୱ୧୬ ఝ

೓

ഊ
ି

೓

ഊᇲ ୡ୭ୱ ఝ
=

ୱ୧୬ ఝ

ഊᇲ

ഊ
ିୡ୭ୱ ఝ

  

From (F), 
ఒᇲ

ఒ
= 1 +

ఒ೎

ఒ
(1 − cos 𝜑) = 1 + 𝛼(1 − cos 𝜑). 

Then tan 𝜃 =
ୱ୧୬ ఝ

ଵାఈ(ଵିୡ୭ୱ ఝ)ିୡ୭ୱ
=

ୱ୧୬ ఝ

(ଵାఈ)(ଵିୡ୭ୱ )
=

ଶ ୱ୧୬
ക

మ
ୡ୭ୱ

ക

మ

ଶ(ଵାఈ) ୱ୧୬మക

మ

=
ୡ୭ୱ

ക

మ

(ଵାఈ) ୱ୧୬
ക

మ

  

cot 𝜃 = (1 + 𝛼) tan
ఝ

ଶ
 ………….. (G) 

 Recoil energy of electron: 

𝑇௘ = ℎ𝜈 − ℎ𝜈ᇱ = ℎ𝜈 ቀ1 −
ఔᇲ

ఔ
ቁ = ℎ𝜈 ቀ1 −

ఒ

ఒᇲቁ =  ℎ𝜈 ቀ1 −
ଵ

ଵାఈ(ଵିୡ୭ୱ ఝ)
ቁ  

=  ℎ𝜈
ఈ(ଵିୡ୭ୱ )

ଵାఈ(ଵିୡ୭ୱ )
.  

Useful way to calculate 𝑻𝒆 if 𝝀 (or 𝝂) and 𝝋 are given: 

First find  𝜆ᇱ = 𝜆 + 𝜆௖(1 − cos 𝜑) 

Now 𝑇௘ = ℎ𝜈 − ℎ𝜈ᇱ =
௛௖

ఒ
−

௛௖

ఒᇲ   

Use ℎ𝑐 = 1240 𝑛𝑚. 𝑒𝑉 

Then: 𝑇௘ =
௛௖

ఒ
−

௛௖

ఒᇲ = ℎ𝑐 ቀ
ଵ

ఒ
−

ଵ

ఒᇲቁ = 1240 ቀ
ଵ

ఒ  ୧୬ ୬୫
−

ଵ

ఒᇲ ୧୬ ୬୫
ቁ  𝑒𝑉 

Plot 𝐓𝒆 =
𝒉𝒄

𝝀

𝜶(𝟏ି𝐜𝐨𝐬 𝝋)

𝟏ା𝜶(𝟏ି𝐜𝐨𝐬 𝝋)
  𝒗𝒔.  𝝋.    Given 𝝀 = 𝟎. 𝟕𝟎𝟗 Å. 

Ans.: 𝛼 =
௛

௠బ௖ఒ
=

଺.଺ଶ଺×ଵ଴షయర

ଽ.ଵ×ଵ଴షయభ×ଷ×ଵ଴ఴ×଴.଻଴ଽ×ଵ଴షభ = 34.2328 × 10ିଷ 

௛௖

ఒ
=

଺.଺ଶ଺×ଵ଴షయర×ଷ×ଵ଴ఴ

଴.଻଴ଽ×ଵ଴షభ = 28.036671 × 10ିଵ଺ 𝐽  

T௘ =
௛௖

ఒ

ఈ(ଵିୡ୭ୱ )

ଵାఈ(ଵିୡ୭ୱ ఝ)
=

௛௖

ఒ
.

ଷସ.ଶଷଶ଼×ଵ଴షయ(ଵିୡ୭ୱ )

ଵାଷସ.ଶଷଶ଼×ଵ଴షయ(ଵିୡ୭ୱ )
  

We plot 
଴.଴ଷସ(ଵିୡ୭ୱ ఝ)

ଵା଴.଴ଷସ(ଵିୡ୭ୱ ఝ)
𝑣𝑠.  𝜑 

 

Te 

𝜑 



(T௘)గ =
௛௖

ఒ

ఈ(ଵିୡ୭ୱ గ)

ଵାఈ(ଵିୡ୭ୱ )
=

௛௖

ఒ
.

ଶఈ

ଵାଶఈ
 ; (T௘)గ ଶ⁄ =

௛௖

ఒ
.

ఈ

ଵାఈ
. 

Comparison between Photoelectric Effect and Compton Effect: 

 Photoelectric Effect Compton Effect 

Participating 
Radiation 
(photon) 

Visible or UV light 
𝜆 ~ 10ଶ 𝑛𝑚 

𝐸~ 𝑒𝑉 

X-Rays and 𝛾-Rays 
𝜆~ 10ିଵ − 10ିଷ 𝑛𝑚 

𝐸~ 𝑘𝑒𝑉 − 𝑀𝑒𝑉 

What happens to 
the photon 

Completely absorbed by the electron 
(or other scattering particle) 

Energy completely transferred to the 
electron 

Energy partly transferred to electron, 
Direction changes up to 180°,  

Wavelength increases,  
For electrons  ∆𝜆 𝑚𝑎𝑦 𝑏𝑒 𝑢𝑝 𝑡𝑜  

2𝜆௖ = 2 × 0.002426 𝑛𝑚    

Participating 
electron  

Conduction electrons or electrons 
loosely bound the atoms of a metal 

Loosely bound atomic electrons of non-metals 
e.g. graphite 

Electrons free or 
bound 

Electrons have negative energy of 
several 𝑒𝑉  

In magnitude equal or slightly greater 
than the work function. 

Work function of 𝐴𝑔 and 𝑁𝑎 are 
4.54 𝑒𝑉 & 2.28 𝑒𝑉 

Magnitude of electron energy is 
comparable to the energy of photon 
(𝑒𝑉). So electrons are considered as 

bound. 

Several 𝑒𝑉. Magnitude may be greater than that 
of electrons of Photoelectric effect.  

Ionisation potential of Carbon is 11.26 𝑒𝑉 
Magnitude of electron energy is small 

compared to the photon energy (𝑘𝑒𝑉). So 
electrons are considered as free. 

What happens to 
the electron 

Emits from the metal 
Recoils. If recoil energy is high then emits from 

the material.  

Energy of 
emitted / 

recoiled electron 

Several 𝑒𝑉. 
Non-relativistic treatment is 

allowable  

Several 𝑒𝑉 to 𝑘𝑒𝑉. 
Relativistic treatment is required 

 

Problems: 

JAM 2017 

 

Ans.: (A)  𝜆ᇱ − 𝜆 =
௛

௠బ௖
(1 − cos 𝜑)      ⇒ 𝑐 ቀ

ଵ

ఔᇲ −
ଵ

ఔ
ቁ =

௛

௠బ௖
(1 − cos 𝜑) 

⇒ 𝑐 ൬
2

𝜈
−

1

𝜈
൰ =

ℎ

𝑚଴𝑐
(1 − cos 𝜑) 

 [𝑆𝑖𝑛𝑐𝑒    𝑙𝑜𝑠𝑠 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 = ℎ𝜈 − ℎ𝜈ᇱ = ℎ𝜈 2⁄   ⇒ 𝜈ᇱ = 𝜈 2⁄ ] 

 ⇒
௖

ఔ
=

௛

௠బ௖
(1 − cos 𝜑)     ⇒ (1 − cos 𝜑) =

௠బ௖

௛

௖

ఔ
=

௠బ௖మ

௛ఔ
    

 ⇒ cos 𝜑 = 1 −
௠బ௖మ

௛ఔ
⇒⇒ (𝐴)  𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡.  



 
 𝐿𝑜𝑠𝑠 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝐶𝑜𝑚𝑝𝑡𝑜𝑛 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑝ℎ𝑜𝑡𝑜𝑛     
 = 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑟𝑒𝑐𝑜𝑖𝑙𝑒𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 

 = 𝑇௘ = ℎ𝜈
ఈ(ଵିୡ୭ୱ ఝ)

ଵାఈ(ଵିୡ୭ୱ ఝ)
 ,  where 𝛼 =

ఒ಴

ఒ
=

௛ ௠బ௖⁄

ఒ
=

௛ ௠బ௖⁄

௖ ఔ⁄
=

௛ఔ

௠బ௖మ. 

 Here 𝑇௘ =
௛ఔ

ଶ
= ℎ𝜈

ఈ(ଵିୡ୭ୱ ఝ)

ଵାఈ(ଵିୡ୭ୱ ఝ)
        ⇒ 2𝛼(1 − cos 𝜑) = 1 + 𝛼(1 − cos 𝜑);    

 ⇒ 1 − cos 𝜑 =
ଵ

ఈ
     ⇒ cos 𝜑 = 1 −

ଵ

ఈ
= 1 −

௠బ௖మ

௛ఔ
     ⇒⇒ (𝑨)  𝒊𝒔 𝒄𝒐𝒓𝒓𝒆𝒄𝒕. 

 (B) tan 𝜃 =
ୱ୧୬ ఝ

(ଵାఈ)(ଵିୡ୭ୱ )
=

ඥଵିୡ୭ୱమ ఝ

(ଵାఈ) ఈ⁄
=

ටଵିቀଵି
భ

ഀ
ቁ

మ

(ଵାఈ) ఈ⁄
=

ට
మ

ഀ
ି

భ

ഀమ

ഀశభ

ഀ

=
ට

మഀషభ

ഀమ

ഀశభ

ഀ

=
√ଶఈିଵ

ఈାଵ
  

  sin 𝜃 = ට
ଵ

ଵାୡ୭୲మ ఏ
= ඨ

ଵ

ଵା
(భశഀ)మ

మഀషభ

= ඨ
ଵ

ഀమశరഀ

మഀషభ

= ට
ଶఈିଵ

ఈమାସఈ
  

 Given relation in (B) : sin 𝜃 = 1 −
௠బ௖మ

௛ఔ
= 1 −

ଵ

ఈ
    ⇒⇒ (𝑩) 𝒊𝒔 𝒘𝒓𝒐𝒏𝒈.   

  (C) We have  
௛

ఒᇲ sin 𝜑 = 𝑚𝑣 sin 𝜃. 

 ⇒
௠௩

௛ ఒᇲ⁄
=

ୱ୧୬ ఝ

ୱ୧୬ ఏ
    ⇒⇒ (𝑪) 𝒊𝒔 𝒄𝒐𝒓𝒓𝒆𝒄𝒕. 

 (D) Change in photon wavelength 𝜆ᇱ − 𝜆 =
௛

௠బ௖
(1 − cos 𝜑)     ⇒⇒ (𝑫) 𝒊𝒔 𝒘𝒓𝒐𝒏𝒈.  

JAM 2016

 

Ans.: Given: ℎ𝜈 = 20𝑘𝑒𝑉;   Also 𝛼 =
௛ఔ

௠బ௖మ =
ଶ଴×ଵ଴଴଴×ଵ.଺×ଵ଴షభవ

ଽ.ଵ×ଵ଴షయభ×(ଷ×ଵ଴ఴ)మ =
ଶ×ଵ.଺

ଽ.ଵ×ଽ
=0.039072 

 𝑇௘ = ℎ𝜈
ఈ(ଵିୡ୭ୱ ఝ)

ଵାఈ(ଵିୡ୭ୱ )
  ⇒ 𝑇௘ = 20𝑘𝑒𝑉 ×

଴.଴ଷଽ଴଻ଶ

ଵା଴.଴ଷଽ଴଻ଶ
≈ 0.75𝑘𝑒𝑉  

Alternately:  ℎ𝜈 = 20𝑘𝑒𝑉 ⇒  𝜆 =
ଵଶସ଴

ଶ଴×ଵ଴଴଴
= 0.062 𝑛𝑚 

 𝜆ᇱ = 𝜆 +
௛

௠బ௖
(1 − cos 𝜑) = 0.062 𝑛𝑚 +

଺.଺ଶ଺×ଵ଴షయర

ଽ.ଵ×ଵ଴షయభ×ଷ×ଵ଴ఴ = 0.062 𝑛𝑚 + 0.002427𝑛𝑚 

 = 0.064427𝑛𝑚 

 ℎ𝜈ᇱ =
ଵଶସ଴

଴.଴଺ସସଶ଻
𝑒𝑉 = 19.25 𝑘𝑒𝑉 

 𝑇௘ = ℎ𝜈 − ℎ𝜈ᇱ = 0.75 𝑘𝑒𝑉 

JAM 2015: Section C 

 

Ans.: 𝜆ᇱ − 𝜆 =
௛

௠బ௖
(1 − cos 𝜑) = 𝜆௖(1 − cos 𝜑) = 0.00243 × (1 − cos 60°) 

 = 0.00243 2⁄ = 0.001215 𝑛𝑚 



 𝜆ᇱ = 0.241215 𝑛𝑚 

 Loss of energy of the X-ray is the gain in kinetic energy of the electron. So:   

 𝑇௘ = ቀ
ଵଶସ଴

଴.ଶସ
−

ଵଶସ଴

଴.ଶସଵଶଵହ
ቁ  𝑒𝑉 = (5166.67 − 5140.64) 𝑒𝑉 = 26.03 𝑒𝑉  

JAM 2013 

 

Ans.: 𝜆ᇱ − 𝜆 =
௛

௠బ௖
(1 − cos 𝜑) = 𝜆௖(1 − cos 𝜑) = 0.002426 × (1 − cos 180°) 

 = 0.004856 𝑛𝑚 

 𝜆ᇱ = 0.204856 𝑛𝑚 

 % loss of energy of the X-rays:   

 ቀ
ଵଶସ଴

଴.ଶ
−

ଵଶସ଴

଴.ଶ଴ସ଼ହ଺
ቁ

ଵଶସ଴

଴.ଶ
ൗ  % = (6200 − 6053.03) 6200⁄ % = 2.37 %. 

JAM 2010 

 

Ans.: (a) In case of head on collision the photon will bounce back by 180°. 

  Then ∆𝜆 = 2𝑐𝜆௖
௣బା௉

ாି௖௉
sinଶ ఏ

ଶ
= 2𝑐𝜆௖

௣బା௉

ாି௖௉
sinଶ గ

ଶ
= 2𝑐𝜆௖

௣బା௉

ாି௖௉
 

  If the electron is initially at rest then: 𝑃 = 0. 

  Then ∆𝜆 = 2𝑐𝜆௖
௣బା௉

ாି௖௉
sinଶ ఏ

ଶ
= 2𝑐𝜆௖

௣బ

ா
sinଶ ఏ

ଶ
= 2𝑐𝜆௖

௛ ఒ⁄

ா
sinଶ ఏ

ଶ
 

 (b) Resolving power =
ఒ

∆ఒ
=

ఒ

ఒ೎(ଵିୡ୭ୱ )
=

ଶ଴଴଴

଴.଴ଶସଶ଺×(ଵିୡ୭ୱ ଽ଴°)
=

ଶ଴଴଴

଴.଴ଶସଶ଺
= 82440.23   

JAM 2008 

 



Ans.: 
ఒᇲିఒ

ఒ
=

ఒ೎

ఒ
(1 − cos 𝜑) =

ఒ೎

ఒ
(1 − cos 𝜋) =

ଶఒ೎

ఒ
. 

JAM 2006: 

 

Ans.: (a) 0.05 = ೐்

௛ఔ
=

௛ఔି௛ఔᇲ

௛ఔ
= 1 −

ఔᇲ

ఔ
= 1 −

ఒ

ఒᇲ 

 𝜆 = 0.95𝜆ᇱ = 0.95∆𝜆 + 0.95𝜆   ⇒ 0.05𝜆 = 0.95∆𝜆   ⇒ 𝜆 = 19∆𝜆 

 𝜆 = 19∆𝜆 = 19𝜆௖(1 − cos 𝜑) = 19𝜆௖(1 − cos 60°) =
ଵଽ

ଶ
𝜆௖ = 9.5𝜆௖. 

 (b) 𝐸௘ = 𝑇௘ + 𝑚଴𝑐ଶ = 0.05ℎ𝜈 + 𝑚଴𝑐ଶ =
଴.଴ହ௛௖

ఒ
+ 𝑚଴𝑐ଶ =

଴.଴ହ௛௖

ଽ.ହఒ೎
+ 𝑚଴𝑐ଶ 

 =
଴.଴ହ௛௖௠బ௖

ଽ.ହ௛
+ 𝑚଴𝑐ଶ =

଴.଴ହ బ௖మ

ଽ.ହ
+ 𝑚଴𝑐ଶ =

௠బ௖మ

ଵଽ଴
+ 𝑚଴𝑐ଶ. 

 =
ଵଽଵ௠బ௖మ

ଵଽ଴
 𝐽 =

ଵଽଵ௖మ

ଵଽ଴
   𝑖𝑛 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑟𝑒𝑠𝑡 𝑚𝑎𝑠𝑠  

Zettili: Page-21 

 

 

 

 

 

 

 

 

 

 

 

 



Wave nature of particle 

Davisson-Germer Experiment (1923-27):  

 Bombarding the surface of nickel single crystal normally with collimated beam of electrons and 
detecting the number of electrons scattered in different angles with the incident beam. It was observed 
that scattering was maximum for an angle  𝜑 = 50°  when the electron energy was 54 𝑒𝑉. 

                  
To explain their result Davisson and Germer used the concept of wave nature of particle, here electrons, 
postulated by de Broglie. So the de Broglie wavelength of the electrons:  

𝒉

𝒑
=

𝒉

ඥ𝟐𝒎𝑬𝒌

=
𝟔. 𝟔𝟐𝟔 × 𝟏𝟎ି𝟑𝟒

√𝟐 × 𝟗 × 𝟏𝟎ି𝟑𝟏 × 𝟓𝟒 × 𝟏. 𝟔 × 𝟏𝟎ି𝟏𝟗
 𝒎 = 𝟏. 𝟔𝟕Å 

Verify for relativistic relations 

Again when waves, like X-rays, are incident on the atomic planes of a crystal at different angles they 
suffers intense reflection like scattering for some particular angles given by Bragg’s equation: 

𝟐𝒅 𝐬𝐢𝐧 𝜽 = 𝒏𝝀 

where 𝜃 is the angle of the incident beam with the set of parallel atomic planes (glancing angle) 
responsible for scattering, 𝑑 is the inter-planar spacing between these planes and 𝑛 is a positive integer, 
called order number. It is to be noted that intensity of scattered beam is small for large 𝑛.  

In the Davisson-Germer experiment angle of incident 𝜑 2⁄ = 50Å 2⁄ = 25°  and so 𝜃 = 90° − 𝜑 2⁄ =
65°. Thus the atomic planes responsible for the Bragg like scattering are oriented at an angle 25° with 
the surface of the crystal. Inter planer spacing of these planes was 𝑑 = 0.91Å.  

Thus taking 𝑛 = 1, since a single scattering maximum was observed,  

𝝀 = 𝟐𝒅 𝐬𝐢𝐧 𝜽 = 𝟐 × 𝟎. 𝟗𝟏 × 𝐬𝐢𝐧 𝟔𝟓°  Å = 𝟏. 𝟔𝟓 Å 

which matches quite well with the de Broglie wavelength of the electrons (1.67 Å) within experimental 
errors. Thus the results of Davisson-Germer experiment confirms de Broglie relation 𝜆 = ℎ 𝑝⁄ . 

 

***Story (Wikipedia): Davisson began work in 1921 to study electron bombardment and secondary electron 
emissions. A series of experiments continued through 1925. 

Davisson and Germer's actual objective was to study the surface of a piece of nickel by directing a beam of 
electrons at the surface and observing how many electrons bounced off at various angles. They expected that 
because of the small size of electrons, even the smoothest crystal surface would be too rough and thus the 
electron beam would experience diffused reflection.  

The experiment consisted of firing an electron beam at a nickel crystal, perpendicular to the surface of the 
crystal, and measuring how the number of reflected electrons varied as the angle between the detector and the 
nickel surface varied. To measure the number of electrons that were scattered at different angles, an electron 
detector that could be moved on an arc path about the crystal was used. The detector was designed to accept 
only elastically scattered electrons. 

𝜃 𝜃 
𝑑 

𝐷 = 2.15Å, 𝑑 = 𝐷 sin 25° = 0.91Å 

𝜑

2
 𝜑

2
 𝜃 



During the experiment, air accidentally entered the chamber, producing an oxide film on the nickel surface. To 
remove the oxide, Davisson and Germer heated the specimen in a high temperature oven, not knowing that this 
caused the formerly polycrystalline structure of the nickel to form large single crystal areas with crystal planes 
continuous over the width of the electron beam.  

When they started the experiment again and the electrons hit the surface, they were scattered by nickel atoms 
in crystal planes (so the atoms were regularly spaced) of the crystal. This, in 1925, generated a diffraction pattern 
with unexpected peaks. 

On a break, Davisson attended the Oxford meeting of the British Association for the Advancement of Science in 
summer 1926. At this meeting, he learned of the recent advances in quantum mechanics. To Davisson's surprise, 
Max Born gave a lecture that used diffraction curves from Davisson's 1923 research which he had published 
in Science that year, using the data as confirmation of the de Broglie hypothesis.  

He learned that in prior years, other scientists – Walter Elsasser, E. G. Dymond, and Blackett, James Chadwick, 
and Charles Ellis – had attempted similar diffraction experiments, but were unable to generate low enough 
vacuums or detect the low-intensity beams needed.  

Returning to the United States, Davisson made modifications to the tube design and detector mounting, adding 
azimuth in addition to colatitude. Following experiments generated a strong signal peak at 65 V and an angle θ 
= 45°. He published a note to Nature titled, "The Scattering of Electrons by a Single Crystal of Nickel". 

Questions still needed to be answered and experimentation continued through 1927.  

By varying the applied voltage to the electron gun, the maximum intensity of electrons diffracted by the atomic 
surface was found at different angles. The highest intensity was observed at an angle θ = 50° with a voltage of 
54 V, giving the electrons a kinetic energy of 54 eV.  

According to the de Broglie relation, electrons with kinetic energy of 54 eV have a wavelength of 0.167 nm. The 
experimental outcome was 0.165 nm via Bragg's law, which closely matched the predictions.  

Davisson and Germer's accidental discovery of the diffraction of electrons was the first direct evidence 
confirming de Broglie's hypothesis that particles can have wave properties as well.*** 

 

Double slit experiment with light (photons) and with electrons:  

Double slit experiment with parallel monochromatic beam of light: 

            

 

Path difference: 𝛿 = (𝑎 + 𝑏) sin 𝜃, where 𝑎 & 𝑏 are respectively the widths of the slits and the 
separation between the slits. 𝜃 is the angular position of a point on the screen with respect to the central 
line between the slits. 

Condition of maximum intensity: 

b 

a 



(𝑎 + 𝑏) sin 𝜃௡ = 𝑛𝜆   ⇒ sin 𝜃௡ =
௡ఒ

௔ା௕
;    Now for small  𝜃௡ ,     sin 𝜃௡ ≈  tan 𝜃௡ =

௬೙

஽
 

So  
௬೙

஽
=

௡ఒ

௔ା௕
;       𝑦௡ =

஽

௔ା௕
𝑛𝜆 

𝐹𝑟𝑖𝑛𝑔𝑒 𝑤𝑖𝑑𝑡ℎ = 𝛽 = 𝑦௡ − 𝑦௡ିଵ =
஽

௔ା௕
𝜆 =

஽

ௗ
𝜆 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

where 𝑑 = 𝑎 + 𝑏 is the distance between the centres of the slits. 

Resultant intensity on the screen (considering the slits to be extremely narrow):  

𝜓ଵ = 𝐴𝑒௜(௞௫ିఠ );  𝜓ଶ = 𝐴𝑒௜(௞(௫ାఋ)ିఠ௧)  

𝜓 = 𝜓ଵ + 𝜓ଶ ;     

𝐼 = |𝜓|ଶ = (𝜓ଵ + 𝜓ଶ)(𝜓ଵ
∗ + 𝜓ଶ

∗) = |𝜓ଵ|ଶ + |𝜓ଶ|ଶ + |𝜓ଵ||𝜓ଶ|൫𝑒ି௜௞ఋ + 𝑒௜௞ఋ൯  

= |𝜓ଵ|ଶ + |𝜓ଶ|ଶ + 2|𝜓ଵ||𝜓ଶ| cos(𝑘𝛿)  

𝐼 = 𝐼ଵ + 𝐼ଶ + 2ඥ𝐼ଵ𝐼ଶ cos[𝑘(𝑎 + 𝑏) sin 𝜃]  

For 𝐼ଵ = 𝐼ଶ = 𝐼଴, we have: 

𝐼 = 2𝐼଴ + 2𝐼଴ cos[𝑘(𝑎 + 𝑏) sin 𝜃] = 4𝐼଴ cosଶ 𝛽,  where  𝛽 =
௞(௔ା௕)

ଶ
sin 𝜃. 

 

Again the intensity distribution on the screen, for a single slit of finite width 𝑎, is given by:  

𝐼 = 𝐼଴
ୱ୧୬మ ఈ

ఈమ ,  where 𝛼 =
௞௔

ଶ
sin 𝜃 =

గ௔

ఒ
sin 𝜃 . 

It can be shown that in case of the double slit experiment if the finite width of the slits is considered, 
then intensity distribution will be given by: 

𝐼 = 4𝐼଴
ୱ୧୬మ ఈ

ఈమ cosଶ 𝛽. 



 

Double slit experiment with macroscopic particles: 

 𝐼 = 𝐼ଵ + 𝐼ଶ 

               

Double slit experiment with parallel mono-energetic beam of electrons: 

1.  𝐼 ≠ 𝐼ଵ + 𝐼ଶ    

2.  Count distribution pattern on the screen is similar to the double slit diffraction pattern of 
light of wavelength 𝜆 = ℎ 𝑝⁄ , where  𝑝 is the linear momentum of the electrons and ℎ is 
Planck constant.  

3. The count distribution pattern remains same if even one electron at a time is fired from the 
electron gun. 
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Single slit diffraction of light: 

 

The intensity of light on the screen is given by: 

𝐼 = 𝐼଴
ୱ୧୬మ ఈ

ఈమ ,  where 𝛼 =
௞௔

ଶ
sin 𝜃 =

గ௔

ఒ
sin 𝜃, 𝜃 being the angular position on the slit with respect to the 

centre of the slit. 

Condition of minima is  
ௗூ

ௗఈ
= 0,

ௗమூ

ௗఈమ = +𝑣𝑒      ⇒  sin 𝛼 = 0       ⇒ 𝛼 =
గ௔

ఒ
sin 𝜃 = 𝑛𝜋   .  

⇒ 𝑎 sin 𝜃 = 𝑛𝜆;   𝑛 = ±1, ±2, ±3  … ; 𝑛 ≠ 0, as 𝑛 = 0 corresponds to the central maximum.  

For the first minimum on the both sides of the central maximum |sin 𝜃| =
ఒ

௔
. 

Before passing through the slit, the beam of light is parallel and so have no angular spread. But after 
passing through the narrow slit, the beam of light gets some angular spread. In the figure the angular 

spread of the central maximum is 2𝜃 ≈ 2 sin 𝜃  (𝑠𝑖𝑛𝑐𝑒 𝜃 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙) =
ଶఒ

௔
. Thus the angular spread of 

the central maximum increases if the width of the slit (𝑎) decreases. 

Single slit diffraction of electrons and Heisenberg uncertainty principle: 

Now let in the place of light/photons electrons are used for the diffraction experiment. Let detectors are 
placed at every point on the screen which can count the number of electrons hitting that point. The 
distribution pattern of electron counts on the screen will be similar to that for light of wavelength  𝜆 = 
ℎ 𝑝⁄ , where 𝑝 is the momentum of the mono-energetic electrons incident on the slits.  

The electrons, emitting from the source, move in positive X direction. So we can write 𝑝 = 𝑝௫. But 
after passing through the slit the electrons gain a little momentum in Y direction, which causes angular 
spread of the diffracted electron beam. Let ±∆𝑝௬ are the 𝑦-components of momentum gained by the 
electrons reaching to the first minima on the both sides of the central maximum. Then we can say that, 
the electrons reaching the screen within the central peak 𝐴𝐵 have gained at the slit an uncertainty ∆𝑝௬ 
in 𝑦-component of momentum in either positive or negative 𝑦-direction. These electrons have passed 
through any point in the slit of width 𝑎. So, at the slit, the uncertainty in their 𝑦-coordinate is ∆𝑦 = 𝑎.    

Now: 
∆௣೤

௣ೣ
= tan 𝜃 ≈ 𝜃 ≈ sin 𝜃 (𝑠𝑖𝑛𝑐𝑒 𝜃 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙) =

ఒ

௔
=

ఒ

∆௬
 

So, at the slit,  ∆𝑦∆𝑝௬ ≈ 𝜆𝑝௫    ⇒ ∆𝑦∆𝑝௬ ≈ 𝜆
௛

ఒ
    ⇒ ∆𝑦∆𝑝௬ ≈ ℎ. 

i.e. the product of the uncertainties in 𝑦-component of momentum and position is ℎ >
ℏ

ଶ
. Thus 

Heisenberg uncertainty principle is obeyed. 

 X 

Y 

a=y  Δpy 

 B 

D 

 px 
 p 

 A 



From uncertainty principle show that, in the double slit diffraction of electrons, it is not possible 
to determine the slit, through which the electron passes and to produce the diffraction pattern in 
a single experiment.  

 

                                 

Ans.: Fringe width of the interference fringes in the double slit diffraction experiment is given by: 

 𝛽 = 𝑦௡ − 𝑦௡ିଵ =
஽

ௗ
𝜆 .  

 For the fringe system to be stationary the uncertainty in measurement of the position (𝑦-
coordinate) of the slit plate must be small compared to the fringe width 𝛽. 

 i.e. ∆𝑦 ≪ 𝛽      ⇒ ∆𝑦 ≪
஽

ௗ
𝜆.   …..    ……. (A) 

 Now let we want to determine through which the electron passes to reach a point 𝐶 on the screen. 
If the electron passes through the lower slit, it would have to gain a momentum, say 𝛿𝑝௬,  in 
+𝑣𝑒 𝑌 direction and if it passes through the upper slit, it would have to gain a momentum, say 
𝛿𝑝௬,  in −𝑣𝑒 𝑌 direction. In the two cases the slit plate will recoil in opposite directions and 
measuring the recoil momentum of the slit plate it will be possible to determine through which 
slit the electron passes. But to measure the recoil momenta of the slit plate in these two cases 
distinctly the uncertainty in measurement of the momentum of the slit plate must be much small 
compared to the difference of these two recoil momenta.  

 i.e.  ∆𝑝௬ ≪ 𝛿𝑝௬ − ൫−𝛿𝑝௬൯,    or,  ∆𝑝௬ ≪ 2𝛿𝑝௬. 

 Now from figure: 

 
ఋ௣೤

௣ೣ
= tan 𝛼 =

ௗ ଶ⁄

஽
=

ௗ

ଶ஽
.  Therefore 𝛿𝑝௬ = 𝑝௫

ௗ

ଶ஽
=

௛

ఒ

ௗ

ଶ஽
. 

 So, ∆𝑝௬ ≪ 2
௛

ఒ

ௗ

ଶ஽
,    

 or, ∆𝑝௬ ≪
௛

ఒ

ௗ

஽
    ……. (B) 

 Thus to measure through which slit the electron passes and also to have a diffraction pattern at 
the same time, we must have both the conditions (A) and (B) satisfied at the same time. Or in 

other words:  ∆𝑝௬∆𝑦 ≪
௛

ఒ

ௗ

஽

஽

ௗ
𝜆; 

 Or,   ∆𝑝௬∆𝑦 ≪ ℎ…..(C).  
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X 

 D 

d/2 𝛿𝑝௬ 
𝑝௫  



 Equation (C) is clear violation of uncertainty principle and so impossible. Therefore measuring 
through which the electron passes and having a diffraction pattern at the same time is impossible. 
Or in other words, any successful trial of ‘seeing’ through which slit the electrons pass will 
destroy the diffraction pattern.  

 

Problems of  Waveparticle Duality, Uncertainty Principle, Two Slit Experiment: 

JAM 2017 

 

Ans.: Rest mass energy of the electron is 0.511 MeV Kinetic energy gained by the electron is 
 200 𝑘𝑒𝑉 = 0.2 MeV, which is of the order of the rest mass energy. Therefore relativistic 
 treatment is required. 

 Kinetic energy gained by the electron is 200 𝑘𝑒𝑉 = 3.2 × 10ିଵସ𝐽 

 𝐾. 𝐸 =  𝐸 − 𝑚଴𝑐ଶ = ඥ𝑝ଶ𝑐ଶ + 𝑚଴
ଶ𝑐ସ − 𝑚଴𝑐ଶ  

 ඥ𝑝ଶ𝑐ଶ + 𝑚଴
ଶ𝑐ସ = 𝐾. 𝐸 + 𝑚଴𝑐ଶ  

 𝑝ଶ =
൫௄.ாା௠బ௖మ൯

మ
ି௠బ

మ௖ర

௖మ   

 𝑝 =
ඥ(௄.ாା௠బ௖మ)మି௠బ

మ௖ర

௖
=

ඥ௄.ா(௄.ாାଶ௠బ௖మ)

௖
  

 𝑝 =
ඥଷ.ଶ×ଵ଴షభర(ଷ.ଶ×ଵ଴షభరାଶ×଼.ଵ଼଻×ଵ଴షభర)

ଶ.ଽଽ଻ଽ×ଵ଴ఴ   

 =
଻.ଽଵ

ଶ.ଽଽ଻ଽ×ଵ଴ఴ × 10ିଵସ  

 =
଻.ଽଵ

ଶ.ଽଽ଻ଽ×ଵ଴ఴ × 10ିଵସ = 2.64 × 10ିଶଶ 𝑘𝑔. 𝑚 𝑠⁄   

 𝜆 =
௛

௣
=

଺.଺ଶ଺×ଵ଴షయర

ଶ.଺ସ×ଵ଴షమమ = 2.5 × 10ିଵଶ𝑚  

 Best possible resolution = 𝜆 = 2.5 × 10ିଵ 𝑚 

JAM 2016 

 

Ans.: Rest mass energy of electron is 0.511 MeV. Given kinetic energy of the electron is 10 eV is 
much less than the rest mass energy of the electron. Therefore nonrelativistic treatment can be 
done.  

 𝑃௘ = √2𝑚𝐸 = √2 × 9.1 × 10ିଷଵ × 1.6 × 10ିଵଽ × 10 = 1.7065 × 10ିଶ  𝑘𝑔. 𝑚𝑠ିଵ. 

 𝜆௘ =
௛

௉೐
=

଺.଺ଶ଺×ଵ଴షయర

ଵ.଻଴଺ହ×ଵ଴షమర = 3.88 × 10ିଵ଴ 𝑚 = 0.388 𝑛𝑚    



 𝜆௣௛ =
ଵଶସ଴

ଵ଴
= 124 𝑛𝑚 

 𝑃௣௛ =
௛

ఒ೛೓
=

଺.଺ଶ଺×ଵ଴షయర

ଵଶସ×ଵ଴షవ = 5.34 × 10ିଶ଻ 𝑘𝑔. 𝑚𝑠ିଵ 

 𝑃௣௛ =
ா

௖
=

ଵ଴×ଵ.଺×ଵ଴షభవ

ଷ×ଵ଴ఴ = 5.33 × 10ିଶ଻ 𝑘𝑔. 𝑚𝑠ିଵ 

 Thus 𝜆௘ < 𝜆௣௛  & 𝑃௘ > 𝑃௣௛ 

JAM 2016 

 

Ans.: (A) If (A) would be true then the momentum of the electrons in 𝑥-direction would be completely 
indeterminable. Then one could not say that they are accelerated in 𝑦- direction.   

 (B) From Heisenberg uncertainty relation, if the position in 𝑥-direction has an uncertainty 𝑑, 

then uncertainty in momentum in 𝑥-direction will be ∆𝑝௫ ≈
ℏ

ଶௗ
≈

ℏ

ௗ
. So (B) is correct. 

 (C) Uncertainty in momentum along 𝑦-direction: 

 Energy of the electron is 𝐸 = 100 ± 0.1 𝑒𝑉 = (100 ± 0.1) × 1.6 × 10ିଵଽ 𝑒𝑉   

 Nonrelativistic treatment: 

 ∆𝑝௬ = ඥ2𝑚𝑒(𝑉 + ∆𝑉) − ඥ2𝑚𝑒(𝑉 − ∆𝑉) 

 = √2 × 9.1 × 10ିଷଵ × 1.6 × 10ିଵଽ ቂඥ(𝑉 + ∆𝑉) − ඥ(𝑉 − ∆𝑉)ቃ 

 = 5.3963 × 10ିଶହ ቂ√𝑉 ቀ1 +
ଵ

ଶ

∆௏

௏
ቁ − √𝑉 ቀ1 −

ଵ

ଶ

∆௏

௏
ቁቃ 

 = 5.3963 × 10ିଶ × √𝑉 ×
∆௏

௏
= 5.3963 × 10ିଶହ × 10 ×

଴.ଵ

ଵ଴଴
 𝑘𝑔. 𝑚𝑠ିଵ 

 = 5.3963 × 10ିଶ଻ 𝑘𝑔. 𝑚𝑠ିଵ. 

 Relativistic treatment: 

 ∆𝑝௬ =
ඥ௘(௏ା∆௏)(௘(௏ା∆௏)ାଶ௠బ௖మ)

௖
−

ඥ௘(௏ି∆௏)(௘(௏ି∆௏)ାଶ௠బ௖మ)

௖
 

 =
ඥ௘(௏ା∆௏)(௘௏ାଶ௠బ௖మା௘∆௏)

௖
−

ඥ௘(௏ି∆௏)(௘௏ାଶ௠బ௖మି௘∆௏)

௖
 

 =
ට௘௏(௘௏ାଶ௠బ௖మ)ቀଵା

∆ೇ

ೇ
ቁ൬ଵା

೐∆ೇ

೐ೇశమ೘బ೎మ൰

௖
−

ට௘௏(௘௏ାଶ௠బ௖మ)ቀଵି
∆ೇ

ೇ
ቁ൬ଵି

೐∆ೇ

೐ೇశమ೘బ೎మ൰

௖
 

 =
ඥ௘௏(௘௏ାଶ௠బ௖మ)

௖
ቂቀ1 +

∆௏

ଶ௏
ቁ ቀ1 +

௘∆௏

ଶ(௘௏ାଶ௠బ௖మ)
ቁ − ቀ1 −

∆௏

ଶ௏
ቁ ቀ1 −

௘∆௏

ଶ(௘௏ାଶ௠బ௖మ)
ቁቃ 

 =
ඥ௘௏(௘௏ାଶ௠బ௖మ)

௖
ቂቀ1 +

∆௏

ଶ௏
+

௘∆௏

ଶ(௘௏ାଶ௠బ௖మ)
ቁ − ቀ1 −

∆௏

ଶ௏
−

௘∆௏

ଶ(௘௏ାଶ௠బ௖మ)
ቁቃ 



 =
ඥ௘௏(௘௏ାଶ௠బ௖మ)

௖
ቂ

∆௏

௏
+

௘∆௏

(௘௏ାଶ௠బ௖మ)
ቃ 

 =
ඥଵ଴଴ (ଵ଴଴௘ାଶ×ହଵଵ଴଴ )

௖
ቂ

଴.ଵ

ଵ଴଴
+

଴.ଵ௘

(ଵ଴଴௘ାଶ×ହଵଵ଴଴଴௘)
ቃ,  

 (since  𝑚଴𝑐ଶ = 0.511 𝑀eV = 511000 × 𝑒 𝐽𝑜𝑢𝑙𝑒) 

 =
௘√ଵ଴଴×ଵ଴ଶଶଵ଴଴

௖
×

ଵ଴ଶଶଶ଴଴

ଵ଴଴×ଵ଴ଶଶଵ଴଴
× 0.1 = 5.39247 × 10ିଶ଻ 𝑘𝑔. 𝑚 𝑠⁄   

  ∆𝑦 ≈
ℏ

ଶ∆௣೤
=

଺.଺ଶ଺×ଵ଴షయర

ଶగ×ଶ×ହ.ଷଽ଺ଷ×ଵ଴షమ = 9.776 𝑛𝑚 ≠ 0 

 (D) The presence of the slit has no influence on the 𝑦-direction motion of the electrons. So 
 it does not effect the momentum of the electrons in 𝑦-direction. 

JAM 2016 

 

Ans.: 𝐸ଶ = 𝑝ଶ𝑐ଶ + 𝑚଴
ଶ𝑐ସ   ⇒ 𝑝ଶ =

ாమ

௖మ + 𝑚଴
ଶ𝑐ଶ   

 ⇒ 𝑝 = ට
ாమ

௖మ + 𝑚଴
ଶ𝑐ଶ = ට

(ଵ଴ల×ଵ.଺×ଵ଴షభవ)మ

(ଷ×ଵ଴ఴ)మ + (9.1 × 10ିଷ × 3 × 10଼)ଶ 

 = ඥ(0.53 × 10ିଶଵ)ଶ + (27.3 × 10ିଶ )ଶ   

 = 10ିଶଵ × ඥ(0.53)ଶ + (0.273)ଶ = 0.59 × 10ିଶଵ 𝑘𝑔 𝑚 𝑠ିଵ 

 𝜆 =
௛

௣
=

଺.଺ଷ×ଵ଴షయర

଴.ହଽ×ଵ଴షమ = 11.23 × 10ିଵଷ 𝑚 = 1.123 × 10ିଵଶ 𝑚 . 

JAM 2015: Section A 

 

Ans.: 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ≈ (ℏ 2⁄ ) 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛⁄  

 ∆𝑝 ≈
ℏ

ଶ∆௫
=

௛

ଶగ×ଶ∆௫
=

଺.଺ଷ×ଵ଴షయర

ଶగ×ଶ∆௫
≈

ଵ଴షయ

ଶ×ଵ଴షభఱ ≈
ଵ଴షభ

ଶ
 𝑘𝑔. 𝑚𝑠ିଵ. 

 Minimum momentum of the electron is:  

 𝑝௠௜௡ = ∆𝑝 ≈
ଵ଴షభవ

ଶ
 𝑘𝑔. 𝑚𝑠ିଵ. 

 If non relativistic treatment is done then the velocity of the electron comes to be:  

  𝑣 = 𝑝௠௜௡ 𝑚଴⁄ ≈
ଵ଴షభ

ଶ×ଽ.ଵ×ଵ଴షయభ ≈ 10ଵଵ 𝑚 𝑠⁄ ≫ 𝑐   𝑎𝑛𝑑 𝑖𝑠 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒. 

 Therefore relativistic treatment is to be done. 

 𝐸௠௜௡ = ඥ𝑝௠௜௡
ଶ𝑐ଶ + 𝑚଴

ଶ𝑐ସ   

 𝐸௠௜௡ = 𝑐ඥ𝑝௠௜௡
ଶ + 𝑚଴

ଶ𝑐ଶ = 3 × 10଼ × ටቀ
ଵ଴షభవ

ଶ
ቁ

ଶ

+ (9.1 × 10ିଷଵ)ଶ(3 × 10଼)ଶ  

 = 3 × 10଼ × 10ିଵ √0.25 + 27.3 × 10ି଼ ≈ 3 × 10଼ × 10ିଵଽ × 0.5 = 1.5 × 10ିଵଵ𝐽 

 =
ଵ.ହ×ଵ଴షభభ

ଵ.଺×ଵ଴షభవ 𝑒𝑉 = 10଼𝑒𝑉 = 10ଶ𝑀𝑒𝑉 



JAM 2007: 

 

Ans.: 𝜆 = Compton wavelength = 𝜆௖ =
௛

௠బ௖
  

 𝑝 =
௛

ఒ
= 𝑚଴𝑐 

 𝑝 = 𝑚𝑣 =
௠బ௩

ඥଵି௩మ ௖మ⁄
=

௠బ௩

ඥଵି௩మ ௖మ⁄
 

 
௠బ௩

ඥଵି௩మ ௖మ⁄
= 𝑚଴𝑐      ⇒ 𝑣ଶ 𝑐ଶ⁄ = 1 − 𝑣ଶ 𝑐ଶ⁄       ⇒ 2 𝑣ଶ 𝑐ଶ⁄ = 1      ⇒ 𝑣 =

௖

√ଶ
. 

 

QX. Zero point energy of harmonic oscillator from uncertainty principle: 

 If  ∆𝑝௫  is the standard deviation of measurement of  𝑝௫ then: (∆𝑝௫)ଶ = 〈𝑝௫
ଶ〉 − 〈𝑝௫〉ଶ = 〈𝑝௫

ଶ〉 

 Similarly if ∆𝑥 is the standard deviation of measurement of 𝑥 then: (∆𝑥)ଶ = 〈𝑥ଶ〉 − 〈𝑥〉ଶ =

〈𝑥ଶ〉 

 Now  𝐸 =
௣ೣ

మ

ଶ௠
+

ଵ

ଶ
𝑘𝑥ଶ  

 So  〈𝐸〉 =
〈௣ೣ

మ〉

ଶ௠
+

ଵ

ଶ
𝑘〈𝑥ଶ〉 =

(∆௣ೣ)మ

ଶ௠
+

ଵ

ଶ
𝑘(∆𝑥)ଶ =

(∆௣ೣ)మ

ଶ௠
+

௠ఠమ

ଶ
(∆𝑥)ଶ 

 Uncertainty Principle: (∆𝑥)(∆𝑝௫) ≥
ℏ

ଶ
 

 ⇒ (∆𝑥)ଶ(∆𝑝௫)ଶ ≥
ℏమ

ସ
 

 ⇒ (∆𝑝௫)ଶ ≥
ℏమ

ସ(∆௫)మ 

 Thus 〈𝐸〉 ≥
ℏమ

଼௠(∆௫)మ +
௠ఠమ

ଶ
(∆𝑥)ଶ 

 The r.h.s will be minimum if   
డ(௥.௛.௦)

డ[(∆௫)మ]
= 0;   𝑖. 𝑒.   𝑖𝑓 −

ℏమ

଼௠(∆௫)ర +
௠ఠమ

ଶ
= 0;    𝑖. 𝑒.  𝑖𝑓  (∆𝑥)ଶ =

ℏ

ଶ௠ఠ
 

 So 〈𝐸〉௠௜௡ =
ℏమ

଼௠

ଶ௠

ℏ
+

௠ఠమ

ଶ

ℏ

ଶ௠
 

 =
𝟏

𝟐
ℏ𝝎 = 𝐳𝐞𝐫𝐨 𝐩𝐨𝐢𝐧𝐭 𝐞𝐧𝐞𝐫𝐠𝐲 𝐨𝐟 𝐪𝐮𝐚𝐧𝐭𝐮𝐦 𝐡𝐚𝐫𝐦𝐨𝐧𝐢𝐜 𝐨𝐬𝐜𝐢𝐥𝐥𝐚𝐭𝐨𝐫. 

 

 

 

 

 

 

  



 

 

 

 

 

 

SOME PROBLEMS ON WAVE PACKET 



Eigen functions of particle in a one dimensional infinite potential well: 

 𝛹(𝑥. 𝑡) = ∑ 𝑐௡𝜓௡(𝑥, 𝑡)ஶ
௡ୀ଴ = ∑ 𝑐௡𝜓௡(𝑥)𝑒ି௜ா೙௧ ℏ⁄ஶ

௡ୀ଴ = ට
ଶ

௔
∑ 𝑐௡ sin ቀ

௡గ௫

௔
ቁ 𝑒

ି௜൬
೙మഏమℏమ

మ೘ೌమ ൰௧ ℏൗஶ
௡ୀ଴  

 Where 𝜓௡(𝑥) = ට
ଶ

௔
sin ቀ

௡గ௫

௔
ቁ are the eigen functions or stationary states. 

 

 

 

 

 The functions 𝜓௡(𝑥, 𝑡) = ට
ଶ

௔
sin ቀ

௡గ௫

௔
ቁ 𝑒

ି௜൬
೙మഏమℏమ

మ೘ೌమ ൰௧ ℏൗ
,   are not of the form 𝑓(𝑥 ± 𝑣𝑡) or 

𝑓(𝑘𝑥 ± 𝜔𝑡). So they do not represent propagating waves. They actually represent standing 

waves with amplitude ට
ଶ

௔
sin ቀ

௡గ௫

௔
ቁ and wavelength 

ଶ௔

௡
. The probability density is 𝑃௡(𝑥) =

ଶ

௔
sinଶ ቀ

௡గ௫

௔
ቁ for = 1,   𝑛 = 1,2,3 … . 

********* 

Free particle: 

 
ିℏమ

ଶ௠

డమఅ(௫,௧)

డ௫మ = 𝑖ℏ
డఅ(௫,௧)

డ௧
  

 Using separation of variables:    𝛹(𝑥, 𝑡) = 𝜓(𝑥)𝜂(𝑡)  

Plot of 𝜓௡(𝑥) = ට
ଶ

௔
sin ቀ

௡గ௫

௔
ቁ for 𝑎 = 1,   𝑛 = 1,2,3 

ඥ2 𝑎⁄  

−ඥ2 𝑎⁄  

Plot of 𝑃௡(𝑥) =
ଶ

௔
sinଶ ቀ

௡గ௫

௔
ቁ for 𝑎 = 1,   𝑛 = 1,2,3 

 

 



௜ℏ

ఎ(௧)

ௗఎ(௧)

ௗ௧
= 𝐸               ⇒

ௗఎ

ఎ
= −

௜ா

ℏ
𝑑𝑡           ⇒ 𝜂(𝒕) = 𝒆ି

𝒊𝑬

ℏ
𝒕  

Since 𝜂(𝑡) must not blow up at 𝑡 = ∞, so 𝐸 must have to be real. 

ିℏమ

ଶ௠ట(௫)

ௗమట(௫)

ௗ௫మ = 𝐸      ⇒
ௗమట

ௗ௫మ +
ଶ௠

ℏమ 𝜓 = 0     ⇒
ௗమట

ௗ௫మ + 𝑘ଶ𝜓 = 0;   ቈ𝑘 = ට
ଶ௠ா

ℏమ ቉    ⇒ 𝜓(𝑥) = 𝐴𝑒ି௜௞௫ +

𝐵𝑒ା௜௞௫ 

⇒ 𝜓௞(𝑥) = 𝐴௞𝑒௜௞௫    𝑤𝑖𝑡ℎ   𝑘 = ±ට
ଶ௠ா

ℏమ   for waves travelling to right  and to left 

respectively… (A) 

Since 𝜓௞(𝑥) must not blow up at 𝑥 = ±∞, so 𝑘 must have to be real. 

𝝍𝒌(𝒙, 𝒕) = 𝐴௞𝑒
௜ቀ௞௫ି

ಶ

ℏ
௧ቁ

= 𝑨𝒌𝒆
𝒊ቆ±ට

𝟐𝒎𝑬

ℏ𝟐 𝒙ି
𝑬

ℏ
𝒕ቇ

 . …… (B) 

For free particle there are no boundary conditions. Therefore values of 𝑘 or 𝐸 =
ℏమ௞మ

ଶ௠
 are not 

discrete. Rather they have continuous values.  

Comparing the equation 𝜓௞(𝑥, 𝑡) = 𝐴௞𝑒
௜ቀ௞௫ି

ಶ

ℏ
௧ቁ

= 𝐴௞𝑒
௜௞ቀ௫ି

ಶ

ℏೖ
௧ቁ  with the standard wave 

equation 𝑓 = 𝑓(𝑥 − 𝑣𝑡) we see that the velocity of the wave is: 

𝑣௪௔௩௘ =
ா

ℏ௞
=

ா

ℏ
ට

ℏ𝟐

𝟐𝒎𝑬
= ට

𝑬

𝟐𝒎
       ……… (C). 

But the particle velocity 𝑣௣௔௥௧௜௖௟௘ = ට
𝟐𝑬

𝒎
      …… (D)         ቂ𝐹𝑟𝑜𝑚  𝐸 =

ଵ

ଶ
𝑚𝑣ଶቃ . 

Therefore,  
௩ೢೌೡ೐

௩೛ೌೝ೟೔೎೗೐
= ට

ா

ଶ௠
× ට

௠

ଶா
=

ଵ

ଶ
 . 

The ‘eigen function’ (A) [or (B)] do not represent the stationary states of a free particle since: 

(i) 𝑃௞ = |𝜓௞(𝑥, 𝑡)|ଶ = |𝐴௞|ଶ is independent of 𝑥 and the probability of finding the particle 
at anywhere between 𝑥 = −∞ to +∞ is the same (see Fig.). Therefore the eigen function does 
not represent a localised particle. 

 

(ii) ∫ 𝑃௞(𝑥)𝑑𝑥
ஶ

ିஶ
= |𝐴௞|ଶ ∫ 𝑑𝑥

ஶ

ିஶ
= ∞. i.e the ‘eigen functions’ 𝜓௞ are not square 

integrable and   total probability becomes infinite which is impossible.  

(iii) The wave, representing the particle, moves with a velocity which is half of the velocity 
of the   particle.  
 
 Thus these ‘eigen functions’ [eqn. (A) or (B)] “do not represent the physically realisable 
states”[Griffiths]. In other words “a free particle cannot exist in a stationary state” or “there is 
no such thing as a free particle with a definite energy”[Griffiths].  
Now the general solution will be the linear combination of all the eigen functions or of all the 

solutions exp ቆ𝑖 ቀ𝑘𝑥 −
ℏ௞మ

ଶ௠
𝑡ቁቇ. Since 𝑘 or 𝐸 are continuous so the summation in the linear 

combination will be replaced by integration: 

+∞  −∞  0         𝑥 

𝑃௞(𝑥)  



𝛹(𝑥, 𝑡) =
ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒

௜൬௞௫ି
ℏೖమ

మ೘
௧൰ାஶ

ିஶ
𝑑𝑘 , 

where 
ଵ

√ଶగ
𝜑(𝑘) play the role of the coefficients of the linear combination. 

𝜑(𝑘) can be determined from the initial wave function 𝛹(𝑥, 0) =
ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒𝒊𝒌𝒙ାஶ

ିஶ
𝑑𝑘  with 

the help of Fourier Transform: 

𝜑(𝑘) =
1

√2𝜋
න 𝛹(𝑥, 0)𝑒ି𝒊𝒌𝒙

ାஶ

ିஶ

𝑑𝑥 

 

Fourier Transform: 

If 𝑓(𝑥) =
ଵ

√ଶగ
∫ 𝐹(𝑘)𝑒௜௞௫𝑑𝑘

ାஶ

ିஶ
… … … (𝑖)      then     𝐹(𝑘) =

ଵ

√ଶగ
∫ 𝑓(𝑥)𝑒ି௜௞௫𝑑𝑥

ାஶ

ିஶ
… … … (𝑖𝑖)     

and vice versa. (ii) is called the Fourier Transform of (i)  and (i) is called inverse Fourier 
transform of (ii). 

Thus the free particle wave function at 𝒕 = 𝟎 and at 𝒕 = 𝒕 are: 

𝛹(𝑥, 0) =
ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒𝒊𝒌𝒙ାஶ

ିஶ
𝑑𝑘  

and     𝛹(𝑥, 𝑡) =
ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒

𝒊ቀ𝒌𝒙ି
𝑬

ℏ
𝒕ቁାஶ

ିஶ
𝑑𝑘 =

ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒

𝒊൬𝒌𝒙ି
ℏ𝒌𝟐

𝟐𝒎
𝒕൰ାஶ

ିஶ
𝑑𝑘  

with  𝜑(𝑘) =
ଵ

√ଶగ
∫ 𝛹(𝑥, 0)𝑒ି𝒊𝒌𝒙ାஶ

ିஶ
𝑑𝑥. 

Now we see that    |𝛹(𝑥, 0)|ଶ = 𝑃(𝑥, 0) =
ଵ

ଶగ
∫ |𝜑(𝑘)|ଶାஶ

ିஶ
𝑑𝑘  and 

ଵ

ଶగ
∫ 𝑃(𝑥, 0)𝑑𝑥

ାஶ

ିஶ
=  ∫ ∫ |𝜑(𝑘)|ଶାஶ

ିஶ
𝑑𝑘𝑑𝑥

ାஶ

ିஶ
  is not infinite essentially.  

 

What does 𝜳(𝒙, 𝟎) =
𝟏

√𝟐𝝅
∫ 𝝋(𝒌)𝒆𝒊𝒌𝒙ାஶ

ିஶ
𝒅𝒌 represent? 

The type or shape of the wave represented by 𝛹(𝑥, 0) =
ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒௜௞௫ାஶ

ିஶ
𝑑𝑘 depends on 

𝜑(𝑘). To have an idea about what is represented by 𝛹(𝑥, 0), let us first solve the following 
problems (A) to (D).  

Problem A. (From: Int. to Q. M. 2nd edn. D. J. Griffiths Problem 2.20 (a)):  

Dirichlet’s theorem says that ‘any’ function 𝑓(𝑥)on the interval [−𝑎, 𝑎]can be expanded as a 
Fourier series: 

 𝑓(𝑥) = ∑ ቂ𝑎௡ sin ቀ
௡గ௫

௔
ቁ + 𝑏௡ cos ቀ

௡గ௫

௔
ቁቃஶ

௡ୀ଴  

Show that this can be written equivalently as:   𝑓(𝑥) = ∑ 𝑐௡𝑒
೔೙ഏೣ

ೌஶ
௡ୀିஶ ….. ……(A) 

where 𝑐௡ = 𝑏௡  for 𝑛 = 0;           𝑐௡ =
ଵ

ଶ
(−𝑖𝑎௡ + 𝑏௡)  for 𝑛 = 1,2, …   ∞   

and 𝑐௡ =
ଵ

ଶ
(𝑖𝑎ି௡ + 𝑏ି௡)  for 𝑛 = −1, −2, … − ∞.  

Ans.: 𝑓(𝑥) = ∑ ቂ𝑎௡ sin ቀ
௡గ௫

௔
ቁ + 𝑏௡ cos ቀ

௡గ௫

௔
ቁቃஶ

௡ୀ଴ = ∑ ቈ𝑎௡
௘

೔೙ഏೣ
ೌ ି௘

ష
೔೙ഏೣ

ೌ

ଶ௜
+ 𝑏௡

௘
೔೙ഏೣ

ೌ ା௘
ష

೔೙ഏೣ
ೌ

ଶ
቉ஶ

௡ୀ଴  

 = ∑ ൤ቀ
௔೙

ଶ௜
+

௕೙

ଶ
ቁ 𝑒

೔೙ഏೣ

ೌ + ቀ−
௔೙

ଶ௜
+

௕೙

ଶ
ቁ 𝑒ି

೔೙ഏೣ

ೌ ൨ஶ
௡ୀ଴  



 = ∑
ଵ

ଶ
(−𝑖𝑎௡ + 𝑏௡)𝑒

೔೙ഏೣ

ೌஶ
௡ୀ଴ + ∑

ଵ

ଶ
(𝑖𝑎௡ + 𝑏௡)𝑒ି

೔೙ഏೣ

ೌஶ
௡ୀ଴  

=
ଵ

ଶ
(−𝑖𝑎଴ + 𝑏଴) +

ଵ

ଶ
(𝑖𝑎଴ + 𝑏଴) + ∑

ଵ

ଶ
(−𝑖𝑎௡ + 𝑏௡)𝑒

೔೙ഏೣ

ೌஶ
௡ୀଵ + ∑

ଵ

ଶ
(𝑖𝑎௡ + 𝑏௡)𝑒ି

೔೙ഏೣ

ೌஶ
௡ୀଵ   

= ∑
ଵ

ଶ
(−𝑖𝑎௡ + 𝑏௡)𝑒

೔೙ഏೣ

ೌஶ
௡ୀଵ + 𝑏଴𝑒

೔.బ.ഏೣ

ೌ + ∑
ଵ

ଶ
(𝑖𝑎ି௡ + 𝑏ି௡)𝑒ା

೔೙ഏೣ

ೌିஶ
௡ୀିଵ   

= ∑
ଵ

ଶ
(𝑖𝑎ି௡ + 𝑏ି௡)𝑒ା

೔೙ഏೣ

ೌିଵ
௡ୀିஶ + 𝑏଴𝑒

೔.బ.ഏೣ

ೌ + ∑
ଵ

ଶ
(−𝑖𝑎௡ + 𝑏௡)𝑒

೔೙ഏೣ

ೌஶ
௡ୀଵ   

 = ∑ 𝑐௡𝑒
೔೙ഏೣ

ೌஶ
௡ୀିஶ  

 Problem B. (From: Int. to Q. M. 2nd edn. D. J. Griffiths Problem 2.20 (b)): 

Show that:  𝑐௡ =
ଵ

ଶ௔
∫ 𝑓(𝑥)𝑒ି

೔೙ഏೣ

ೌ
ା௔

ି௔
𝑑𝑥    ….. ……(B) 

Ans.: 𝑓(𝑥) = ∑ 𝑐௡𝑒
೔೙ഏೣ

ೌஶ
௡ୀିஶ  

∫ 𝑓(𝑥)𝑒ି
೔೘ഏೣ

ೌ 𝑑𝑥
௔

ି௔
= ∑ ∫ 𝑐௡𝑒

೔೙ഏೣ

ೌ 𝑒ି
೔೘ഏೣ

ೌ 𝑑𝑥
௔

ି௔
ஶ
௡ୀିஶ = ∑ ∫ 𝑐௡𝑒

೔(೙ష೘)ഏೣ

ೌ 𝑑𝑥
௔

ି௔
ஶ
௡ୀିஶ  …… (X) 

For 𝑛 = 𝑚,  

∫ 𝑐௡𝑒
೔(೙ష೘)ഏೣ

ೌ 𝑑𝑥
௔

ି௔
= ∫ 𝑐௠𝑒଴𝑑𝑥

௔

ି௔
= 2𝑎𝑐௠  

For 𝑛 ≠ 𝑚,  

∫ 𝑐௡𝑒
೔(೙ష೘)ഏೣ

ೌ 𝑑𝑥
௔

ି௔
=

௔

௜(௡ି௠)గ
𝑐௡ ൤𝑒

೔(೙ష೘)ഏೌ

ೌ − 𝑒ି
೔(೙ష೘)ഏೌ

ೌ ൨ =
௔

௜(௡ି௠)గ
𝑐௡ൣ𝑒௜(௡ି௠)గ −

𝑒ି௜(௡ି௠)గ൧  

 =
௔

௜(௡ି௠)గ
𝑐௡ൣ(−1)(௡ି௠) − (−1)ି(௡ି௠)൧       (Since 𝑒௜గ = −1)  

= 0  

Therefore all the terms of the summation of the r.h.s of (X) vanish except for 𝑛 = 𝑚 and: 

∫ 𝑓(𝑥)𝑒ି
೔೘ഏೣ

ೌ 𝑑𝑥
௔

ି௔
= ∑ ∫ 𝑐௡𝑒

೔(೙ష೘)ഏೣ

ೌ 𝑑𝑥
௔

ି௔
ஶ
௡ୀିஶ = 2𝑎𝑐௠. 

Hence 𝑐௡ =
ଵ

ଶ௔
∫ 𝑓(𝑥)𝑒ି

೔೙ഏೣ

ೌ 𝑑𝑥
௔

ି௔
. 

Problem C. (From: Int. to Q. M. 2nd edn. D. J. Griffiths Problem 2.20 (c)): 

 Let 𝑘 =
௡గ

௔
,   ∆𝑘 is 𝑡ℎ𝑒 increment in 𝑘 for increment in 𝑛 by 1   and 𝑐௡ =

ଵ

௔
ට

గ

ଶ
𝐹(𝑘). Show 

that (A) and (B) reduce to: 

𝑓(𝑥) =
ଵ

√ଶగ
∑ 𝐹(𝑘)𝑒௜௞௫∆𝑘ஶ

௡ୀିஶ    ……. (C)   and  𝐹(𝑘) =
ଵ

√ଶగ
∫ 𝑓(𝑥)𝑒ି௜௞௫𝑑𝑥

ା௔

ି௔
.    ……. (D)  

Ans.: We have 𝑓(𝑥) = ∑ 𝑐௡𝑒
೔೙ഏೣ

ೌஶ
௡ୀିஶ  

 With the substitutions 𝑘 =
௡గ

௔
, and 𝑐௡ =

ଵ

௔
ට

గ

ଶ
𝐹(𝑘) we have: 

 𝑓(𝑥) = ∑
ଵ

௔
ට

గ

ଶ
𝐹(𝑘)𝑒௜௞௫ஶ

௡ୀିஶ =
ଵ

√ଶగ
∑

ଵ

௔
√2𝜋ට

గ

ଶ
𝐹(𝑘)𝑒௜௞௫ஶ

௡ୀିஶ =
ଵ

√ଶగ
∑

గ

௔
𝐹(𝑘)𝑒௜௞௫ஶ

௡ୀିஶ  

Now ∆𝑘 is 𝑡ℎ𝑒 increment in 𝑘 for increment in 𝑛 by 1. i.e. ∆𝑘 =
గ

௔
.  Then: 



𝑓(𝑥) =
ଵ

√ଶగ
∑

గ

௔
𝐹(𝑘)𝑒௜௞௫ஶ

௡ୀିஶ =
ଵ

√ଶగ
∑ 𝐹(𝑘)𝑒௜௞௫∆𝑘ஶ

௡ୀିஶ . ……. (C) 

Also we have: 𝑐௡ =
ଵ

ଶ௔
∫ 𝑓(𝑥)𝑒ି

೔೙ഏೣ

ೌ 𝑑𝑥
௔

ି௔
   ⇒

ଵ

௔
ට

గ

ଶ
𝐹(𝑘) =

ଵ

ଶ௔
∫ 𝑓(𝑥)𝑒ି௜௞௫𝑑𝑥

௔

ି௔
 

⇒ 𝐹(𝑘) =
ଵ

ଶ௔
𝑎ට

ଶ

గ
∫ 𝑓(𝑥)𝑒ି௜௞௫𝑑𝑥

௔

ି௔
=

ଵ

√ଶగ
∫ 𝑓(𝑥)𝑒ି௜௞௫𝑑𝑥

௔

ି௔
  ……. (D) 

Problem D. (From: Int. to Q. M. 2nd edn. D. J. Griffiths Problem 2.20 (d)):   

 Show that for 𝑎 → ∞  (C) and (D) reduce to: 

 𝑓(𝑥) =
ଵ

√ଶగ
∫ 𝐹(𝑘)𝑒௜௞௫𝑑𝑘

ାஶ

ିஶ
   ……. (E)   and  𝐹(𝑘) =

ଵ

√ଶగ
∫ 𝑓(𝑥)𝑒ି௜௞௫𝑑𝑥

ାஶ

ିஶ
.    ……. (F) 

Ans.:  For 𝑎 → ∞, from (D) we have: 𝐹(𝑘) =
ଵ

√ଶగ
∫ 𝑓(𝑥)𝑒ି௜௞௫𝑑𝑥

ା௔

ି௔
=

ଵ

√ଶగ
∫ 𝑓(𝑥)𝑒ି௜௞௫𝑑𝑥

ାஶ

ିஶ
 

From (C) 𝑓(𝑥) =
ଵ

√ଶగ
∑ 𝐹(𝑘)𝑒௜௞௫∆𝑘ஶ

௡ୀିஶ . Now for 𝑎 → ∞, ∆𝑘 =
గ

௔
→ 0. Therefore the 

summation is to be replaced by integration: 𝑓(𝑥) =
ଵ

√ଶగ
∫ 𝐹(𝑘)𝑒௜௞௫𝑑𝑘

ାஶ

ିஶ
.  

Wave Packet: 

Now let us plot the wave obtained by adding sine waves having uniformly varying propagation 
constants within a finite range [𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒, 𝑤𝑒 𝑚𝑎𝑦 𝑡𝑎𝑘𝑒 1 ≤ 𝑘 ≤ 1.1] i.e. ∑ sin 𝑘𝑥, where 
1 ≤ 𝑘 ≤ 1.1.  We see that [Fig.1-7] the resultant wave is a series of wave groups. As the number 
of component waves within the finite range of propagation constants increases, the resultant 
wave groups increase in height, decrease in width and the separation between the groups 
increases. The small wave groups in between can be neglected in the present discussion since 
they decrease in height and thus become insignificant with increase in the number of component 
waves. If the number of component waves tends to infinity then the separation between the 
groups will increase to infinity and we will get a single wave group or wave packet. The height 
of the group or packet will be very large and width will be very small. If the resultant wave 
represents the wave function of a particle, then the probability density of the particle, i.e. the 
square of the resultant wave function will be very high at a very narrow region i.e. within the 
width of the wave group and the particle will be well localised.     

 

       𝑦 = sin(𝑥)                                                               𝑦 = sin(𝑥) + sin(1.1𝑥) 
 



 
             𝑦 = sin(𝑥) + sin(1.05𝑥) + sin(1.1𝑥)                                  𝑦 = sin(𝑥) + sin(1.025𝑥) + sin(1.05𝑥) + sin(1.075𝑥) +

sin(1.1𝑥) 

 
𝑦 = sin(𝑥) + sin(1.0125𝑥) + sin(1.025𝑥) + sin(1.0375𝑥) + sin(1.05𝑥) + sin(1.0625𝑥) + sin(1.075𝑥) + sin(1.0875𝑥) + sin(1.1𝑥) 

 

We see that the wave packet is composed of waves of smaller wavelength modulated by a 
profile or envelope which gives the shape of the group (Fig.-8).  

 

QQ: Let two superposing sine waves have wave lengths 𝜆ଵ and 𝜆ଶ. Let at any particular 
instant of time their peaks coincide at 𝑥 = 0. Show that at the same instant their peaks will also 
coincide at: 

𝑥 = 𝑛 × LCM(𝜆ଵ, 𝜆ଶ), where 𝑛 is an integer. 

𝑦 = ෍ sin൫(1 + 0.001𝑛)𝑥൯

ଵ଴଴

௡ୀଵ

 

 



From the problems (A) to (D) it is clear that the set of sine waves forming the above wave 

groups can be obtained as special case from 𝑓(𝑥) =
ଵ

√ଶగ
∫ 𝐹(𝑘)𝑒௜௞௫𝑑𝑘

ାஶ

ିஶ
 in proceeding back 

from problem (D) to (A) i.e. from 𝑓(𝑥) =
ଵ

√ଶగ
∫ 𝐹(𝑘)𝑒௜௞௫𝑑𝑘

ାஶ

ିஶ
  to 𝑓(𝑥) =

∑ ቂ𝑎௡ sin ቀ
௡గ௫

௔
ቁ + 𝑏௡ cos ቀ

௡గ௫

௔
ቁቃஶ

௡ୀ଴  and by suitably choosing 𝑛 and the coefficients 𝑎௡ and 𝑏௡. 

Therefore 𝛹(𝑥, 0) =
ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒𝒊𝒌𝒙ାஶ

ିஶ
𝑑𝑘 represents a localised wave packet or group, whose 

shape depends on 𝜑(𝑘) and may be different from those given in the above figures. This will 
be clear from the following problems (E) & (F). However since the wave packet  

Problem E. (From: Int. to Q. M. 2nd edn. D. J. Griffiths Problem 2.21): 

A free particle has initial wave function 𝛹(𝑥, 0) = 𝐴𝑒ି𝒂|𝒙|, where 𝐴 and 𝑎 are constants with 
𝑎 real and positive.  

(i) Normalise 𝛹(𝑥, 0). 
(ii) Find 𝛹(𝑥, 𝑡) in integral form. 
(iii) Discuss the cases for 𝑎 very large and 𝑎 very small.  

 
Ans.: (i) Normalise 𝛹(𝑥, 0):  

  ∫ |𝛹(𝑥, 0)|ଶାஶ

ିஶ
= 1       ⇒ 𝐴ଶ ∫ 𝑒ିଶ௔|𝒙|𝑑𝑥

ାஶ

ିஶ
= 1     

  ⇒ 𝐴ଶ ቀ∫ 𝑒ଶ௔𝒙𝑑𝑥
଴

ିஶ
+ ∫ 𝑒ିଶ௔𝒙𝑑𝑥

ାஶ

଴
ቁ = 1  ⇒ 𝐴ଶ ଵ

ଶ௔
ቀ∫ 𝑒௬𝑑𝑦

଴

ିஶ
+ ∫ 𝑒ି௬𝑑𝑦

ାஶ

଴
ቁ = 1  

  ⇒ 𝐴ଶ ଵ

ଶ௔
([𝑒௬]ିஶ

଴ − [𝑒ି௬]଴
ஶ) = 1 

  ⇒ 𝐴ଶ ଵ

ଶ௔
(𝑒଴ − 𝑒ିஶ − 𝑒ିஶ + 𝑒଴) = 1 

  ⇒  
ଶ஺మ

ଶ௔
= 1 ⇒  𝐴 = √𝑎 . 

  So 𝛹(𝑥, 0) = √𝑎𝑒ି𝒂|𝒙|. 

(ii) 𝛹(𝑥, 0) = √𝑎𝑒ି𝒂|𝒙| 

  𝜑(𝑘) =
ଵ

√ଶగ
∫ 𝛹(𝑥, 0)𝑒ି௜ାஶ

ିஶ
𝑑𝑥 =

ଵ

√ଶగ
√𝑎 ∫ 𝑒ି𝒂|𝒙|𝑒ି௜௞௫ାஶ

ିஶ
𝑑𝑥 

  = ට
௔

ଶగ
ቂ∫ 𝑒ି(ି𝒂𝒙ା௜௞௫)଴

ିஶ
𝑑𝑥 + ∫ 𝑒ି(𝒂𝒙ା௜௞௫)ାஶ

଴
𝑑𝑥ቃ  

  = ට
௔

ଶగ
ቀ

ଵ

௔ି௜௞
ൣ𝑒𝒂𝒙ି௜௞௫൧

ିஶ

଴
+

ଵ

ି(௔ା௜௞)
ൣ𝑒ି(𝒂𝒙ା௜௞௫)൧

଴

ஶ
ቁ 

  = ට
௔

ଶగ
ቀ

ଵ

௔ି௜௞
−

ଵ

ି(௔ା௜௞)
ቁ 

  = ට
௔

ଶగ
ቀ

ଵ

௔ି௜௞
+

ଵ

௔ା௜௞
ቁ = ට

௔

ଶగ
ቀ

ଶ௔

௔మା௞మቁ  

  𝜑(𝑘) = ට
௔

ଶగ
ቀ

ଶ௔

௔మା௞మቁ 

  𝛹(𝑥, 𝑡) =
ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒

𝒊൬𝒌𝒙ି
ℏ𝒌𝟐

𝟐𝒎
𝒕൰ାஶ

ିஶ
𝑑𝑘 =

௔య మ⁄

గ
∫

ଵ

௔మା௞మ 𝑒
𝒊൬𝒌𝒙ି

ℏ𝒌𝟐

𝟐𝒎
𝒕൰ାஶ

ିஶ
𝑑𝑘   

(iii) For very large 𝑎,  𝛹(𝑥, 0) = 𝐴𝑒ି𝒂|𝒙|is a very narrow spike at 𝑥 = 0. But for small 𝑎, 
   𝛹(𝑥, 0) = 𝐴𝑒ି𝒂|𝒙|  is flat. 



 
 
 
 

 

 

 

 

Problem F. (From: Int. to Q. M. 2nd edn. D. J. Griffiths Problem 2.22, with modification): 

A free particle has initial wave function 𝛹(𝑥, 0) =
ଵ

(గఙబ
మ)భ ర⁄ 𝑒

ି
భ

మ഑బ
మ௫మ

𝑒௜௞బ௫ = 𝐴𝑒ି௔௫మ
𝑒௜௞బ௫, 

where 𝐴 and 𝑎 are constants with 𝑎 real and positive.  

(i) Show that 𝛹(𝑥, 0) =
ଵ

(గఙబ
మ)భ ర⁄ 𝑒

ି
భ

మ഑బ
మ௫మ

𝑒௜௞బ௫ is normalised. 

(ii) Normalise 𝛹(𝑥, 0) = 𝐴𝑒ି௔௫మ
𝑒௜௞బ௫ to show that 𝐴 = ቀ

ଶ௔

గ
ቁ

భ

ర. 

(iii) Plot 𝐼𝑚൫𝛹(𝑥, 0)൯ and |𝛹(𝑥, 0)| for 𝑎 = 1, 𝑘଴ = 100. 
(iv) Show that the expression of  𝜑(𝑘) in the Fourier expansion of 𝛹(𝑥, 0) is: 

𝜑(𝑘) =
ଵ

√ଶ௔
ቀ

ଶ௔

గ
ቁ

భ

ర
𝑒ି

(ೖషೖబ)మ

రೌ . 

(v) Plot 𝜑(𝑘) vs. 𝑘 for 𝑎 = 1. 
(vi) Find the expression of 𝛹(𝑥, 𝑡). 
(vii) Find the expression of |𝛹(𝑥, 𝑡)|ଶ. Comment on it. Plot |𝛹(𝑥, 𝑡)|ଶ vs. 𝑡. What happens 

to |𝛹(𝑥, 𝑡)|ଶ as time goes on.  

x 

𝛹(𝑥, 0) = √𝑎𝑒ି𝒂|𝒙|  , 𝑤𝑖𝑡ℎ 𝑎 = 1 

𝝋(𝒌) = ට
𝒂

𝟐𝝅
൬

𝟐𝒂

𝒂𝟐 + 𝒌𝟐
൰  𝒘𝒊𝒕𝒉 𝒂 = 𝟏 

k 



(viii) At what time does the system come closest to uncertainty limit? 
 

Ans.: (i)  
 (ii) Normalise 𝛹(𝑥, 0) = 𝐴𝑒ି௔௫మ

𝑒௜௞బ௫:   

  ∫ |𝛹(𝑥, 0)|ଶାஶ

ିஶ
= 1       ⇒ 𝐴ଶ ∫ 𝑒ିଶ௔௫మ

𝑑𝑥
ାஶ

ିஶ
= 1  

  Let 2𝑎𝑥ଶ = 𝑦     ⇒ 4𝑎𝑥𝑑𝑥 = 𝑑𝑦 ⇒ 𝑑𝑥 =
ௗ௬

ସ௔௫
=

√ଶ௔ௗ௬

ସ௔√௬
=

௬షభ మ⁄ ௗ௬

ଶ√ଶ௔
 

  ⇒  
ଶ஺మ

ଶ√ଶ௔
∫ 𝑦ଵ ଶ⁄ ିଵ𝑒ି௬𝑑𝑦

ାஶ

଴
= 1 ⇒  

ଶ஺మ

ଶ√ଶ௔
Γ ቀ

ଵ

ଶ
ቁ = 1 ⇒  

ଶ஺మ

ଶ√ଶ௔
Γ ቀ

ଵ

ଶ
ቁ    ⇒ 𝐴 = ቀ

ଶ௔

గ
ቁ

భ

ర  

(iii) 𝛹(𝑥, 0) = ቀ
ଶ௔

గ
ቁ

భ

ర
𝑒ି௔௫మ

𝑒௜௞బ௫ 

  𝐼𝑚൫𝛹(𝑥, 0)൯ = ቀ
ଶ௔

గ
ቁ

భ

ర
𝑒ି௔௫మ

sin(𝑘଴𝑥) = ቀ
ଶ

గ
ቁ

భ

ర
𝑒ି௫మ

sin(100𝑥). 

  |𝛹(𝑥, 0)| = ቀ
ଶ௔

గ
ቁ

భ

ర
𝑒ି௔௫మ

= ቀ
ଶ

గ
ቁ

భ

ర
𝑒ି௫మ

. 

 

 

(iv) 𝛹(𝑥, 0) = ቀ
ଶ௔

గ
ቁ

భ

ర
𝑒ି௔௫మ

𝑒௜௞బ௫ 

  𝜑(𝑘) =
ଵ

√ଶగ
∫ 𝛹(𝑥, 0)𝑒ି௜௞௫ାஶ

ିஶ
𝑑𝑥 =

ଵ

√ଶగ
ቀ

ଶ௔

గ
ቁ

భ

ర
∫ 𝑒ି௔௫మ

𝑒ି௜(௞ି௞బ)௫ାஶ

ିஶ
𝑑𝑥 

  =
ଵ

√ଶగ
ቀ

ଶ௔

గ
ቁ

భ

ర
∫ 𝑒ିൣ௔௫మା௜(௞ି௞బ)௫൧ାஶ

ିஶ
𝑑𝑥   

 
 

   

න 𝒆ି൫𝒂𝒙𝟐ା𝒃𝒙൯
ାஶ

ିஶ

𝒅𝒙 = න 𝒆ି𝒂ቀ𝒙𝟐ା
𝒃
𝒂

𝒙ቁ
ାஶ

ିஶ

𝒅𝒙 = න 𝒆
ି𝒂ቆ𝒙𝟐ା𝟐𝒙

𝒃
𝟐𝒂

ା
𝒃𝟐

𝟒𝒂𝟐ቇା
𝒃𝟐

𝟒𝒂
ାஶ

ିஶ

𝒅𝒙 

= 𝒆
𝒃𝟐

𝟒𝒂 න 𝒆ି𝒂ቀ𝒙ା
𝒃

𝟐𝒂
ቁ

𝟐ାஶ

ିஶ

𝒅𝒙 =
𝟐

√𝒂
𝒆

𝒃𝟐

𝟒𝒂 න 𝒆ି𝒚𝟐
ஶ

𝟎

𝒅𝒚 =
𝟐

√𝒂
𝒆

𝒃𝟐

𝟒𝒂
√𝝅

𝟐
= ට

𝝅

𝒂
𝒆

𝒃𝟐

𝟒𝒂 



  𝜑(𝑘) =
ଵ

√ଶగ
ቀ

ଶ௔

గ
ቁ

భ

ర
ට

గ

௔
𝑒ି

(ೖషೖబ)మ

రೌ =
ଵ

√ଶ௔
ቀ

ଶ௔

గ
ቁ

భ

ర
𝑒ି

(ೖషೖబ)మ

రೌ . 

 
 
 

 
 
 

  

  𝛹(𝑥, 𝑡) =
ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒

௜൬௞௫ି
ℏೖమ

మ೘
௧൰ାஶ

ିஶ
𝑑𝑘 =

ଵ

√ଶగ

ଵ

√ଶ௔
ቀ

ଶ௔

గ
ቁ

భ

ర
∫ 𝑒ି

(ೖషೖబ)మ

రೌ 𝑒
௜൬௞௫ି

ℏೖమ

మ೘
௧൰ାஶ

ିஶ
𝑑𝑘 

  =
ଵ

√ଶగ

ଵ

√ଶ௔
ቀ

ଶ௔

గ
ቁ

భ

ర
∫ 𝑒

ି൭ቀ
೔ℏ೟

మ೘
ା

భ

రೌ
ቁ௞మିቀ௜௫ା

ೖబ
మೌ

ቁ௞ା
ೖబ

మ

రೌ
൱

ାஶ

ିஶ
𝑑𝑘 

  =
ଵ

√ଶగ

ଵ

√ଶ௔
ቀ

ଶ௔

గ
ቁ

భ

ర
𝑒ି

ೖబ
మ

రೌ ∫ 𝑒
ି൬ቀ

೔ℏ೟

మ೘
ା

భ

రೌ
ቁ௞మିቀ௜௫

ೖబ
మೌ

ቁ௞൰ାஶ

ିஶ
𝑑𝑘 

=
1

√2𝜋

1

√2𝑎
൬

2𝑎

𝜋
൰

ଵ
ସ

𝑒ି
௞బ

మ

ସ௔
ඨ

𝝅

ቀ
𝑖ℏ𝑡
2𝑚

+
1

4𝑎
ቁ

𝒆
ቀ௜௫ା

௞బ
ଶ௔

ቁ
𝟐

𝟒ቀ
௜ℏ௧
ଶ௠

ା
ଵ

ସ௔
ቁ൘
 

= ൬
2𝑎

𝜋
൰

ଵ
ସ 1

√2𝜋

1

√2𝑎
𝑒ି

௞బ
మ

ସ௔ ඨ
𝟒𝒂𝝅

1 + 2𝑎𝑖ℏ𝑡 𝑚⁄
𝒆

𝒂ቀ௜௫ା
௞బ
ଶ௔

ቁ
𝟐

(ଵାଶ௔௜ℏ௧ ௠⁄ )ൗ
 

= ൬
2𝑎

𝜋
൰

ଵ
ସ

𝑒ି
௞బ

మ

ସ௔
𝟏

ඥ1 + 2𝑎𝑖ℏ𝑡 𝑚⁄
𝒆

𝒂ቆି௫మା
௜௫ బ

௔
ା

௞బ
మ

ସ௔మቇ (ଵାଶ௔௜ℏ௧ ௠⁄ )ൗ
 

𝝋(𝒌) =
𝟏

√𝟐𝒂
൬

𝟐𝒂

𝝅
൰

𝟏
𝟒

𝒆ି
𝒌𝟐

𝟒𝒂     𝒘𝒊𝒕𝒉 𝒂 = 𝟏 

k 



= ൬
2𝑎

𝜋
൰

ଵ
ସ 𝟏

ඥ1 + 2𝑎𝑖ℏ𝑡 𝑚⁄
𝒆

𝒂ቆି௫మା
௜௫ బ

௔
ା

௞బ
మ

ସ௔మቇି(ଵାଶ௔௜ℏ௧ ௠⁄ )
௞బ

మ

ସ௔

(ଵାଶ௔௜ℏ௧ ௠⁄ )  

= ൬
2𝑎

𝜋
൰

ଵ
ସ 𝟏

ඥ1 + 2𝑎𝑖ℏ𝑡 𝑚⁄
𝒆

𝒂ቀି௫మା
௜௫௞బ

௔
ቁି

௜ℏ௞బ
మ

ଶ௠
௧

(ଵାଶ௔௜ℏ௧ ௠⁄ )  

 

  =
ଵ

√ଶగ

ଵ

√ଶ௔
ቀ

ଶ௔

గ
ቁ

భ

ర

ට
గ

ቀ
೔ℏ೟

మ೘
ା

భ

రೌ
ቁ

𝑒
ି

ೣమ

ర൬
೔ℏ೟
మ೘

శ
భ

రೌ
൰

= ቀ
ଶ௔

గ
ቁ

ଵ ସ⁄ ௘షೌೣమ (భశమೌ೔ℏ೟ ೘⁄ )ൗ

ඥଵାଶ௔௜ℏ௧ ௠⁄
 . 

(iii) |𝛹(𝑥, 𝑡)|ଶ = ቀ
ଶ௔

గ
ቁ

ଵ ଶ⁄ ௘షൣೌೣమ (భశమೌ೔ℏ೟ ೘⁄ )ൗ శೌೣమ (భషమೌ೔ℏ೟ ೘⁄ )ൗ ൧

ඥ(ଵାଶ௔௜ℏ௧ ௠⁄ )(ଵିଶ௔௜ℏ௧ ௠⁄ )
= ቀ

ଶ௔

గ
ቁ

ଵ ଶ⁄ ௘షమೌೣమ ൫భశరೌమℏమ೟మ ೘మ⁄ ൯ൗ

ඥଵାସ௔మℏమ௧మ ௠మ⁄
 . 

   

 

Phase velocity, group velocity and particle velocity:  

Phase velocity: 

Eigen functions of free particle: 𝜓௞(𝑥, 𝑡) = 𝐴௞𝑒௜(௞௫ିఠ௧); where 𝑘 =
௣

ℏ
, 𝜔 =

ா

ℏ
, 𝐸 =

௣మ

ଶ௠
=

ℏమ௞మ

ଶ௠
. 

Let the wave form, which was at position 𝑥 at time 𝑡, appears at position 𝑥 + 𝑑𝑥 at time 𝑡 + 𝑑𝑡. 
In other words:  

 𝜓௞(𝑥, 𝑡) = 𝜓௞(𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡),   

Or,  𝐴௞𝑒
௜ቀ௞௫ି

ಶ

ℏ
௧ቁ

= 𝐴௞𝑒
௜൬௞(௫ାௗ௫)ି

ಶ

ℏ
(௧ାௗ௧)൰

  

Or, 𝑘(𝑥 + 𝑑𝑥) −
ா

ℏ
(𝑡 + 𝑑𝑡) = 𝑘𝑥 −

ா

ℏ
𝑡;   

Or, 𝑣௣ =
ௗ௫

ௗ௧
=

ா

ℏ௞
=

ℏమ௞మ ଶ௠⁄

ℏ௞
=

ℏ௞

ଶ௠
=

௣

ଶ௠
=

௩

ଶ
. 

Thus the velocity of the wave form, or phase velocity, is equal to half of the particle velocity.  

We see that the phase velocity of the monochromatic (particular 𝑘) eigen functions  of the free 
particle is half of the particle velocity. Now let us calculate the group velocity i.e. the velocity 
of the envelope of the wave group or packet in the following cases: 

Group velocity: 

1. Wave packet composed of two plane waves: Consider two sine waves of equal 
amplitudes but slightly different propagation constants and frequencies –  

𝜓ଵ(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 + 𝜔𝑡)  and 

|𝜳(𝒙, 𝒕)|𝟐  at  𝒕 = 𝟎  &    𝒕 = 𝒎 𝟐𝒂ℏ⁄  

 |𝜳(𝒙, 𝟎)|𝟐 = ቀ
𝟐𝒂

𝝅
ቁ

𝟏 𝟐⁄

𝒆ି𝟐𝒂𝒙𝟐  

|𝜳(𝒙, 𝒕)|𝟐 = ඨ
𝟐𝒂

𝝅

𝒆
ି 

𝟐𝒂𝒙𝟐

𝟏ା𝟒𝒂𝟐ℏ𝟐𝒕𝟐 𝒎𝟐⁄

ඥ𝟏 + 𝟒𝒂𝟐ℏ𝟐𝒕𝟐 𝒎𝟐⁄
 

x 



𝜓ଶ(𝑥, 𝑡) = 𝐴 sin൫(𝑘 + 𝑑𝑘)𝑥 + (𝜔 + 𝑑𝜔)𝑡൯   

The wave group formed by these waves will be: 𝜓ଵ(𝑥, 𝑡) = sin(𝑘𝑥 + 𝜔𝑡)  and 

𝜓 = 𝜓ଵ(𝑥, 𝑡) + 𝜓ଶ(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 + 𝜔𝑡) + 𝐴 sin൫(𝑘 + 𝑑𝑘)𝑥 + (𝜔 + 𝑑𝜔)𝑡൯   

= 2𝐴 sin ቂቀ𝑘 +
ௗ௞

ଶ
ቁ 𝑥 + ቀ𝜔 +

ௗఠ

ଶ
ቁ 𝑡ቃ cos ቀ

ௗ௞

ଶ
𝑥 +

ௗఠ

ଶ
𝑡ቁ  

 ≈ 2𝐴 sin(𝑘𝑥 + 𝜔𝑡) cos ቀ
ௗ௞

ଶ
𝑥 +

ௗఠ

ଶ
𝑡ቁ 

= 2𝐴 cos ቀ
ௗ௞

ଶ
𝑥 +

ௗఠ

ଶ
𝑡ቁ sin(𝑘𝑥 + 𝜔𝑡)  

This is not a plane wave, but a sine wave [sin(𝑘𝑥 + 𝜔𝑡)] of propagation constant 𝑘 and 

frequency 𝜔 whose amplitude is modulated or enveloped by the function 2𝐴 cos ቀ
ௗ௞

ଶ
𝑥 +

ௗఠ

ଶ
𝑡ቁ. 

The sin(𝑘𝑥 + 𝜔𝑡) = sin 𝑘 ቀ𝑥 +
ఠ

௞
𝑡ቁ part oscillates with frequency 𝜔 and moves with velocity 

𝜔 𝑘⁄  as the component waves but its amplitude or envelope 2𝐴 cos ቀ
ௗ௞

ଶ
𝑥 +

ௗఠ

ଶ
𝑡ቁ =

2𝐴 cos
ௗ௞

ଶ
ቀ𝑥 +

ௗఠ

ௗ௞
𝑡ቁ is slowly varying with small frequency 𝑑𝜔 2⁄  moves with velocity 

ௗఠ

ௗ௞
. 

𝑣௣௛ = 𝜔 𝑘⁄  represents the velocity of the phase of the part sin 𝑘 ቀ𝑥 +
ఠ

௞
𝑡ቁ  and is called the 

phase velocity and 𝑣௚ =
ௗఠ

ௗ௞
 represents the velocity of the envelope of the wave and is called 

the group velocity of the wave. 

2. Fourier Packet:  

  𝛹(𝑥, 𝑡) =
ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒𝒊(𝒌𝒙ି𝝎𝒕)ାஶ

ିஶ
𝑑𝑘, where propagation vector 𝒌 =

𝒑

ℏ
 

  =
ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒

𝒊ቀ
𝒑

ℏ
𝒙ି

𝑬

ℏ
𝒕ቁାஶ

ିஶ
𝑑𝑘 

  =
ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒

𝒊൬𝒌𝒙ି
ℏ𝒌𝟐

𝟐𝒎
𝒕൰ାஶ

ିஶ
𝑑𝑘 

Given: 

The Gaussian wave packet 𝛹(𝑥, 0) = 𝐴𝑒ି𝒂𝒙𝟐
 can be written in terms of Fourier transform as: 

𝛹(𝑥, 0) = 𝐴𝑒ି𝒂𝒙𝟐
=

ଵ

√ଶగ
∫ 𝜑(𝑘)𝑒௜௞௫ାஶ

ିஶ
𝑑𝑘, with  𝜑(𝑘) =

ଵ

√ଶ௔
ቀ

ଶ௔

గ
ቁ

భ

ర
𝑒ି

ೖమ

రೌ. 

Where 𝜓௞(𝑥) = 𝑒௜௞௫ are plane wave solutions of the Schrodinger eqn. for a free particle.  

Question: 

Let: 𝐽௞ =
௜ℏ

ଶ௠
ቀ𝜓௞

ௗటೖ
∗

ௗ௫
− 𝜓௞

∗ ௗటೖ

ௗ௫
ቁ and 𝐽 =

௜ℏ

ଶ௠
ቀ𝛹

ௗఅ∗

ௗ௫
− 𝛹∗ ௗఅ

ௗ௫
ቁ and in a problem of step 

potential 𝑅௞ =
|௃ೝೖ|

|௃೔ೖ|
, 𝑇௞ =

|௃೟ೖ|

|௃೔ೖ|
       and 𝑅 =

|௃ೝ|

|௃೔|
, 𝑇 =

|௃೟|

|௃೔|
. 

Verify whether: 𝑅௞ = 𝑅,    𝑇௞ = 𝑇. 

 


