
GE3 Computer Science
C and C ++ Lecture series for

B.SC 3rd semester by

Subhadip Mukherjee
Department of computer science

Kharagpur College

LECTURE 14

Object-Oriented Programming
Introduction to Classes

• Class Definition

• Class Examples

• Objects

• Constructors

• Destructors

2

Class

• The class is the cornerstone of C++
• It makes possible encapsulation, data hiding and inheritance

• Type
• Concrete representation of a concept

• Eg. float with operations like -, *, + (math real numbers)

• Class
• A user defined type
• Consists of both data and methods
• Defines properties and behavior of that type

• Advantages
• Types matching program concepts

• Game Program (Explosion type)

• Concise program
• Code analysis easy
• Compiler can detect illegal uses of types

• Data Abstraction
• Separate the implementation details from its essential properties

3

Classes & Objects

4

class Rectangle

{

private:

int width;

int length;

public:

void set(int w, int l);

int area();

};

Rectangle r1;

Rectangle r2;

Rectangle r3;

…
…

int a;

Objects: Instance of a class

Define a Class Type

class class_name

{

permission_label:

member;

permission_label:

member;

...

};

5

class Rectangle

{

private:

int width;

int length;

public:

void set(int w, int l);

int area();

};

Body

Header

Class Definition
Data Members

• Can be of any type, built-in or user-defined

• non-static data member
• Each class object has its own copy

• static data member
• Acts as a global variable

• One copy per class type, e.g. counter

6

Static Data Member

7

class Rectangle

{

private:

int width;

int length;

static int count;

public:

void set(int w, int l);

int area();

}

Rectangle r1;

Rectangle r2;

Rectangle r3;

width
length

width
length

width
length

r1

r3

r2

count

Class Definition
Member Functions
•Used to
• access the values of the data members (accessor)
• perform operations on the data members (implementor)

•Are declared inside the class body

•Their definition can be placed inside the class body, or
outside the class body

•Can access both public and private members of the
class

•Can be referred to using dot or arrow member access
operator

8

Define a Member Function

9

class Rectangle

{

private:

int width, length;

public:

void set (int w, int l);

int area() {return width*length; }

};

void Rectangle :: set (int w, int l)

{

width = w;

length = l;

}

inline

class name

member function name

scope operator

r1.set(5,8);

rp->set(8,10);

Class Definition
Member Functions

• const member function

• declaration
• return_type func_name (para_list) const;

• definition
• return_type func_name (para_list) const { … }

• return_type class_name :: func_name (para_list) const { … }

• Makes no modification about the data members (safe
function)

• It is illegal for a const member function to modify a class
data member

10

Const Member Function

11

class Time

{

private :

int hrs, mins, secs ;

public :

void Write () const ;

} ;

void Time :: Write() const
{

cout <<hrs << “:” << mins << “:” << secs << endl;
}

function declaration

function definition

Class Definition - Access Control

• Information hiding
• To prevent the internal representation from direct access

from outside the class

•Access Specifiers
• public

• may be accessible from anywhere within a program

• private
• may be accessed only by the member functions, and friends of

this class

• protected
• acts as public for derived classes
• behaves as private for the rest of the program

12

Class Definition
Access Control

•The default access specifier is private

•The data members are usually private or protected

•A private member function is a helper, may only be
accessed by another member function of the same class
(exception friend function)

•The public member functions are part of the class
interface

•Each access control section is optional, repeatable, and
sections may occur in any order

13

What is an object?

14

OBJECT

Operations

Data

set of methods
(member functions)

internal state
(values of private data members)

Declaration of an Object

15

class Rectangle

{

private:

int width;

int length;

public:

void set(int w, int l);

int area();

};

main()

{

Rectangle r1;

Rectangle r2;

r1.set(5, 8);

cout<<r1.area()<<endl;

r2.set(8,10);

cout<<r2.area()<<endl;

}

Another Example

#include <iostream.h>

class circle
{
private:

double radius;

public:
void store(double);
double area(void);
void display(void);

};

16

// member function definitions

void circle::store(double r)
{

radius = r;
}

double circle::area(void)
{

return 3.14*radius*radius;
}

void circle::display(void)
{

cout << “r = “ << radius << endl;
}

int main(void) {

circle c; // an object of circle class

c.store(5.0);

cout << "The area of circle c is " << c.area() << endl;

c.display();

}

Declaration of an Object

17

class Rectangle

{

private:

int width;

int length;

public:

void set(int w, int l);

int area();

};

main()

{

Rectangle r1;

r1.set(5, 8);

}

r1 is statically allocated

width
length

r1
width = 5
length = 8

Declaration of an Object

18

class Rectangle

{

private:

int width;

int length;

public:

void set(int w, int l);

int area();

};

main()

{

Rectangle r1;

r1.set(5, 8);

Rectangle *r2;

r2 = &r1;

r2->set(8,10);

}

r2 is a pointer to a Rectangle object

width
length

r1
width = 5
length = 8

5000

???

r2
6000

5000

width = 8
length = 10

//dot notation

//arrow notation

Declaration of an Object

19

class Rectangle

{

private:

int width;

int length;

public:

void set(int w, int l);

int area();

};

main()

{

Rectangle *r3;

r3 = new Rectangle();

r3->set(80,100);

delete r3;

r3 = NULL;

}

r3 is dynamically allocated

???

r3
6000

width
length

5000
5000

width = 80
length = 100

???NULL

//arrow notation

Object Initialization

#include <iostream.h>

class circle
{
public:

double radius;
};

20

int main()
{

circle c1; // Declare an instance of the class circle

c1.radius = 5; // Initialize by assignment

}

1. By Assignment

• Only work for public data
members

• No control over the operations
on data members

Object Initialization

#include <iostream.h>

class circle
{
private:
double radius;

public:
void set (double r)

{radius = r;}
double get_r ()

{return radius;}

};

21

int main(void) {

circle c; // an object of circle class

c.set(5.0); // initialize an object with a public member function

cout << "The radius of circle c is " << c.get_r() << endl;

// access a private data member with an accessor

}

2. By Public Member Functions

Declaration of an Object

22

class Rectangle

{

private:

int width;

int length;

public:

void set(int w, int l);

int area();

}

main()

{

Rectangle r1;

r1.set(5, 8);

Rectangle *r2;

r2 = &r1;

r2->set(8,10);

}

r2 is a pointer to a Rectangle object

//dot notation

//arrow notation

r1 and r2 are both initialized by
public member function set

Object Initialization

23

class Rectangle

{

private:

int width;

int length;

public:

Rectangle();

Rectangle(const Rectangle &r);

Rectangle(int w, int l);

void set(int w, int l);

int area();

}

3. By Constructor

• Default constructor

• Copy constructor

• Constructor with parameters

There is no return type

Are used to initialize class data
members

Have the same name as the class

They are publicly accessible

They have different signatures

Object Initialization

24

class Rectangle

{

private:

int width;

int length;

public:

void set(int w, int l);

int area();

};

• Default constructor

When a class is declared with no constructors,

the compiler automatically assumes default

constructor and copy constructor for it.

Rectangle :: Rectangle() { };

• Copy constructor

Rectangle :: Rectangle (const
Rectangle & r)

{

width = r.width; length = r.length;

};

Object Initialization

25

class Rectangle

{

private:

int width;

int length;

public:

void set(int w, int l);

int area();

}

• Initialize with default constructor

Rectangle r1;

Rectangle *r3 = new Rectangle();

• Initialize with copy constructor

Rectangle r4;

r4.set(60,80);

Rectangle r5 = r4;

Rectangle r6(r4);

Rectangle *r7 = new Rectangle(r4);

Object Initialization

26

class Rectangle

{

private:

int width;

int length;

public:

Rectangle(int w, int l)

{width =w; length=l;}

void set(int w, int l);

int area();

}

If any constructor with any number

of parameters is declared, no default

constructor will exist, unless you

define it.

Rectangle r4; // error

• Initialize with constructor

Rectangle r5(60,80);

Rectangle *r6 = new Rectangle(60,80);

Object Initialization

27

class Rectangle

{

private:

int width;

int length;

public:

Rectangle();

Rectangle(int w, int l);

void set(int w, int l);

int area();

}

Write your own constructors

Rectangle :: Rectangle()

{

width = 20;

length = 50;

};

Rectangle *r7 = new Rectangle();

width
length
width = 20
length = 50

5000???

r7
6000

5000

Object Initialization

28

class Account

{

private:

char *name;

double balance;

unsigned int id;

public:

Account();

Account(const Account &a);

Account(const char *person);

}

With constructors, we have more
control over the data members

Account :: Account()

{

name = NULL; balance = 0.0;

id = 0;

};

Account :: Account(const Account &a)

{

name = new char[strlen(a.name)+1];

strcpy (name, a.name);

balance = a.balance;

id = a.id;

};

Account :: Account(const char *person)

{

name = new char[strlen(person)+1];

strcpy (name, person);

balance = 0.0;

id = 0;

};

Thank You

29

