GE3 Computer Science

C and C ++ Lecture series
B.SC 3rd semester

Subhadip Mukherjee

Department of computer science

Kharagpur College

Object-Oriented Programming
Introduction to Classes

* Class Definition
* Class Examples
* Objects

* Constructors

* Destructors

Class

* The class is the of C++
* It makes possible encapsulation, data hiding and inheritance

Concrete representation of a concept
* Eg. float with operations like -, *, + (math real numbers)

A user defined type
Consists of both data and methods
Defines properties and behavior of that type

* Advantages
* Types matching program concepts
* Game Program (Explosion type)
* Concise program
e Code analysis easy
* Compiler can detect illegal uses of types

» Data Abstraction
e Separate the implementation details from its essential properties

Classes & Objects

Objects: Instance of a class

class Rectangle

{ _ Rectangle ri;
private: Rectangle r2;
int width; Rectangle r3;
int length; |
public:
void set(int w, int |); |
Int area(); int a-

Define a Class Type

Header class Rectangle
- {
private:
Int width;
Int length;
public:
| void set(int w, int |);
Int area();

Body

Class Definition
Data Members

* Can be of any type, built-in or user-defined

* non-static data member
* Each class object has its own copy

e static data member
* Acts as a global variable
* One copy per class type, e.g. counter

Static Data Member

class Rectangle
{
private:
Int width;
Int length;
=) Static int count;
public:
void set(int w, int I);
Int areal();

}

Rectangle rl;
Rectangle r2;
Rectangle r3;

rl

width
length

r3

r2

width
length

width
length

Class Definition
Member Functions

e Used to

e access the values of the data members (accessor)
e perform operations on the data members (implementor)

* Are declared inside the class body

* Their definition can be placed inside the class body, or
outside the class body

* Can access both public and private members of the
class

* Can be referred to using dot or arrow member access
operator

Define a Member Function

class Rectangle

{
private:
Int width, length;
. class name
public:
void set (intw, intl);
int area() {return width*length; } member function name

};7 -/ /

void Rectangle :: set (int w, int)

inline {
width = w;
length =,

scope operator

Class Definition
Member Functions

e const member function

* declaration
* return_type func_name (para_list) const;
* definition
e return_type func_name (para_list) const{ ... }
e return_type class_name :: func_name (para_list) const { ... }
* Makes no modification about the data members (safe
function)

* Itis illegal for a const member function to modify a class
data member

10

Const Member Function

class Time

{

private : function declaration

Int hrs, mins, secs
public :

void Write () const; function definition

} /

11

Class Definition - Access Control

* Information hiding

* To prevent the internal representation from direct access
from outside the class

* public
* may be accessible from anywhere within a program
* private

* may be accessed only by the member functions, and friends of
this class

* protected
e acts as public for derived classes
* behaves as private for the rest of the program

12

Class Definition
Access Control

*The default access specifier is private

* The data members are usually private or protected

* A private member function is a helper, may only be
accessed by another member function of the same class
(exception friend function)

* The public member functions are part of the class
Interface

* Each access control section is optional, repeatable, and
sections may occur in any order

13

What is an object?

OBJECT
set of methods
Operations (member functions)
Data /

internal state
(values of private data members)

Declaration of an Object

class Rectangle

{

private:
Int width;
Int length;
public:
void set(int w, int |);
Int area();

main()

{

Rectangle rl;
Rectangle r2;

rl.set(5, 8);
cout<<rl.area()<<end];

r2.set(8,10);
cout<<r2.area()<<end];

Another Example

/I member function definitions

void circle::store(double r)

1
radius =r;
}
double circle::area(void)
return 3.14*radius*radius;
}
void circle::display(void)
{
cout << “r = “ << radius << endl;
}

int main(void) {
circle c; // an object of circle class
c.store(5.0);
cout << "The area of circle c is " << c.area() << endl;

c.display();
}

Declaration of an Object

class Rectangle

{ main()
private: {
Int width;
Int length; \
public:
void set(int w, int |); »
Int areal();

rl is statically allocated

- Rectangle r1,;
=) rl.set(5, 8),

width=5
length =8

Declaration of an Object

r2 is a pointer to a Rectangle object

class Rectangle

{ main()

- : {

pnvate- Rectangle r1;
Nt Wldth, ~ rl.set(5, 8); //dot notation
Int length;

pUinC: :> //arrow notation
void set(int w, int I);)
Int area(); 5000

rl r2
3 width=g " 6000
! length = 10 5000

Declaration of an Object

r3 is dynamically allocated

class Rectangle

{ main()
. {
private: |
Int width;
INt |ength, | //arrow notation
publfc: | | -
void set(int w, intl); }
int area(); .

6000
}1 NULL

Obiject Initialization

1. By Assignment
e Only work for public data
members

e No control over the operations
on data members

int main()

{

circle c1; /Il Declare an instance of the class circle
cl.radius =5; // Initialize by assignment

20

Obiject Initialization

2. By Public Member Functions

int main(void) {
circle c; /1 an object of circle class
c.set(5.0); // initialize an object with a public member function
cout << ""The radius of circle cis " << c.get_r() << endl,
/[access a private data member with an accessor

Declaration of an Object

r2 is a pointer to a Rectangle object

class Rectangle

{ main()
pnvate' Rectangle r1;
Int width: //dot notation
Int length; Rectangle *r2;
blic: r2=&rl,;
pU IC. //arrow notation
void set(int w, int I); J
Int areal();
rl and r2 are both initialized by
} public member function set

Obiject Initialization

3. By Constructor
class Rectangle

{
private: e Default constructor
Int width; e Copy constructor
Int length; _
: e Constructor with parameters
public:

Rectangle();

Rectangle(const Rectangle &r);
Rectangle(int w, int |);

void set(int w, int |);

int area();

23

Obiject Initialization

When a class is declared with no constructors,
the compiler automatically assumes default
constructor and copy constructor for it.

e Default constructor
Rectangle :: Rectangle() { };

e Copy constructor

Rectangle :: Rectangle (const
Rectangle & r)
{

J

width = r.width; length = r.length;

Obiject Initialization

¢ |nitialize with default constructor

Rectangle rl;

Rectangle *r3 = new Rectangle();

e |nitialize with copy constructor

Rectangle r4;
r4.set(60,80);

Rectangle r5 = r4;
Rectangle r6(r4);

Rectangle *r7 = new Rectangle(r4);

25

Obiject Initialization

If any constructor with any number
of parameters is declared, no default
constructor will exist, unless you
define it.

Rectangle r4; [/ error

¢ |nitialize with constructor

Rectangle r5(60,80);
Rectangle *r6 = new Rectangle(60,80);

26

Obiject Initialization

Write your own constructors
class Rectangle
{
private:
Int width:;
Int length;
public:
Rectangle();
Rectangle(int w, int |);
void set(int w, int |);

Int area(); 7 6000

} 5000 5000

width = 20
length = 50

Obiject Initialization

With constructors, we have more

class Account control over the data members

{

private:
char *name;
double balance;
unsigned int id;

public:
Account();
Account(const Account &a);

Account(const char *person); Account :; Account(const char *person)
} {
name = new char[strlen(person)+1];
strcpy (name, person);
balance = 0.0;
id =0;

Thank You

