
Programming in C
(Keyword , Identifier , Operator)

Prepared By
Alok Haldar

Assistant professor
Department of Computer Science & BCA

Kharagpur College

Differences between Keyword and Identifier

Keyword Identifier

Keyword is a pre-defined word. The identifier is a user-defined

word

It must be written in a lowercase

letter.

It can be written in both

lowercase and uppercase letters.

Its meaning is pre-defined in the

c compiler.

Its meaning is not defined in the

c compiler.

It is a combination of alphabetical

characters.

It is a combination of

alphanumeric characters.

It does not contain the

underscore character.

It can contain the underscore

character.

C Operators :

An operator is simply a symbol that is used to perform operations. There
can be many types of operations like arithmetic, logical, bitwise, etc.

There are following types of operators to perform different types of
operations in C language.

◦Arithmetic Operators

◦Relational Operators

◦Shift Operators

◦Logical Operators

◦Bitwise Operators

◦Ternary or Conditional Operators

◦Assignment Operator

◦Misc Operator

Precedence of Operators in C :

The precedence of operator species that which operator will be evaluated
first and next. The associativity specifies the operator direction to be
evaluated; it may be left to right or right to left.

Let's understand the precedence by the example given below:

int value=10+20*10;
The value variable will contain 210 because * (multiplicative operator) is
evaluated before + (additive operator).

The precedence and associativity of C operators is given below:

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)*

& sizeof

Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /=

%=>>= <<= &=

^= |=

Right to left

Comma , Left to right

Comments in C :

Comments in C language are used to provide information about lines of
code. It is widely used for documenting code. There are 2 types of
comments in the C language.

1.Single Line Comments

2.Multi-Line Comments
Single Line Comments :

Single line comments are represented by double slash //.

Let's see an example of a single line comment in C.

#include<stdio.h>
int main()
{
//printing information
printf("Hello C");
return 0;
}

Output:

Hello C

Even you can place the comment after the statement. For example:

1.printf("Hello C");//printing information

Mult Line Comments

Multi-Line comments are represented by slash asterisk /* ... */.

 It can occupy many lines of code, but it can't be nested. Syntax:

1. /*

2. code

3. to be commented

4. */

Let's see an example of a multi-Line comment in C.

1.#include<stdio.h>

2. int main(){

3. /*printing information

4.Multi-Line Comment*/

5.printf("Hello C");

6. return 0;

7.}

C Format Specifier :

The Format specifier is a string used in the formatted input and output
functions. The format string determines the format of the input and
output. The format string always starts with a '%' character.

The commonly used format specifiers in printf() function are:

Format specifier Description

%d or %i It is used to print the signed

integer value where signed

integer means that the variable

can hold both positive and

negative values.

%u It is used to print the unsigned

integer value where the

unsigned integer means that the

variable can hold only positive

value.

%o It is used to print the octal

unsigned integer where octal

integer value always starts with

a 0 value.

%x It is used to print the

hexadecimal unsigned integer

where the hexadecimal integer

value always starts with a 0x

value. In this, alphabetical

characters are printed in small

letters such as a, b, c, etc.

%X It is used to print the

hexadecimal unsigned integer,

but %X prints the alphabetical

characters in uppercase such as

A, B, C, etc.

%f It is used for printing the decimal

floating-point values. By default,

it prints the 6 values after '.'.

%e/%E It is used for scientific notation.

It is also known as Mantissa or

Exponent.

%g It is used to print the decimal

floating-point values, and it uses

the fixed precision, i.e., the

value after the decimal in input

would be exactly the same as

the value in the output.

%p It is used to print the address in

a hexadecimal form.

%c It is used to print the unsigned

character.

%s It is used to print the strings.

%ld It is used to print the long-signed

integer value.

int main()

{

int b=6;

int c=8;

printf("Value of b is:%d",b);

printf("\nValue of c is:%d",c);

return 0;

}
In the above code, we are printing the integer value of b and c by using
the %d specifier.

ASCII value in C :

What is ASCII code?

The full form of ASCII is the American Standard Code for

information interchange. It is a character encoding scheme used for

electronics communication. Each character or a special character is

represented by some ASCII code, and each ascii code occupies 7 bits in

memory.

In C programming language, a character variable does not contain a

character value itself rather the ascii value of the character variable.

The ascii value represents the character variable in numbers, and each

character variable is assigned with some number range from 0 to 127.

For example, the ascii value of 'A' is 65.

In the above example, we assign 'A' to the character variable whose

ascii value is 65, so 65 will be stored in the character variable rather

than 'A'.

Let us understand through an example.

We will create a program which will display the ascii value of the
character variable.

#include<stdio.h>

int main()

{

char ch;//variable declaration

printf("Enter a character");

scanf("%c",&ch);//user input

printf("\n The ascii value of the ch variable is : %d",ch);

return 0;

}

In the above code, the first user will give the character input, and the
input will get stored in the 'ch' variable. If we print the value of the 'ch'
variable by using %c format specifier, then it will display 'A' because we
have given the character input as 'A', and if we use the %d format
specifier then its ascii value will be displayed, i.e., 65.

Output

The above output shows that the user gave the input as 'A', and after
giving input, the ascii value of 'A' will get printed, i.e., 65.

Now, we will create a program which will display the ascii value of all the
characters.

#include<stdio.h>

int main()

{

int k;//variable declaration

for(int k=0;k<=255;k++)//for loop from 0-255

{

printf("\nThe ascii value of %c is %d", k,k);

}

return 0;

}

The above program will display the ascii value of all the characters. As we
know that ascii value of all the characters starts from 0 and ends at 255,
so we iterate the for loop from 0 to 255.

Now we will create the program which will sum the ascii value of a string.

#include<stdio.h>

int main()

{

 int sum=0;//variable initialization

char name[20];//variable initialization

int i=0;//variable initialization

printf("Enter a name: ");

scanf("%s",name);

while(name[i]!='\0')//while loop

{

printf("\nThe ascii value of the character %c is %d",

name[i],name[i]);

sum=sum+name[i];

i++;

}

printf("\nSum of the ascii value of a stringis:%d",sum);

return0;

}

In the above code, we are taking user input as a string. After taking user
input, we execute the while loop which adds the ascii value of all the
characters of a string and stores it in a 'sum' variable.

Constants in C :

A constant is a value or variable that can't be changed in the program, for
example: 10, 20, 'a', 3.4, "c programming" etc.

There are different types of constants in C programming.

List of Constants in C

Constant Example

Decimal Constant 10, 20, 450 etc.

Real or Floating-point Constant 10.3, 20.2, 450.6 etc.

Octal Constant 021, 033, 046 etc.

Hexadecimal Constant 0x2a, 0x7b, 0xaa etc.

Character Constant 'a', 'b', 'x' etc.

String Constant "c", "c program", "c in

javatpoint" etc.

1. const keyword

2.#define preprocessor

1. C const keyword

The const keyword is used to define constant in C programming.

Const float PI=3.14;
Now, the value of PI variable can't be changed.

#include<stdio.h>

int main(){

const float PI=3.14;

printf("The value of PI is: %f",PI);

return 0;

}

Output:

The value of PI is: 3.140000
If you try to change the the value of PI, it will render compile time error.

#include<stdio.h>

int main(){

const float PI=3.14;

PI=4.5;

printf("The value of PI is: %f",PI);

return 0;

}
Output:

Compile Time Error: Cannot modify a const object

2) C #define preprocessor

The #define preprocessor is also used to define constant. We will learn
about #define preprocessor directive later.

Visit here for:#define preprocessor directive.

Tokens in C

Tokens in C is the most important element to be used in creating a
program in C. We can define the token as the smallest individual element
in C. For `example, we cannot create a sentence without using words;
similarly, we cannot create a program in C without using tokens in C.
Therefore, we can say that tokens in C is the building block or the basic
component for creating aprogram in C language.

Classification of tokens in C

Tokens in C language can be divided into the five parts.

◦ Identifiers in C

◦Strings in C

◦Operators in C

◦Constant in C

◦Special Characters in C

Let us understand each token one by one.

Keywords in C

Keywords in C can be defined as the pre-defined or the reserved words
having its own importance, and each keyword has its own functionality.
Since keywords are the pre-defined words used by the compiler, so they
cannot be used as the variable names. If the keywords are used as the
variable names, it means that we are assigning a different meaning to the
keyword, which is not allowed. C language supports 32 keywords given
below:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Identifiers in C

Identifiers in C are used for naming variables, functions, arrays,
structures, etc. Identifiers in C are the user-defined words. It can be
composed of uppercase letters, lowercase letters, underscore, or digits,
but the starting letter should be either an underscore or an alphabet.
Identifiers cannot be used as keywords. Rules for constructing identifiers
in C are given below:

◦The first character of an identifier should be either an alphabet or an

underscore, and then it can be followed by any of the character,

digit, or underscore.

◦ It should not begin with any numerical digit.

◦ In identifiers, both uppercase and lowercase letters are distinct.

Therefore, we can say that identifiers are case sensitive.

◦Commas or blank spaces cannot be specified within an identifier.

◦Keywords cannot be represented as an identifier.

◦The length of the identifiers should not be more than 31 characters.

◦ Identifiers should be written in such a way that it is meaningful, short,

and easy to read.

Strings in C

Strings in C are always represented as an array of characters having null
character '\0' at the end of the string. This null character denotes the end
of the string. Strings in C are enclosed within double quotes, while
characters are enclosed within single characters. The size of a string is a
number of characters that the string contains.

Now, we describe the strings in different ways:

char a[10] = "javatpoint"; // The compiler allocates the 10 bytes to the 'a'
array.

char a[] = "javatpoint"; // The compiler allocates the memory at the run
time.

char a[10] = {'j','a','v','a','t','p','o','i','n','t','\0'}; // String is represented in
the form of characters.

Operators in C

Operators in C is a special symbol used to perform the functions. The data
items on which the operators are applied are known as operands.
Operators are applied between the operands. Depending on the number
of operands, operators are classified as follows:

Unary Operator

A unary operator is an operator applied to the single operand. For
example: increment operator (++), decrement operator (--), sizeof,
(type)*.

Binary Operator

The binary operator is an operator applied between two operands. The
following is the list of the binary operators:

◦Arithmetic Operators

◦Relational Operators

◦Shift Operators

◦Logical Operators

◦Bitwise Operators

◦Conditional Operators

◦Assignment Operator

◦Misc Operator
Constants in C

A constant is a value assigned to the variable which will remain the same
throughout the program, i.e., the constant value cannot be changed.

There are two ways of declaring constant:

◦Using const keyword

◦Using #define pre-processor
Types of constants in C

Constant Example

Integer constant 10, 11, 34, etc.

Floating-point constant 45.6, 67.8, 11.2, etc.

Octal constant 011, 088, 022, etc.

Hexadecimal constant 0x1a, 0x4b, 0x6b, etc.

Character constant 'a', 'b', 'c', etc.

String constant "java", "c++", ".net", etc.

Special characters in C

Some special characters are used in C, and they have a special meaning
which cannot be used for another purpose.

◦Square brackets []:The opening and closing brackets represent the

single and multidimensional subscripts.

◦Simple brackets ():It is used in function declaration and function

calling. For example, printf() is a pre-defined function.

◦Curly braces { }:It is used in the opening and closing of the code. It is

used in the opening and closing of the loops.

◦Comma (,):It is used for separating for more than one statement and

for example, separating function parameters in a function call,

separating the variable when printing the value of more than one

variable using a single printf statement.

◦Hash/pre-processor (#):It is used for pre-processor directive. It

basically denotes that we are using the header file.

◦Asterisk (*):This symbol is used to represent pointers and also used as

an operator for multiplication.

◦Tilde (~):It is used as a destructor to free memory.

◦Period (.):It is used to access a member of a structure or a union

Programming Errors in C :

Errors are the problems or the faults that occur in the program, which
makes the behaviour of the program abnormal, and experienced
developers can also make these faults. Programming errors are also
known as the bugs or faults, and the process of removing these bugs is
known as debugging.

These errors are detected either during the time of compilation or
execution. Thus, the errors must be removed from the program for the
successful execution of the program.

There are mainly five types of errors exist in C programming:

◦Syntax error

◦Run-time error

◦Linker error

◦Logical error

◦Semantic error

Syntax error :

Syntax errors are also known as the compilation errors as they occurred at
the compilation time, or we can say that the syntax errors are thrown by
the compilers. These errors are mainly occurred due to the mistakes while
typing or do not follow the syntax of the specified programming language.
These mistakes are generally made by beginners only because they are
new to the language. These errors can be easily debugged or corrected.

For example:

1. If we want to declare the variable of type integer,

2. int a; //this is the correct form

3. Int a; //this is an incorrect form.

Commonly occurred syntax errors are:

◦ If we miss the parenthesis (}) while writing the code.

◦Displaying the value of a variable without its declaration.

◦ If we miss the semicolon (;) at the end of the statement.

Let us understand through an example.

#include<stdio.h>

int main()

{

a=10;

printf("The value of a is:%d",a);

return 0;

}

In the above output, we observe that the code throws the error that 'a' is
undeclared. This error is nothing but the syntax error only.

There can be another possibility in which the syntax error can exist, i.e., if
we make mistakes in the basic construct. Let's understand this scenario
through an example.

#include<stdio.h>

int main()

{

int a=2;

if(.)//syntax error

printf("a is greater than 1");

return 0;

}
In the above code, we put the (.) instead of condition in 'if', so this
generates the syntax error as shown in the below screenshot.

Run-time error :

Sometimes the errors exist during the execution-time even after the
successful compilation known as run-time errors. When the program is
running, and it is not able to perform the operation is the main cause of
the run-time error. The division by zero is the common example of the
run-time error. These errors are very difficult to find, as the compiler does
not point to these errors.

Let us understand through an example.

int main()

{

int a=2;

int b=2/0;

printf("The value of b is:%d",b);

return 0;

}

In the above output, we observe that the code shows the run-time error,
i.e., division by zero.

