Microprocessor
BCA 39 Semester 2020

Lecture- 13

Subhadip MUKHERIJEE

Department of computer science

Kharagpur college

Assembly Language Programming

What is a procedure?

* The procedure (or subroutine) is a set of codes that can be branched to and returned from. The branch to a procedure is known as
CALL and the return from the procedure is known as RETURN.

Discuss the technique of passing parameters to a procedure.
* MOVCX, T

CALL DELAY

where, T represents delay parameter.

* Asecond technique is to use a memory location like,

MOV TEMP, T

CALL DELAY

where, TEMP is representative of memory locations.

* Athird technique is to pass the address of the memory variable like,

MOV SI, POINTER

CALL DELAY

while in the procedure, it extracts the delay parameter by using the instruction MOV
CX, [SI].

Assembly Language Programming

A typical program format using assembler directives.

Line 1. MODEL SMALL : selects small model
Line 2. DATA : 1ndicates data segment

Line 15. CODE . Indicates start of code segment

body of the program

Line 20. END . End of file

Assembly Language Programming

What is a macro?

* A macro, like a procedure, is a group of instructions that perform one task. The macro instructions are placed
in the program by the macro assembler at the point it is invoked.

The general format of a macro is
NAME MACRO Arg 1 Arg 2 Arg 3

Statements

Assembly Language Programming

For the conditional assembly process, show the forms used for the IF statement

Statement Function
IF If the expression is true
IFB If argument is blank
IFE If the expression is not true
OFDEF If the label has been defined
IFNB If argument is not blank
IFNDEF If the label has not been defined
IFIDN If argument 1 equals argument 2
|IFDIFWWW If argument 1 does not equal argument 2

Assembly Language Programming

For the conditional assembly process, show the relational operators used with
WHILE and REPEAT.

Operator Function
EQ Equal
NE Not Equal
LE Less than or Equal
LT Less than
GT Greater than
GE Greater than or Equal
NOT Logical inversion
AND Logical AND
OR Logical OR
XOR Logical XOR

Assembly Language Programming

Check whether the given number is even or odd.
LDA 2050 —loads the content of memory location 2050 in accumulator A
ANI 01 —performs AND operation between accumulator A and 01 and store the result in A
JZ 200D —jump to memory location 200D if ZF =1
MVI A 11 —assign 11 to accumulator
JMP 200F —jump to memory location 200F
MVI A 22 —assign 22 to accumulator
STA 3050 —stores value of A in 3050
HLT —stops executing the program and halts any further execution

Assembly Language Programming

A block of data consisting of 256 bytes is stored in memory starting at 3000H. This block is to be shifted
(relocated) in memory from 3050H onwards. Do not shift the block or part of the block anywhere else in
the memory.

Two blocks (3000 — 30FF and 3050 — 314F) are overlapping. Therefore it is necessary to transfer last byte first
and first byte last.

MVI C, FFH :"Initialize counter"

LX I H, 30FFH :"Initialize source memory pointer 3l14FH"

LXI D, 314FH :"Initialize destination memory pointer"
BACK: MOV A, M :"Get byte from source memory block™

STAX D :"Store byte in the destination memory block"

DCX H :"Decrement source memory pointer"

DCX :"Decrement destination memory pointer"

DCR C :"Decrement counter"

JNZ BACK :"If counter O repeat”

HLT :"Stop execution™

Assembly Language Programming

Convert gray numbers to binary
2000 LDA 2050 is used to load the data from address 2050 in A
2003 MVI1 C, 07 is used to move the data 07 in C
2005 MOV B, A moves the data of Ato B
2006 ANI 80 extracts the MSB (Most Significant Bit) of data available in A
2008 RRC rotates the bits of A to right without carry
2009 ANI 7F is used to Take AND between data in Aand 7F
200B XRA B takes XOR between the data present in Aand B
200C DCR C is used to decrement the contents of C
200D JNZ 2008 is used to jump to address 2008 if ZF =0
2011 STA 3050 is used to store the result at memory address 3050
2014 HLT is used to end the program

Assembly Language Programming

Distinguish between macro and procedure.

e A procedure is invoked with a CALL instruction and terminated with a RET instruction.

* A macro is invoked, on the other hand, during program assembly and not when the program is run.
Whenever in the program the macro is required, assembler substitutes the defined sequence of instructions
corresponding to the macro.

* Macro does not require CALL—RET instructions and hence will be executed faster.

Assembly Language Programming
What kind of 1/0 is used for IN and OUT instructions?

Mnemonic Meaning Format Operation
IN Input direct IN Acc, Port (Acc)e—(Port) Acc = AL or AX
Input indirect (variable) IN Acc, DX (Acc)«((DX))
ouT Output direct OUT Port, Acc (Port)e—(Acc)
((D

Output indirect (variable) | OUT DX, Acc X))«(Acc)

Assembly Language Programming
Block diagram of 8288.

20— sTATUS S VDG
S1 T >|oECODER . VG,
= —1> COMMAND > AMWC Multibus™
SIGNAL * |IORC
GENERATOR » IOWC Cerrraﬂd
> AIGWC signals
* INTA
CLK X » DTIR Address latch,
o CONTROL » DEN data transreceiver,
Control) AEN 1| OR Lot SIGNAL . and interrupt
inputs CEN > GENERATOR MCE/PDEN control signals

‘::—

cC

Assembly Language Programming

The status pins S2 ,S1 and SO .

82C88
s2 S1 S0 Processor state command
0 0 0 Interrupt Acknowledge INTA
0 0 1 Read 1/O Port IORC
0 1 0 Write I/O Port IOWC, AIOWC
0 1 1 Halt None
1 0 0 Code Access MRDC
1 0 1 Read Memory MRDC
1 1 0 Write Memory MWTC, AMWC
1 1 1 Passive None

Assembly Language Programming
The pin diagram of 8087

ano 1 — a0 A V..
(Aq4)AD,, O 2 39 O AD,,
(A;3)AD;00 3 38 [AlS;
(A2)AD,, O 4 37 O A8,
I-r.l":"'-n}J":"'l:-:'ﬂD 2 36 3 A lSe
lf,l'l:l"-1:|_l.|'1'|:|'i|::|1;:| D b 35 D ‘n"1_-:IJIISE

(A)AD, O 7 34 [BHE/S,
(Az)AD: O 8 33 O RQ/GT,

AD- [9 32 O INT

ADg J10 8087 31 O RQIGT,

AD; Q11 30 @ NC

AD, Q12 29 [NC

AD, 43 28 @S,

AD,[]14 27 @ 5,

AD, 15 26 0 5,

AD,O16 25 @ QS,

NC[]17 24 [QS,
NC 18 23 [BUSY
CLKO4a 22] READY
GND 20 21 [0 RESET

Assembly Language Programming
The architecture of 8087

NUMERIC
EXECUTION UNIT

|
CONTROL UNIT |
I
I EXPONENT BUS
I
I
I

<
FRACTION 4

CONTROL WORD EXPONENT PROGRAMMABLE
STATUS WORD MODULE INTERFACE SHIFTER
NBU <7L, «— 1
MICROCODE
INSTRUCTION
sl | CONTROL 16
| UNIT
ARITHMETIC
DATA | 64
DATA . C0 | MODULE
|
16 4
OPERANDS
—
> QUEUE
I 64
| TEMPORARY
: 16 REGISTERS
: T (7)
| A (6)
STATUS e FCDRESSHCE | c ®
ECEPTION : W| |REGISTER STACK- Eﬂi
F*DDHESS‘_” POINTERS _ || 'ﬁ (2)
I (1)
l D (0)
: €— 80-BITS —>

Thank You

