10.1

Chapter 10

Potentials and Fields

The Potential Formulation

10.1.1 Scalar and Vector Potentials

In this chapter we ask how the sources (p and J) generate electric and magnetic fields; in
other words, we seek the general solution to Maxwell’s equations,

1 oB
i) V-E=—p, (iii) VxE=——,
€ ot
(10.1)
.. . oE
(i) V-B=0, iv) V x B = puoJ + pnoeg—.

ot

Given p(r, t) and J(r, #), what are the fields E(r, ) and B(r, £)? In the static case Coulomb’s
law and the Biot-Savart law provide the answer. What we’re looking for, then, is the
generalization of those laws to time-dependent configurations.

This is not an easy problem, and it pays to begin by representing the fields in terms of
potentials. In electrostatics V. x E = 0 allowed us to write E as the gradient of a scalar
potential: E = —V V. In electrodynamics this is no longer possible, because the curl of E
is nonzero. But B remains divergenceless, so we can still write

03

as in magnetostatics. Putting this into Faraday’s law (iii) yields

a
VxE=—-——(V xA),
X 8t( < A)

JA
V x (E—l——):().
at

or
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Here is a quantity, unlike E alone, whose curl does vanish; it can therefore be written as the
gradient of a scalar:

JA
E4+—=-VV.
at
In terms of V and A, then,
JA
E=-VV - —. 10.3
o (10.3)

This reduces to the old form, of course, when A is constant.

The potential representation (Egs. 10.2 and 10.3) automatically fulfills the two homoge-
neous Maxwell equations, (ii) and (iii). How about Gauss’s law (1) and the Ampere/Maxwell
law (iv)? Putting Eq. 10.3 into (i), we find that

) 1
V2V+§(V-A):—€—p; (10.4)
0

this replaces Poisson’s equation (to which it reduces in the static case). Putting Egs. 10.2
and 10.3 into (iv) yields

v %A
V x (V x A) = uoJ — pnoegV (-5?) - MOEOW,

or, using the vector identity V x (V x A) = V(V - A) — VA, and rearranging the terms
a bit:

9ZA v
(VZA - uoeom) -V (V A+ H«OEOE) = —nol. (10.5)

Equations 10.4 and 10.5 contain all the information in Maxwell’s equations.

Example 10.1

Find the charge and current distributions that would give rise to the potentials

k
'ui(ct - |)c|)2 z, for|x| <ct,
v=0, A={ %

0, for |x| > ct,

where k is a constant, and ¢ = 1/, /€g/ig-

Solution: First we’ll determine the electric and magnetic fields, using Eqgs. 10.2 and 10.3:

0A k
E=-—22 2 B
ot 2
_ Mok o oo uok o
B=VxA= ic 8x(ct Ix]) y_i—zc (ct —|x])Y,
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E. B,
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Figure 10.1

(plus for x > 0, minus for x < 0). These are for |x| < c¢t; when |x| > ¢t, E=B =0
(Fig.10.1). Calculating every derivative in sight, I find

. k. k
V.-E=0; V-B=0; VxE:q:“%y; VxB:-“zii;
c

oE ke, 0B k.

e z; —::t“iy.

ot 2 ot 2
As you can easily check, Maxwell’s equations are all satisfied, with p and J both zero. Notice,
however, that B has a discontinuity at x = 0, and this signals the presence of a surface current

K in the yz plane; boundary condition (iv) in Eq. 7.63 gives

kti’:KXf(,

and hence
K =ktz.

Evidently we have here a uniform surface current flowing in the z direction over the plane
x = 0, which starts up at t = 0, and increases in proportion to ¢. Notice that the news travels
out (in both directions) at the speed of light: for points |x| > ¢z the message (that current is
now flowing) has not yet arrived, so the fields are zero.

Problem 10.1 Show that the differential equations for V and A (Eqs. 10.4 and 10.5) can be
written in the more symmetrical form

5 oL 1
PV TG
0 (10.6)

0%A — VL = —pgl.

where
32 v
2 2
0°=V*—-pupeg—s and L=V A €@—.
Im) 0312 +MOOB!
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Figure 10.2

Problem 10.2 For the configuration in Ex. 10.1, consider a rectangular box of length I, width
w, and height #, situated a distance d above the yz plane (Fig. 10.2).

(a) Find the energy in the box at time #] = d/c, and att, = (d + h)/c.

(b) Find the Poynting vector, and determine the energy per unit time flowing into the box
during the interval t; < ¢ < 13.

(c) Integrate the result in (b) from #; to £, and confirm that the increase in energy (part (a))
equals the net influx.

10.1.2 Gauge Transformations

Equations 10.4 and 10.5 are ugly, and you might be inclined at this stage to abandon the
potential formulation altogether. However, we have succeeded in reducing six problems—
finding E and B (three components each)—down to four: V (one component) and A (three
more). Moreover, Egs. 10.2 and 10.3 do not uniquely define the potentials; we are free to
impose extra conditions on V and A, as long as nothing happens to E and B. Let’s work out
precisely what this gauge freedom entails. Suppose we have two sets of potentials, (V, A)
and (V', A’), which correspond to the same electric and magnetic fields. By how much can
they differ? Write
A'=A+4a and V' =V +8.

Since the two A’s give the same B, their curls must be equal, and hence
Vxa=0.
We can therefore write @ as the gradient of some scalar:

axa=VAi.
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The two potentials also give the same E, so

Jo
v — =0,
'B+8t

A
W(5+2) =0

The term in parentheses is therefore independent of position (it could, however, depend on
time); call it k(¢):

or

ax
B= o + k(2).

Actually, we might as well absorb k(¢) into A, defining a new A by adding fot k(t))dt' to the
old one. This will not affect the gradient of 1; it just adds k() to dA/dz. It follows that

A=A+ Vi,

9 (10.7)
V=VvV_—-—.

ot

Conclusion: For any old scalar function A, we can with impunity add Vi to A, provided
we simultaneously subtract 92 /9¢ from V. None of this will affect the physical quantities E
and B. Such changes in V and A are called gauge transformations. They can be exploited
to adjust the divergence of A, with a view to simplifying the “ugly” equations 10.4 and
10.5. In magnetostatics, it was best to choose V - A = 0 (Eq. 5.61); in electrodynamics
the situation is not so clear cut, and the most convenient gauge depends to some extent on
the problem at hand. There are many famous gauges in the literature; I’ll show you the two
most popular ones.

Problem 10.3 Find the fields, and the charge and current distributions, corresponding to

t
3
dregy r2

Vi) =0, At =-—

Problem 10.4 Suppose V = 0 and A = Aq sin(kx — wt) ¥, where Ag, w, and k are constants.
Find E and B, and check that they satisfy Maxwell’s equations in vacuum. What condition
must you impose on w and k?

Problem 10.5 Use the gauge function A = —(1/4me€g)(gt/r) to transform the potentials in
Prob. 10.3, and comment on the result.
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10.1.3 Coulomb Gauge and Lorentz* Gauge

The Coulomb Gauge. As in magnetostatics, we pick
V-A=0. (10.8)
With this, Eq. 10.4 becomes
1
ViV =-—0p. (10.9)
€0
This is Poisson’s equation, and we already know how to solve it: setting V = 0 at infinity,

1 't
V(r, 1) = 47160/”(2 ) ar', (10.10)

Don’t be fooled, though—unlike electrostatics, V by itself doesn’t tell you E; you have to
know A as well (Eq. 10.3).

There is a peculiar thing about the scalar potential in the Coulomb gauge: itis determined
by the distribution of charge right now. If I move an electron in my laboratory, the potential
V on the moon immediately records this change. That sounds particularly odd in the light
of special relativity, which allows no message to travel faster than the speed of light. The
point is that V by itself is not a physically measurable quantity—all the man in the moon can
measure is E, and that involves A as well. Somehow it is built into the vector potential, in the
Coulomb gauge, that whereas V instantaneously reflects all changes in p, the combination
—VV — (0A/0r) does not; E will change only after sufficient time has elapsed for the
“news” to arrive.!

The advantage of the Coulomb gauge is that the scalar potential is particularly simple to
calculate; the disadvantage (apart from the acausal appearance of V') is that A is particularly
difficult to calculate. The differential equation for A (10.5) in the Coulomb gauge reads

VA eaz — —pod + oeev [ (10.11)
Ho€o 7 = —Hod + 1oco o ) .
The Lorentz gauge. In the Lorentz gauge we pick
av
V-A= _“OGOE' (10.12)

This is designed to eliminate the middle term in Eq. 10.5 (in the language of Prob. 10.1, it
sets L = (). With this

82
V2A - —— = —uol. 10.13
Ho€o mod ( )
Meanwhile, the differential equation for V, (10.4), becomes
v 1
V2V — woeg—5 = ——p. 10.14
HOE0 5 e (10.14)

*There is some question whether this should be attibuted to H. A. Lorentz or to L. V. Lorenz (see J. Van Bladel,
IEEE Antennas and Propagation Magazine 33(2), 69 (1991)). But all the standard textbooks include the t, and to
avoid possible confusion I shall adhere to that practice.

1See O. L. Brill and B. Goodman. Am. J. Phys. 35, 832 (1967).
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The virtue of the Lorentz gauge is that it treats V and A on an equal footing: the same
differential operator

82

— 2
=0 (10.15)

V? — woeo

(called the d’Alembertian) occurs in both equations:

1
() 0O*v=——0p,

€0 (10.16)
) O%A = —uol.

This democratic treatment of V and A is particularly nice in the context of special relativity.
where the d’ Alembertian is the natural generalization of the Laplacian, and Eqs. 10.16 can
be regarded as four-dimensional versions of Poisson’s equation. (In this same spirit the wave
equation, for propagation speed c, 0% f =0, might be regarded as the four-dimensional
version of Laplace’s equation.) In the Lorentz gauge V and A satisfy the inhomogeneous
wave equation, with a “source” term (in place of zero) on the right. From now on I shall
use the Lorentz gauge exclusively, and the whole of electrodynamics reduces to the problem
of solving the inhomogeneous wave equation for specified sources. That’s my project for
the next section.

Problem 10.6 Which of the potentials in Ex. 10.1, Prob. 10.3, and Prob. 10.4 are in the Coulomb
gauge? Which are in the Lorentz gauge? (Notice that these gauges are not mutually exclusive.)

Problem 10.7 In Chapter 5, I showed that it is always possible to pick a vector potential
whose divergence is zero (Coulomb gauge). Show that it is always possible to choose V- A =
—poep(dV /at), as required for the Lorentz gauge, assuming you know how to solve equations
of the form 10.16. Is it always possible to pick V = 0? How about A = 0?

10.2 Continuous Distributions
10.2.1 Retarded Potentials

In the static case, Eqs. 10.16 reduce to (four copies of) Poisson’s equation,

vzv——i VZA = —puod
- 60:0’ e MO,

with the familiar solutions

V) = — /p(”dr/, Am =2 (1T, (10.17)
4ey n 4 3




