GE3 COMPUTER SCIENCE

CAND C ++ LECTURE SERIES FOR

B.SC 3RD SEMESTER BY

SUBHADIP MUKHERJEE

DEPARTMENT OF COMPUTER SCIENCE

KHARAGPUR COLLEGE

LECTURE 3

Arithmetic Operators

A + **B**

Operator	<u>Purpose</u>
+	addition
_	subtraction
*	multiplication
1	division
%	remainder after integer division

Expression	<u>Value</u>
a + b	13
a ~ b	7
a * b	30
a / b	3
a % b	1

Unary Operators

- increment operator, ++
- Decrement operator, --

```
Suppose i = 1
```

```
printf("i = %d\n", i);
printf("i = %d\n", ++i);
printf("i = %d\n", i);
```

```
i = 1
i = 2
i = 2
```

```
printf("i = %d\n", i);
printf("i = %d\n", i++);
printf("i = %d\n", i);
```

The sizeof() Operators

```
printf("integer: %d\n", sizeof i);
printf("float: %d\n", sizeof x);
printf("double: %d\n", sizeof d);
printf("character: %d\n", sizeof c);
```

integer: 2

float: 4

double: 8

character: 1

Relational Operators

			<u>Operator</u>	<u>Meaning</u>
i=1, j=2, k=3			<	less than
Expression	Interpretation	<u>Value</u>	<=	less than or equal to
i < j	true	1	>	greater than
(i + j) >= k	true	1	>=	greater than or equal to
(j + k) > (i + 5)	false	0	<u>Operator</u>	Meaning
k != 3	false	0	==	equal to
j == 2	true	1	!=	not equal to

Logical Operators

<u>Operator</u>	<u>Meaning</u>
&&	and
11	or
!	not

Expression
 Interpretation
 Value

$$(i \ge 6)$$
 && $(c == 'w')$
 true
 1

 $(i \ge 6)$ || $(c == 119)$
 true
 1

 $(f < 11)$ && $(i \ge 100)$
 false
 0

 $(c := 'p')$ || $((i + f) \le 10)$
 true
 1

i=7, f=5.5, c='w'

The associativity of previous Operators

Operator category	<u>Operators</u>	Associativity
unary operators	- ++ ! sizeof (<i>type</i>)	$R \rightarrow L$
arithmetic multiply, divide and remainder	* / %	$L \rightarrow R$
arithmetic add and subtract	+ -	$L \rightarrow R$
relational operators	< <= > >=	$L \rightarrow R$
equality operators	== !=	$L \rightarrow R$
logical and	&&	$L \rightarrow R$
logical or	11	$L \rightarrow R$

Example 1

Expression	Interpretation	<u>Value</u>
i + f <= 10	false	0
i >= 6 && c == 'w'	true	1
c l= 'p' i + f <= 10	true	1

Assignment Operators

```
is equivalent to

expression 1 = expression 1 + expression 2

expression 1 = expression 2

expression 1 = expression 2

is equivalent to

expression 1 = expression 1 - expression 2

i += 5

i = i + 5
```

Assignment Operators (cont.)

Suppose
$$i = 5$$
, $j = 7$, $f = 5.5$ g = - 3.25

Expression i += 5 f -= g j *= (i - 3) f /= 3 i %= (j - 2)

Equivalent Expression	<u>Final value</u>
i = i + 5	10
f = f - g	8.75
j = j * (i - 3)	14
f = f / 3	1.833333
i = i % (j - 2)	0

Conditional Operator

expression 1 ? expression 2 : expression 3

$$min = (f < g) ? f : g$$

Suppose f = 6 and g = 34

Then min = 6

Suppose f = 56 and g = 34

Then min = 34

THANK YOU

C and C++ Programming Lecture Series

End of Lecture 3

Subhadip Mukherjee

Department of Computer Science

Kharagpur College

Kharagpur, India