Paper – C3T

(Assignments – 1)

- Q.1. What are the dimensions of E in terms of the fundamental quantities M, L,T and I?
- Q.2. Find an expression for the mechanical force per unit area on the surface of a charged conductor.
- Q.3. Calculate the torque on a dipole in an uniform electric field.
- Q.4 In a region, the electric potential is expressed by $\phi(x, y, z) = 10(x^2 + y^2 + z^2)^{-1/2}$. Find the electric field at (2,3,4).
- Q.5 Show that the vector $\vec{E} = (2xy + z^3)\hat{i} + x^{2\hat{j}} + 3xz^2\hat{k}$ represents electrostatic fields. Also find the corresponding electrostatic potential φ ; given $\varphi = \varphi_0$ at x = y = z = 0.
- Q.6. Consider a long cylinder with a charge density proportional to the distance from its axis. i.e. $\rho(r) = kr$. where k is a constant. Using Gauss's law find the electric field at any point inside the cylinder.
- Q.7. A point dipole of moment $\vec{p} = q\hat{k}$ is placed at the origin. What is the work done in displacing a point charge q from (a,0) to 0,a) in the z-x plane.
- Q.8 Find the electric field produced by an infinite cylinder of charge of volume density $\rho=5re^{-2r}$ C/m3, r being the distance from the axis of the cylinder.
- Q.9. a) Show that vector $\vec{E} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ represent electrostatic field.

b) Also find the corresponding electrostatic potential $\phi(x,y,z)$. Given that $\phi=\phi_0$ at x=y=z=0. Q. 10. Write down Laplace's equation and show that the potential function $V=x^2+y^2-2z^2$ satisfies the Laplace's equation.

- Q.11. How much positive charge (in Coulomb) is there in a glass of water of mass 360 gms.
- Q.12 A uniformly charged sphere of radius R carries a total charge Q and a volume density of charge is ρ . Show that the electrostatic energy of the charge distribution is $\frac{1}{4\pi\epsilon_0} \cdot \frac{3Q^2}{5R}$.
- Q.13 Show that the force experienced by the positive plate of a parallel plate capacitor when the voltage is kept constant is $\left(-\frac{q}{2\varepsilon_{0A}}^2\right)$; where A is the plate area.

Q.14 Show that $\varphi(x, y) = e^{-y} \sin(x)$ represents an electrostatic field in free space.

Q. 15 Consider two identical spheres of radius *a* carrying charges q_1 and q_2 respectively and separated by a distance d (>>a). Find the electrostatic energy of the system. Is it equal to the sum of self-energies of two sphere ? Comment on the result.