Teaching Plan Department of Chemistry Session 2022-23 Even Semester

Term I: From commencement of class to 1st Internal Assessment

Term II: 1st Internal Assessment to 2nd Internal Assessment

Term III : 2nd Internal Assessment to end semester exam

Teaching plan : 2022-23 (Even Semester) Dr. Gagan Chandra Mandal Dept. of Chemistry

		Semester II
Syllabus	C3T:	Extra nuclear Structure of atom
allotted	C3P: 0	CHEMISTRY (LAB
	Lec	
	No	
		Term I
	01	Course out come and Introduction to Atomic structure
	02	Bohr's theory, its limitations
C3T: Extra	03	Atomic spectrum of hydrogen atom, Sommerfeld's Theory.
nuclear	04	Wave mechanics: de Broglie equation
Structure of	05	Mathematica problems
atom	00	Schrödinger's wave equation significance of w and w?
	07	$\Omega_{\text{uantum numbers and their significance}}$
	00	Term II
	09	Radial and angular wave functions for hydrogen atom
	10	Radial and angular distribution curves. Shapes of s. p. d and f orbitals
	11	Pauli's Exclusion Principle. Hund's rules and multiplicity
	12	Exchange energy, Aufbau principle and its limitations
		Term III
	13	Ground state Term symbols and their implications
	14	Ground state Term symbols of different atoms and ions
	15	Problem solving
	16	Problem solving
C3P:	Lab	
(LAB)		Т
Acid and		l erm l
Base	01	Estimation of carbonate and hydroxide present together in mixture
Titrations&	02	Estimation of carbonate and bicarbonate present together in a mixture.
Oxidation-	03	Estimation of free alkali present in soaps
Reduction	04	Estimation of free alkali present in detergents
Titrimetric	05	Ierm II Estimation of Eq.(II) using standardined KMnO4 solution
	05	Estimation of Fe(II) using standardized KMInO4 solution
	00	Estimation of Ee(II) and Ee(III) in a given mixture using K2Cr2O7 solution
	08	Estimation of Fe(III) and Mn(II) using standardized KMnO4 solution
	09	Estimation of Fe(III) and Cu(II) in a mixture using K2Cr2O7
		Term III
	10	Estimation of Fe(III) and Cr(III) in a mixture using K2Cr2O7
	11	Practice
	12	Practice
	13	Practice
	14	Practice
	15	Practice
		Semester IV
Syllabus	Lec	C9T: Inorganic Chemistry-III- Metallurgy
Allotted	No	

		Term I
	01	Introduction to metallurgy
	02	General Principles of Metallurgy
	03	Chief modes of occurrence of metals based on standard electrode potentials
	04	Ellingham diagrams for reduction of metal oxides using carbon and carbon
		monoxide as reducing agent.
	05	Electrolytic Reduction
	06	Hydrometallurgy with examples
		Term II
	07	Different methods of purification of metals
	08	Metal purification through electrolytic Kroll process
	09	Parting process
	10	Van Arkel-de Boer process
		Term III
	11	Mond's process
	12	Zone refining
	13	Problem solving
	14	Problem discussion
		Semester VI
Syllabus	CI3T:	INORGANIC CHEMISTRY V- Reaction Kinetics and Mechanism
Allotted		
		Term I
	01	Reaction mechanism and its importance
	02	Introduction to inorganic reaction mechanisms
	03	Substitution reactions in square planar complexes
	04	Trans- effect& application of Trans effect in complex synthesis
	05	Theories of trans effect
	06	Mechanism of nucleophilic substitution
	07	Square planar complexes
		Term II
	08	Thermodynamic and Kinetic stability,
	09	Kinetics of octahedral substitution
	10	Specific examples and case study
	11	Ligand field effects and reaction rates,
		Term III
	12	Mechanism of substitution in octahedral complexes.
	13	Assignments
	14	Problem solving and discussion
	15	Problem solving and discussion

Teaching Plan: 2022-23 (Even semester) PRASANNA KUMAR DULEY

Department of Chemistry

		Semester IV
Syllabus	C8T: PHY	SICAL CHEMISTRY-III:a) Application of Thermodynamics – II
Allotted	b) Electrica	al Properties of molecules,C) Quantum Chemistry
	C8P:Practic	al :
	Experiment	1: Determination of solubility of sparingly soluble salt in water, in electrolyte with
	common ior	as and in neutral electrolyte (using common indicator)
	Experiment	2: Potentiometric titration of Mohr's salt solution against standard K2Cr2O7 solution
	Experiment	3: Determination of KSp for AgCl by potentiometric utration of AgNO3 solution
	Experiment	4: Effect of ionic strength on the rate of Persulphate – Iodide reaction
	Experiment	5: Study of phenol-water phase diagram
	Experiment	6: pH-metric titration of acid (mono- and di-basic) against strong base
	GE4T :, Pha	ase Eequilibria,Electrochemistry
	GE4T: Prac	tical:
	1_	
	Lec	Topics to be coveredC8T: PHYSICAL CHEMISTRY-III:a)
	No	Application of Thermodynamics – II
		b) Electrical Properties of molecules, C) Quantum Chemistry
		Term I
	01	Colligative properties: Vapour pressure of solution; Ideal solutions, ideally
		diluted solutions and colligative properties; Raoult's law;
	02	Thermodynamic derivation using chemical potential to
		derive colligative properties (i) relative lowering of vapour pressure,
		(ii) elevation of boiling point,
	03	Thermodynamic derivation for(iii) Depression of freezing point, (iv) Osmotic
		pressure
	04	Applications in calculating molar masses of normal, dissociated and associated
		solutes in solution; Abnormal colligative properties
	05	Phase rule: Definitions of phase, component and degrees of freedom; Phase rule
CC-08 T	06	and its Derivations.
	06	Definition of phase diagram; Phase diagram for water, CO2, Sulphur
		First order phase transition and Clapeyron equation; Clausius-Clapeyron equation
	07	- derivation
	07	system Three component systems, water chloroform acetic acid system
		triangular nlots
		Term II
	00	Duham Margulas agustion Hangu's laws Kanowaloffa gulas Desitive and possitive
	08	deviations from ideal behavior. Azostronia solution: Liquid liquid phase diagram
		using phenolwater system: Solid-liquid phase diagram: Eutectic mixture
	00	Dipole moment and polarizability: Polarizability of atoms and molecules
	0)	dielectric constant and polarisation molar polarisation for polar and non-polar
		molecules: Clausius-Mosotti equation and Debye equation (both without
		derivation) and their application: Determination of dipole
		moments
	10	C) Quantum Chemistry
		Angular momentum: Commutation rules, quantization of square of total angular
		momentum and z-component
	11	Rigid rotator model of rotation of diatomic molecule; Schrödinger equation.
		transformation to spherical polar coordinates; Separation of variables. Spherical
		harmonics; Discussion of solution

	12	Qualitative treatment of hydrogen atom and hydrogen-like ions: Setting up of
		Schrödinger equation in spherical polar coordinates, radial part, quantization of
		energy (only final energy expression)
	13	Average and most probable distances of electron from nucleus: Setting up of
		Schrödinger equation for many-electron atoms (He, Li)
		Term III
	14	LCAO and HE-SCE [•] Covalent bonding valence bond and molecular orbital
		approaches, LCAO-MO treatment of H2+: Bonding and antibonding orbitals
	15	Qualitative extension to H2: Comparison of LCAO-MO and VB treatments of
	10	H2 and their limitations
	16	Hartree-Fock method sdevelopment SCF and configuration interaction (only
	10	hasics)
		Term I
	01	Phase Equilibrie Decas, components and degrees of freedom of a system criteria
	01	Phase Equilibrium. Cikba Dhose Dula and its thermodynamic derivation.
		of phase equilibrium; Globs Phase Rule and its inermodynamic derivation;
		Derivation of Clausius – Clapeyron equation and its importance in phase
GE4T	02	Phase diagrams of one component systems (water and sylphyr)
	02	Phase diagrams of one-component systems (water and surplide)
	03	two component systems involving eutectics, congruent and incongruent melting points (lead-silver, FeCl3-H2O and Na-K)
	04	Conductance, cell constant, specific conductance and molar conductance;
		Variation of specific and equivalent conductance with dilution for strong and
GE4T&G		weak electrolytes
E4P	05	; Application of conductance measurement (determination of solubility product
		and ionic product of water); Conductometric titrations (acid-base) Transport
		Number and principles of Hittorf's and Moving-boundary method
	06	Electromotive force Faraday's laws of electrolysis, rules of oxidation/reduction of
		ions based on half-cell potentials, applications of electrolysis in metallurgy and
		industry; Chemical cells, reversible and irreversible cells with examples
	07	Electromotive force of a cell and its measurement, Nernst equation; Standard
		electrode (reduction) potential; Electrochemical series; Thermodynamics of a
		reversible cell, calculation of thermodynamic properties: G, H and S from EMF
		data
		Term II
	08	Concentration cells with and without transference, liquid junction potential
	09	pH determination using hydrogen electrode and quinhydrone. Qualitative
	07	discussion of potentiometric titrations (acid-base, redox, precipitation)
	10	Study of the equilibrium of one of the following reactions by the
	_ •	Distribution method:
		I2(aq) + I-(aq) = I3-(aq)Cu2+(aq) + xNH2(aq) = [Cu(NH3)x]2
	11	a) Determination of dissociation constant of a weak acid (cell constant, equivalent
		conductance are also determined)
	12	b) Perform the following conductometric titrations: (Any one)
		(i) Strong acid vs. strong base
		(ii) Weak acid vs. strong base
	13	potentiometric titrations:
		(i) Weak acid vs. strong base
		Term III
	14	potentiometric titrations:ii) Potassium dichromate vs. Mohr's sal
	15	Problem solving
	16	Problem solving

		Semester VI
Syllabus	C14T:Photo	ochemistry&Surface phenomenon
Allotted	C14P:LAI	3:Practical
	Experiment	1: Determination of surface tension of a liquid using Stalagmometer
	Experiment	2: Determination of CMC from surface tension measurements
	Experiment	3: Verification of Beer and Lambert's Law for KMnO4 and K2Cr2O7 solution
	Experiment	4: Study of kinetics of K2S2O8 + KI reaction, spectrophotometrically
	Experiment	5: Determination of pH of unknown buffer, spectrophotometrically
	Experiment	6: Spectrophotometric determination of CMCsical Chemistry-V:
	Lec no	Topics to be covered
	01	
С14Т	01	Lambert-Beer's law: Characteristics of electromagnetic radiation, Lambert-Beer's
C141	02	Laws of photochemistry Stark Einstein law of photochemical equivalence k
	02	auantum vield
	03	actinometry, examples of low and high quantum yields
	05	Photochemical Processes: Potential energy curves (diatomic molecules) Frank-
		Condon principle
	04	vibrational structure of electronic spectra; Bond dissociation and principle of
		determination of dissociation energy (ground state); Decay of excited states by
		radiative and non-radiative paths; Pre-dissociation
	05	Fluorescence and phosphorescence, Jablonskii diagram
	06	Rate of Photochemical processes: Photochemical equilibrium and the differential
		rate of photochemical reactions, Photostationary state; HI decomposition
	07	H2-Br2 reaction, dimerisation of anthracene; photosensitised reactions,
		quenching; Role of photochemical reactions in biochemical processes,
		photostationary states, chemiluminescence.
	08	Surface tension and energy: Surface tension, surface energy, excess pressure,
		capillary rise and surface tension; Work of conesion and adhesion, spreading of
		dependence of surface tension
		Torm II
	00	Adsorption: Dhysical and chamical adsorption: Froundlich and Langmuir
	09	adsorption isotherms: multilayer adsorption and BET isotherm (no derivation
		required)
	10	Gibbs adsorption isotherm
		and surface excess; Heterogenous catalysis (single reactant)
	11	Colloids: Lyophobic and lyophilic sols, Origin of charge and stability of
		lyophobic colloids, Coagulation and Schultz-Hardy rule, Zeta potential and Stern
		double layer (qualitative idea)
	12	Tyndall effect; Electrokinetic phenomena (qualitative idea only); Determination
		of Avogadro number by Perrin's method; Stability of colloids and zeta potential;
		Micelle formation
		Term III
	13	Problem & solution
	14	Problem & solution
	15 L-1	Problem & solution
	Lab	
		Term I
	01	Experiment 1: Determination of surface tension of a liquid using Stalagmometer
	02	Experiment 2: Determination of CMC from surface tension measurements
C14P	03	Experiment 3: Verification of Beer and Lambert's Law for KMnO4 and K2Cr2O7
		solution
	04	Experiment 4: Study of kinetics of K2S2O8 + KI reaction, spectrophotometrically

05	Experiment 5: Determination of pH of unknown buffer, spectrophotometrically
	Term II
06	Experiment 6: Spectrophotometric determination of CMC
07	PRACTICAL REVISION
08	PRACTICAL REVISION
09	PRACTICAL REVISION
	Term III
10	PRACTICAL REVISION
11	PRACTICAL REVISION
12	PRACTICAL REVISION

Teaching Plan - 2022-23 (Even semester) DR. INDRANIL CHAKRABORTY Department of Chemistry

		Semester II
Syllabus	C4T: 0	DRGANIC CHEMISTRY-II (Theory)Stereochemistry
allotted	C4T: 0	DRGANIC CHEMISTRY-II (Practical)
	Lec No	Topics to be covered
		Term I
	01	Course outcome and different types of chirality
	02	Chirality arising out of stereoaxis, axial chirality with examples
	03	stereoisomerism of substituted cumulenes with even and odd number of double bonds; chiral axis in allenes, spiro compounds
	04	Stereoisomerism of alkylidenecycloalkanes and biphenyls
	05	Configurational descriptors (Ra/Sa and P/M). Atropisomerism
C4T	06	Racemisation of chiral biphenyls; buttressing effect. Concept of prostereoisomerism: prostereogenic centre
	07	Concept of (pro) n -chirality: topicity of ligands and faces, with examples and symmetry criteria
		Term II
	08	Elementary idea about pro-R/pro-S, pro-E/pro-Z
	09	Re/Si descriptorsof ligands on propseudoasymmetric centre
	10	Dihedral angle, torsion angle and their difference
	11	Conformation: conformational nomenclature: eclipsed, staggered, gauche, syn and anti
	12	Klyne-Prelog terminology; P/M descriptors
	13	Energy barrier of rotation, concept of torsional and steric strains
		Term III
	14	Relative stability of conformers on the basis of steric effect, dipole-dipole interaction and H-bonding, butane gauche interaction
	15	Problem discussion
	16	Problem discussion
		Semester IV
Syllabus	CC-10) T : ORGANIC CHEMISTRY-IV Organic spectroscopy (Theory)
Allotted	CC 10	P:ORGANIC CHEMISTRY-IV Quantitative Estimations (Prac)
	SEC 2	T: BASIC ANALYTICAL CHEMISTRY (Theory)
	SEC 2	T: BASIC ANALYTICAL CHEMISTRY (Prac)
	1_	
	Lec No	Topics to be covered
		Term I
	01	Course outcome of CC 10 T & P, Basics of Organic Spectroscopy
	02	Introduction to UV Spectroscopy, types, of transitions. Chromophores and auxochromes; Wavelength & intensity of absorptions
	03	Application of Woodward's Rules for calculation of λ max for conjugated diene, α , β unsaturated aldehydes and ketones.

	04	Steric effect, solvent effect, effect of pH;:Different systems etc.
	05	Assignments & Problem discussion
	06	Introduction to IR Spectroscopy, Modes of molecular vibrations
	07	IR active molecules; application of Hooke's law, force constant, fingerprint region ,overtone bands; vibrational couplings etc.
СС-10 Т		Term II
	08	Characteristic and diagnostic stretching frequencies of C-H, N-H, O-H, C-O, C-N, C-X, C=C, C=O, C=N, N=O, C=C, C=N
	09	Class Assignment & discussion of problems
	10	Introduction to NMR Spectroscopy, basic principles of Proton Magnetic Resonance; equivalent and non-equivalent protons
	11	Chemical shift and factors influencing it, Spin coupling and coupling constant (1st
	12	order spectra) Pascal's triangle:non-first-order splitting with examples
	14	Term III
	13	NMR peak area, integration; coupling patterns of common organic compounds
	14	Interpretation of NMR spectra of organic compounds
	15	Applications of IR, UV and NMR spectroscopy for identification of simple organic molecules.
	16	Assignments and problem discussion
		Term I
	01	Course outcome and general importance of Basic Analytical Chemistry
	02	Composition of Soil and its different types
	03	pH of soil, and necessity to maintain soil pH
	04	Nutrient content and pH
	05	pH measurement using Complexometric titrations, Chelation, Chelating agents, use of indicators
	06	Assignment and discussion
SEC 2 T	07	Water: Source, type and possible pollutants
		Term II
	08	Importance of water analysis
	09	Different kinds of water purification process
	10	Analysis of water
	11	Definition of pure water water sampling methods
	12	sources responsible for contaminating water,
		Term III
	13	water purification methods
	14	BOD & COD and the process of determination
	15	Problem solving
	16	Problem solving
		Semester VI

Svllabus	DSE3T: C	Green Chemistry (Theory)
Allotted	DSE4T: P	olymer Chemistry (Theory)
11100000	DSE4P: P	olymer Chemistry (Practical)
	Lecture	Topics to be covered
		Term I
	01	Course outcome, and Importance of Polymer in todays life
	02	Introduction and history of development of polymeric materials
	03	Different schemes of classification of polymers with example and structure,
		Pending group.
	04	Polymer nomenclature, Degree of polymerisation
	05	Molecular forces and chemical bonding in polymers,
	06	Texture of Polymers. Functionality and its importance: Criteria for synthetic
		polymer formation,
		Term II
DSE 4 T	07	Classification of polymerization processes, Relationships between functionality,
DOLTI		extent of reaction and degree of polymerization.
	08	Bifunctional systems, Poly-functional systems
	09	Molecular weight distribution in polymers, Different types of molecular weight
		in polymers (Mn, Mw, etc)
	10	Determination of (Mn, Mw, etc) by end group analysis& viscometry,
	11	Determination of (Mn, Mw, etc) by light scattering and osmotic pressure
		methods.
		Term III
	12	Determination of molecular weight of polymers
	13	Molecular weight distribution and its significance. Polydispersity index
	14	Problem & solution
	15	Problem & solution
		Term I
	01	Course outcome and necessity of green chemistry
	02	What is Green Chemistry? Its development
	03	Need and Goals of Green Chemistry.
	04	Limitations/ Obstacles in the pursuit of the goals of Green Chemistry
	05	Twelve principles of Green Chemistry with their explanations and examples
	06	Prevention of chemical accidents designing greener processes, inherent safer
	~=	design, principle of ISD
	07	Greener alternative to Bhopal Gas Tragedy (safer route to carcarbaryl) and
DSE 3 T	- 00	
	08	Safer route to cyclonexanol, subdivisions of ISD,
	09	Green solvents
	10	supercritical fluids, Supercritical water, Supercritical CO ₂
	11	water as a solvent for organic reactions,
	12	Ionic liquids, fluorous diphasic solvent, PEG,
	13	Solventless processes, immobilized solvents and how to compare greenness of solvents
		Term III
	14	Development of Fully Recyclable Carpet: Cradle to Cradle Carpeting
	15	Problem solving
	16	Problem solving
	10	110010111 5014112

Teaching Plan - 2022-23 (Even semester) PROF. KUHELI PRAMANIK Department of Chemistry

		Semester II
Syllabus allotted	CC4T (DS	SC-1B): ORGANIC CHEMISTRY-II (Theory)
	Lecture	Topics to be covered
	No	
		Term I
	01	Course outcome is discussed
	02	Aromatic hydrocarbons- preparation from phenol, by decararboxylation, acetylene, benzene sulfonic acid.
	03	Reactions – Electrophicilic substitutions (nitration, halogenations, sulphonation)
	04	Reactions-Friedle craft alkylation and acylation, side chain oxidation of alkyl benzenes.
C4T	05	Alkyl halides-types of nucleophilic substitution reactions-SN1, SN2 and SNi
		Term II
	06	Preparation – alkyl halide preparation from alkenes and alcohols
	07	Reactions-Hydrolysis, nitrite and nitro formation, Nitrile and iso nitrile formation
	08	Williamson's ether synthesis-Elimination vs substitution
	09	Aryl halides-Preparation from phenol, Sandmeyer & Gattermann reactions
	10	Reactions-Aromatic nucleophilic substitution and effect of nitro substituent
		Term I
	11	Benzyne mechanism, Reactivity and relative strength of C- halogen bond in alkyl allyl, benzyl, vinyl and aryl halides
	12	Problem discussion
	13	Problem discussion
	<u>.</u>	Semester IV
Syllabus	CC-10 T	: ORGANIC CHEMISTRY-IV; Rearrangements (Theory)
Allotted	CC 10 P:	ORGANIC CHEMISTRY-IV Quantitative Estimations (Prac)

	Lecture	Topics to be covered
	No	
		Term I
	01	Course outcome, Definitions and classifications
	02	Mechanism with evidence and stereochemical features for the following Rearrangement to electron-deficient carbon: Wagner-Meerwein rearrangement, pinacol rearrangement
	03	dienone-phenol; Wolff rearrangement in Arndt-Eistert synthesis
	04	benzil-benzilic acid rearrangement, Demjanov rearrangement, Tiffeneau– Demjanov rearrangement.
	05	Rearrangement to electron-deficient nitrogen: Hofmann, Curtius rearrangements
	06	Rearrangement to electron-deficient nitrogen: Lossen, Schmidt and Beckmann.
		Term II
	07	Rearrangement to electron-deficient oxygen: Baeyer-Villiger oxidation
	08	Rearrangement to electron-deficient oxygen: cumene hydroperoxide-phenol rearrangement and Dakin reaction.
СС-10 Т	09	Aromatic rearrangements: Migration from oxygen to ring carbon: Fries rearrangement and Claisen rearrangement.
	10	Migration from nitrogen to ring carbon: Hofmann-Martius rearrangement, Fischer- Hepp rearrangement, N-azo to C-azo rearrangement.
	11	Bamberger rearrangement, Orton rearrangement and benzidine rearrangement.
		Term III
	12	Rearrangement reactions by green approach: Fries rearrangement, Claisen rearrangement
	13	Beckmann rearrangement, Baeyer-Villiger oxidation.
	14	Problem discussion
	15	Problem discussion
	16	Problem discussion
		1
Syllabus Allotted	GE-4T: C	Chemical Analysis
	Lecture	
	No	
		Term I

	01	Gravimetric analysis: solubility product and common ion effect; requirements of gravimetry:
	02	gravimetric estimation of chloride sulphate lead barium nickel copper and zinc
	02	Volumetric exclusion of emotion, surplate, fead, barrant, mekel, copper and zine.
	03	acidbase, oxidation –reduction
	04	complexometric titrations; indicators: acid-base, redox and metal ion
		Term II
GE-41	05	principles of estimation of mixtures: NaHCO3 and Na2CO3 (by acidimetry)
	06	iron, copper, manganese and chromium (by redox titration)
	07	zinc, aluminum, calcium and magnesium (by complexometric EDTA titration)
	08	Chromatography: chromatographic methods of analysis: column chromatography
		Term III
	09	Chromatography: thin layer chromatography.
	10	Assignments
	11	Problem discussion
		Semester VI
Syllabus	DSE-4T:	Polymer Chemistry (Theory)
Syllabus Allotted	DSE-4T: DSE-3P:	Polymer Chemistry (Theory) Green Chemistry (Practical)
Syllabus Allotted	DSE-4T: 1 DSE-3P: 0	Polymer Chemistry (Theory) Green Chemistry (Practical)
Syllabus Allotted	DSE-4T: 1 DSE-3P: 0 Lecture	Polymer Chemistry (Theory) Green Chemistry (Practical) Topics to be covered
Syllabus Allotted	DSE-4T: 1 DSE-3P: 0 Lecture	Polymer Chemistry (Theory) Green Chemistry (Practical) Topics to be covered Term I
Syllabus Allotted	DSE-4T: 1 DSE-3P: 0 Lecture 01	Polymer Chemistry (Theory) Green Chemistry (Practical) Topics to be covered Term I Course outcome, Properties of polymers
Syllabus Allotted	DSE-4T: 1 DSE-3P: 0 Lecture 01 02	Polymer Chemistry (Theory) Green Chemistry (Practical) Topics to be covered Term I Course outcome, Properties of polymers preparation, structure, properties and application of polyolefins
Syllabus Allotted	DSE-4T: 1 DSE-3P: 0 Lecture 01 02 03	Polymer Chemistry (Theory) Green Chemistry (Practical) Topics to be covered Term I Course outcome, Properties of polymers preparation, structure, properties and application of polyolefins preparation, structure, properties and application of polyolefins
Syllabus Allotted	DSE-4T: 1 DSE-3P: 0 Lecture 01 02 03 04	Polymer Chemistry (Theory) Green Chemistry (Practical) Topics to be covered Term I Course outcome, Properties of polymers preparation, structure, properties and application of polyolefins preparation, structure, properties and application of polystyrene and styrene copolymers preparation, structure, properties and application of poly(vinyl chloride) and related polymers, poly(vinyl acetate) and related polymers
Syllabus Allotted	DSE-4T: 1 DSE-3P: 0 Lecture 01 02 03 04	Polymer Chemistry (Theory) Green Chemistry (Practical) Topics to be covered Term I Course outcome, Properties of polymers preparation, structure, properties and application of polyolefins preparation, structure, properties and application of polystyrene and styrene copolymers preparation, structure, properties and application of poly(vinyl chloride) and related polymers, poly(vinyl acetate) and related polymers Term II
Syllabus Allotted	DSE-4T: 1 DSE-3P: 0 Lecture 01 02 03 04 05	Polymer Chemistry (Theory) Green Chemistry (Practical) Topics to be covered Term I Course outcome, Properties of polymers preparation, structure, properties and application of polyolefins preparation, structure, properties and application of polystyrene and styrene copolymers preparation, structure, properties and application of poly(vinyl chloride) and related polymers, poly(vinyl acetate) and related polymers Term II preparation, structure, properties and application of acrylic polymers, fluoro polymers
Syllabus Allotted	DSE-4T: 1 DSE-3P: 0 Lecture 01 02 03 04 04 05 06	Polymer Chemistry (Theory) Green Chemistry (Practical) Topics to be covered Term I Course outcome, Properties of polymers preparation, structure, properties and application of polyolefins preparation, structure, properties and application of poly(vinyl chloride) and related polymers preparation, structure, properties and application of poly(vinyl chloride) and related polymers, poly(vinyl acetate) and related polymers Term II preparation, structure, properties and application of acrylic polymers, fluoro polymers preparation, structure, properties and application of polyamides and related polymers. Phenol formaldehyde resins (Bakelite, Novalac)

	08	preparation, structure, properties and application of Conducting Polymers,
		[polyacetylene, polyaniline, poly(p-phenylene sulphide polypyrrole, polythiophene)].
		Term III
	09	preparation, structure, properties and application of Polycarbonates
	10	Problem discussion
	11	Problem discussion
	12	Problem discussion
	DSE-2T:	Green Chemistry
		Term I
	01	Course outcome, definition and necessity of green chemistry
	02	Goals of Green Chemistry. Limitations/ Obstacles in the pursuit of the goals of Green Chemistry
	03	Green Synthesis of the following compounds: adipic acid, catechol
	04	Green Synthesis of the following compounds: disodium
		iminodiacetate
	05	Microwave assisted reactions in water: Hofmann Elimination, methyl benzoate to benzoic acid, oxidation of toluene and alcohols
	06	microwave assisted reactions in organic solvents Diels-Alder reaction and Decarboxylation reaction
DSE-2T		Term II
	07	Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction (Ultrasonic alternative to Iodine)
	08	Surfactants for carbon dioxide – replacing smog producing and ozone depleting solvents with CO ₂ for precision cleaning and dry cleaning of garment
	09	Designing of Environmentally safe marine antifoulant
	10	Rightfit pigment: synthetic azopigments to replace toxic organic and inorganic pigments.
		Term III
	11	Enzymatic Inter esterification for production of no Trans-Fats and Oils
	12	Development of Fully Recyclable Carpet: Cradle to Cradle Carpeting
	13	Problem solving
	14	Problem solving

Teaching Plan : 2022-23 (Even semester) DR. FORID SAIKH Department of Chemistry

Semester II				
Syllabus	C4T: ORGANIC CHEMISTRY-II (Theory) General Treatment of Reaction			
allotted	Mechanism II			
	Lec	Topics to be covered		
	no			
		Term I		
	01	Rate constant and free energy of activation		
	02	Concept of order and molecularity; free energy profiles for one-step, two-		
		step and three-step reactions		
	03	Catalyzed reactions: electrophilic and nucleophilic catalysis;		
	04	Kinetic control and thermodynamic control of reactions		
	05	Isotope effect: primary and secondary kinetic isotopic effect $(k_{\rm H}/k_{\rm D})$		
C4T		Term II		
	06	Examples and different mechanisms		
	07	Principle of microscopic reversibility; Hammond's postulate.		
	08	free energy and equilibrium, enthalpy and entropy factor		
	09	calculation of enthalpy change via BDE		
		Term III		
	10	Exampleas and calculations of BDE		
	11	intermolecular & intramolecular reactions		
	12	Problem discussion		
	13	Problem discussion		
	n	Semester IV		
Syllabus	CC-10 T : ORGANIC CHEMISTRY-IV The Logic of Organic Synthesis(Theory)			
Allotted	CC 10) P :ORGANIC CHEMISTRY-IV Quantitative Estimations (Prac)		
	SEC 2	2T: BASIC ANALYTICAL CHEMISTRY (Theory)		
	SEC 2	21: BASIC ANALY IICAL CHEMISTRY (Prac)		
	Lec	Tonics to be covered		
	No	Topics to be covered		
		Term I		
	01	disconnections; synthons, donor and acceptor synthons; natural		
		reactivity and <i>umpolung</i> ;		
	02	latent polarity in bifunctional compounds: consonant and dissonant		
		polarity; illogical electrophiles and nucleophile		
	03	synthetic equivalents (FGI and FGA)		
	04	C-C disconnections 1,1 difunctional		
	05	C-C disconnections 1,2 difunctional		
	06	C-C disconnections 1,3 difunctional		
		Term II		
СС-10 Т	07	C-C disconnections 1,4 difunctional		

	08	C-C disconnections 1,5 difunctional
	09	reconnection (1,6-dicarbonyl)
	10	Protection deprotection strategy alcohol.
	11	Protection deprotection strategy amine, carbonyl, acid.
Term III		Term III
	12	<i>Strategy of ring synthesis:</i> thermodynamic and kinetic factors; synthesis of large rings, application of high dilution technique.
	13	stereoselective and stereospecific reactions
	14	diastereoselectivity and enantioselectivity:
	15	Assignments and problem discussion
	16	Assignments and problem discussion
	II	
		Term I
	01	Course outcome and general importance of Basic Analytical Chemistry
	02	Necessity of error analysis
	03	Concept of sampling. Importance of accuracy, precision and sources of
	04	Presentation of experimental data and results from the point of view of
	V 4	significant figures
	05	Nutritional value of foods
	06	idea about food processing and food preservations
SEC 2 T		Term II
	07	Adulteration in food
	08	Definition, general introduction on principles of chromatography
	09	Paper chromatography, TLC
	10	Column, ion-exchange chromatography
	11	Major and minor constituents and their function of cosmetics
		Term III
	12	Major and minor constituents and their function of cosmetics
	13	Major and minor constituents and their function of cosmetics
	14	Problem solving
	15	Problem solving
		Semester VI
Syllabus	DSE3	T: Green Chemistry (Theory)
Allotted	DSE4	T: Polymer Chemistry (Theory) P: Polymer Chemistry (Practical)
	Lec	Tonics to be covered
	no	Lopies to be control
		Term I
	01	Course outcome, Properties of polymers
	02	Determination of crystalline melting point and degree of crystallinity
	03	Morphology of crystalline polymers, Factors affecting crystalline melting
		point.

	04	Structure Property relationships
	05	(<i>Mn</i> , <i>Mw</i> , etc) by end group analysis & viscometry
	06	(Mn, Mw, etc) by osmometry & light scattering
		Term II
DSF 1 T	07	Molecular weight distribution and its significance. Polydispersity index.
DSE 4 I	08	Free volume theory, WLF equation
	09	Factors affecting glass transition temperature (Tg).
	10	preparation, structure, properties and application of polyolefins,
		polystyrene and styrene copolymer
	11	preparation, structure, properties and application of poly(vinyl chloride)
		and related polymers, poly(vinyl acetate)
		Term III
	12	preparation, structure, properties and application of polyamides and
		related polymers. Phenol formaldehyde resins (Bakelite, Novalac),
		polyurethanes, silicone polymers, polydiene
	13	preparation, structure, properties and application of Polycarbonates,
		Conducting Polymers, [polyacetylene, polyaniline, poly(p-phenylene
		sulphide
		polypyrrole, polythiophene)
	14	Problem & solution
	15	Problem & solution
		Term I
	01	Course outcome and necessity of green chemistry
	02	Green Synthesis of the following compounds: adipic acid, catechol
	03	Green Synthesis of disodium imino diacetate
	04	Microwave assisted reactions in water: Hofmann Elimination, methyl
	~ -	benzoate to benzoic acid, oxidation of toluene and alcohols;
	05	Microwave assisted reactions in organic solvents
	06	Diels-Alder reaction and Decarboxylation reaction
	07	Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction
		(Ultrasonic alternative to lodine)
DSE 3 T		Term II
	08	Surfactants for carbon dioxide – replacing smog producing and ozone
		depleting solvents with CO ₂ for precision cleaning and dry cleaning of
		garment
	09	Designing of Environmentally safe marine antifoulant
	10	Rightfit pigment: synthetic azopigments to replace toxic organic and
		inorganic pigments.
		Term III
	11	Enzymatic esterification for production of no Trans-Fats and Oils
	12	Development of Fully Recyclable Carpet: Cradle to Cradle Carpeting
	13	Problem solving
	14	Problem solving

Teaching Plan - 2022-23 (Even semester) DR. SUBHRA MISHRA

Department of Chemistry

Semester II			
Syllabus	CC4T: ORGANIC CHEMISTRY-II (Theory)Substitution and Elimination Reactions		
allotted	CC4F	P: Organic Preparations	
	CC47	(DSc-1B): Alcohol, Phenol and Ethers	
	Lec	Topics to be covered	
	No		
	01	Course outcome of the topic	
	02	Substitution reaction: Free-radical substitution reaction: halogentaion of alkanes,	
		mechanism (with evidence)	
	03	Stereochemical features; reactivity-selectivity principle in the light of Hammond's	
		postulate.	
	04	Nucleophilic substitution reactions: substitution at sp3 centre: mechanisms (with	
		evidence) $S_N 1$, $S_N 2$, $S_N i$	
	05	Relative rates & stereochemical features: S _N 1, S _N 2, S _N i	
CC4T	06	Mechanisms (with evidence), relative rates & stereochemical features: of S_N2' , S_N1'	
		(allylic rearrangement)	
	07	Effects of solvent, substrate structure, leaving group and nucleophiles	
	08	Ambident nucleophiles-cyanide & nitrite and their effect on substitution	
	09	Substitutions involving NGP (Mechanism, stereochemical consequences, Effect of	
		structure, solvent etc.)	
	10	Role of crown ethers and phase transfer catalysts; [systems: alkyl halides, allyl halides,	
		benzyl halides, alcohols, ethers, epoxides].	
	11	Elimination reactions: E1, E2 (mechanism with evidence)	
	12	Formation of alkenes and alkynes; E1, E2 mechanisms (with evidence),	
	13	Formation of alkenes and alkynes; E1cB and Ei (pyrolyticsyn eliminations)	
	14	Reactivity, regioselectivity (Saytzeff/Hofmann) and stereoselectivity;	
	15	Comparison between substitution and elimination; importance of Bredt's rule relating	
	16	to the formation of C=C.	
	10	Problem discussion	
C4D	1/		
	01	Alcohol Phenol and Ethers program outcome discussion	
$(DS_{c-1}R)$	01	Alcohols: Propagation: Propagation, propagtics of 1º 2º and 2º alcohols: using Grignard	
(DBC-ID	02	reagent Ester hydrolysis	
	03	Preparation using reduction of aldehydes ketones carboxylic acid and ester	
	05	Reactions: With sodium HX (Lucas test) esterification	
	04	Oxidation reaction with PCC alk KMnO ₄ acidic dichromate conc HNO ₂	
	05	Oppeneauer oxidation Diols: (Unto 6 Carbons) oxidation of diols	
	06	Pinacol-Pinacolone rearrangement application examples	
	07	Phenols: Preparation: Cumenehydroperoxide method from diazonium salts	
	08	Electrophilic substitution reactions (Nitration, halogenation and sulphonation)	
	09	Reimer Tiemann Reaction, Gattermann-Koch Reaction.	
	10	Houben–Hoesch Condensation, Schotten – Baumann Reaction	
	11	Problems discussion	
	12	Assignment	
	1	Somestor IV	
Sullahua	0ECO		
Synabus	SEC2	1: DASIC ANAL I HUAL CHEMISIK I (I neory) Unromatography	
Anottea	SEC 2	21. DADIC AIVAL I FICAL CHEIVIDIAI (Flacucal) 2T: Analytical Clinical Biochemistry (Theory)	
1	DEC-	21. Anaryukar Chinkar Diochennstry (111001y)	

	Lec No	Topics to be covered	
	110	Term I	
	01	Course outcome of Basic Analytical Chemistry	
	02	Chromatography: Definition, general introduction on principles of chromatography	
	03	Paper chromatography-principle, methodology	
	04	Procedure and application	
	05	General introduction of TLC,	
	06	Procedure and uses	
		Term II	
	07	Ion-exchange: Principle, procedure of Column chromatography	
	08	Principle, procedure of Ion-exchange chromatography	
SEC 2 T	09	Application of Ion-exchange chromatography	
	10	Analysis of cosmetics: Major constituents and their function-I	
	11	Analysis of cosmetics: Major constituents and their function-II	
		Term III	
	12	Minor constituents and their function	
	13	Problem discussion	
	14	Problem discussion	
	01	Term I	
	01	Program outcome and necessity of the course	
	02	Proteins: Classification, biological importance	
	03	Protein structure: Primary and secondary and tertiary structures of proteins	
	04	Isolation, characterization of proteins	
	05	Denaturation of proteins: Chemical and physical denaturant; Renaturation.	
	06	Enzymes: Nomenclature, Characteristics and Classification	
	07	Mechanism of enzyme action, Stereospecificity of enzymes	
$\begin{array}{c} \text{SEC} 2 \text{ T} \\ (4\text{C}) \end{array}$			
(46)	08	Active site, coenzymes, cofactors and enzyme inhibitors with example	
	09	Introduction to Biocatalysis: Importance in "Green Chemistry" and Chemical Industry	
	10	Biochemistry of disease: Anemia; Blood -Composition and functions of blood, blood coagulation	
	11	Blood collection and preservation methods of samples	
	12	Biochemistry of diseases: Estimation and interpretation of data for blood sugar, urea, creatinine, cholesterol and bilirubin.	
	Term III		
	13	Urine: Collection and preservation of samples. Formation of urine.	
	14	Composition an estimation of constituents of normal and pathological urine	
	15	Problems discussion	
		Semester VI	
Syllabu	DSE3	Γ: Green Chemistry (Theory)	

S	DSE4T: Polymer Chemistry (Theory)			
Allotted	DSE3P: Green Chemistry (Practical)			
	Lec	Topics to be covered		
	no			
		Term I		
	01	Course outcome and application of green chemistry		
	02	Twelve principles of Green Chemistry with explanations and examples (1 to 4)		
	03	Twelve principles of Green Chemistry with explanations and examples (5 to 8)		
	04	Twelve principles of Green Chemistry with explanations and examples (9 to 12)		
	05	Introduction to Atom Economy, calculation of atom economy		
	06	Calculation of atom economy for substitution and elimination reactions		
	07	Designing a Green Synthesis using these principles, examples		
	08	Prevention of Waste/ byproducts and its application		
DSE 3 T	09	Energy requirements for reactions – alternative sources of energy: use of microwaves and ultrasonic energy		
		Term II		
	10	Procedure for selection of starting materials; avoidance of unnecessary derivatization		
	11	Catalysis and green chemistry, comparison of heterogeneous and homogeneous		
		catalysis		
	12	Biocatalysis, asymmetric catalysis and photocatalysis		
	13	Future Trends in Green Chemistry: Oxidation reagents and catalysts;		
	Term III			
	14	Combinatorial greenchemistry; Proliferation of solventless reactions		
	15	Co crystal controlled solid state synthesis, Green chemistry in sustainable		
	16	Assignment and problem discussion		
	10	Problem discussion		
	Tom I			
	01 Course outcome			
	02	Functionality and its importance: Criteria for synthetic polymer formation		
	03	Classification of polymerization processes		
	04	Relationships between functionality, extent of reaction and degree of		
		polymerization		
SEC3 P	05	Bifunctional systems.		
	06	Poly-functional systems		
	07	Kinetics of Polymerization : Mechanism and kinetics of step growth, radical		
		chain growth.		
	Term II			
	08	Mechanism and kinetics of copolymerization,		
	09	Polymerization techniques		
	10	Ionic chain (both cationic anionic)		
DCE 4 T	11	Coordination polymerizations		
DSE 4 T		Term III		
	12	Mechanism and kinetics of copolymerization		
	13	Problem solving		
	14	Problem solving		

Teaching Plan - 2022-23 (Even semester) DR. SUMIT KUMAR RAY Department of Chemistry

Syllabus allotted C4T: ORGANIC CHEMISTRY-II (Theory) Reaction Mechanism II C3T: INORGANIC CHEMISTRY-I (Theory) Redox Reactions and precipitation reactions Lec No Topics to be covered 01 Course outcome 02 Reaction thermodynamics: free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE 03 Calculation of enthalpy change via BDE, intermolecular & intramolecular reactions. 04 Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems)
allotted C3T: INORGANIC CHEMISTRY-I (Theory) Redox Reactions and precipitation reactions Lec No Topics to be covered No Term I 01 Course outcome 02 Reaction thermodynamics: free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE 03 Calculation of enthalpy change via BDE, intermolecular & intramolecular reactions. 04 Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems) 09 Fortors offorting koto and tautomerism;
Lec No Topics to be covered No Term I 01 Course outcome 02 Reaction thermodynamics: free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE 03 Calculation of enthalpy change via BDE, intermolecular & intramolecular reactions. 04 Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) 09 Evators affecting kato angl tautomarism;
No Term I 01 Course outcome 02 Reaction thermodynamics: free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE 03 Calculation of enthalpy change via BDE, intermolecular & intramolecular reactions. 04 Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) 09 Exetors offecting kato and tautomarism;
Term I 01 Course outcome 02 Reaction thermodynamics: free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE 03 Calculation of enthalpy change via BDE, intermolecular & intramolecular reactions. 04 Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems)
01 Course outcome 02 Reaction thermodynamics: free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE 03 Calculation of enthalpy change via BDE, intermolecular & intramolecular reactions. 04 Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems)
02 Reaction thermodynamics: free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE 03 Calculation of enthalpy change via BDE, intermolecular & intramolecular reactions. 04 Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) 09 Easters affecting kate and tautomerism;
factor, calculation of enthalpy change via BDE 03 Calculation of enthalpy change via BDE, intermolecular & intramolecular reactions. 04 Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) 09 Easters affecting keto anol tautomerism;
03 Calculation of enthalpy change via BDE, intermolecular & intramolecular reactions. 04 Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) 09 Easters affecting keto, anol tautomerism;
04 Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) 09 Factors offecting keto anol tautomerism;
C4T 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) 09 Factors affecting keto, anol tautomerism;
C4T 05 Proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle 06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) 09 Eactors affacting kato anol tautomerism;
 and basicity; HSAB principle Application of thermodynamic principles in acid-base equilibria Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) Eactors affacting keto anol tautomerism;
06 Application of thermodynamic principles in acid-base equilibria 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) 09 Factors affacting keto and tautomerism;
 07 Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems) Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) 09 Eactors affacting keto anol tautomerism;
 and enamine-imine systems) Term II Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) Eactors affacting kets and tautomerism;
Term II 08 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) 00 Factors affacting kets and tautomerism;
 Valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems) Easters affacting kets and tautomerism;
different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems)
related systems)
00 Factors affecting kets and tautomorism:
1 Tactors anecting keto-enor tautomensii,
10 Application of thermodynamic principles in tautomeric equilibria
11 Reaction kinetics: rate constant and free energy of activation; concept of order and
molecularity
12 Free energy profiles for one-step, two-step and three-step reactions; catalyzed
reactions
Ierm III
15 Electrophilic and nucleophilic catalysis; kinetic control and thermodynamic control of
14 Primery and secondary linetic isotonic effect (ly, /lp), principle
14 Primary and secondary kinetic isotopic effect (kH/kD); principle
15 Problem discussion
16 Problem discussion
CSI Ierm I
01 Course Outcome 02 Ion electron method of helencing equation of redex reaction
62 Flomontary idea on standard redex notantials with sign conventions
M Nernst equation
05 Influence of complex formation precipitation and change of pH on redox potentials:
formal potential
06 Feasibility of a redox titration redox potential at the equivalence point redox
indicators
Torm II
07 Redox potential diagram (Latimer) of common elements and their applications

	08	Frost diagrams			
	09	Disproportionation and comproportionation reactions (typical examples)			
	10	Complementary and Non Complementary redox reaction			
	11	Equivalent weight calculation			
	Term III				
	12	Solubility product principle, common ion effect			
	13	Applications of solubility product to the precipitation and			
		separation of common metallic ions as hydroxides, sulfides, phosphates, carbonates,			
		sulfates and halides			
	14	Problem discussion			
	15	Problem discussion			
		Semester IV			
Syllabus	CC-10	T: ORGANIC CHEMISTRY-IV Nitrogen compounds (Theory)			
Allotted	CC 10) P :ORGANIC CHEMISTRY-IV Quantitative Estimations (Prac)			
Anoticu	CC-9	T: INORGANIC CHEMISTRY-III			
	CC-9	P: COMPLEXOMETRIC TITRATION			
	-				
	Lect	Topics to be covered			
	ure				
	No				
	01				
	01				
	02	Amines: Aliphatic & Aromatic: preparation			
	03	Separation (Hinsberg's method) and identification of			
		primary, secondary and tertiary amines			
	04	Eschweiler–Clarke methylation : Application.			
	05	Diazo coupling reaction			
	06	Mannich reaction : Application in organic synthesis			
	07	Formation and reactions of phenylenediamines			
СС-10 Т		Term II			
	08	Diazomethane and diazoacetic ester.			
	09	Nitro compounds (aliphatic and aromatic): preparation and reactions			
	10	Reduction of nitro compounds under different conditions: Nef carbonyl synthesis			
	11	Ally white the and isometries proportion and reaction (with machanism)			
	11	Aikyimune and isomune: preparation and reaction (with mechanism)			
	12	Thorpe nitrile condensation, von Richter reaction.			
	10	Term III			
	13	Diazonium salts and their related compounds: reactions			
	14	Reactions of Diazonium salts			
	15	Gomberg, Meerwein and Japp-Klingermann reactions.			
	16	Assignments and problem discussion			
		Term I			
	01	Course outcome and general concepts of s and p Block Elements			
	02	Diagonal relationship and anomalous behaviour of			
		first member of each group			

	03	Allotropy and catenation	
	04	Study of the following compounds with emphasis on structure, bonding, preparation,	
		properties and uses. Beryllium hydrides and halides.	
	05	Boric acid and borates, boron nitrides	
	06	Borohydrides (diborane) and graphitic compounds	
СС-9 Т	07	Silicates	
		Term II	
	08	Silanes, Oxides and oxoacids of nitrogen, phosphorus, sulphur and chlorine	
	09	Peroxo acids of sulphur	
	10	Sulphur-nitrogen compounds	
	11	Interhalogen compounds	
	12	polyhalide ions, pseudohalogens,	
		Term III	
	13	Fluorocarbons and basic properties of halogens	
	14	Assignments and problem discussion	
	15	Problem solving	
		Semester VI	
Syllabus	C13T:	Inorganic Chemistry-V Bioinorganic Chemistry	
Allotted			
morrea			
	Lec	Topics to be covered	
	Lec no	Topics to be covered	
	Lec no	Topics to be covered Term I Course outcome	
	Lec no 01 02	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements major trace and ultratrace	
	Lec no 01 02	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements	
	Lec no 01 02 03	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions	
	Lec no 01 02 03 04	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump	
	Lec no 01 02 03 04 05	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life	
	Lec no 01 02 03 04 05 06	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin	
C13T	Lec no 01 02 03 04 05 06	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin , Electron transfer proteins: Cytochromes and Eerredoxins	
C13T	Lec no 01 02 03 04 05 06 07	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin , Electron transfer proteins: Cytochromes and Ferredoxins.	
C13T	Lec no 01 02 03 04 05 06 07 08	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin , Electron transfer proteins: Cytochromes and Ferredoxins. Term II Hydrlytic enzymes: carbonate bicarbonate buffering system and carbonic anhydrase	
C13T	Lec no 01 02 03 04 05 06 07 08	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin , Electron transfer proteins: Cytochromes and Ferredoxins. Term II Hydrlytic enzymes: carbonate bicarbonate buffering system and carbonic anhydrase and carboxyanhydrase A	
C13T	Lec no 01 02 03 04 05 06 07 07 08 09	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin , Electron transfer proteins: Cytochromes and Ferredoxins. Term II Hydrlytic enzymes: carbonate bicarbonate buffering system and carbonic anhydrase and carboxyanhydrase A Biological nitrogen fixation	
C13T	Lec no 01 02 03 04 05 06 07 07 08 09 10	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin , Electron transfer proteins: Cytochromes and Ferredoxins. Term II Hydrlytic enzymes: carbonate bicarbonate buffering system and carbonic anhydrase and carboxyanhydrase A Biological nitrogen fixation Photosynthesis: Photosystem-I and Photosystem-II. ,	
C13T	Lec no 01 02 03 04 05 06 07 07 08 09 10 11	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin , Electron transfer proteins: Cytochromes and Ferredoxins. Term II Hydrlytic enzymes: carbonate bicarbonate buffering system and carbonic anhydrase and carboxyanhydrase A Biological nitrogen fixation Photosynthesis: Photosystem-I and Photosystem-II. , Toxic metal ions and their effects, chelation therapy	
C13T	Lec no 01 02 03 04 05 06 07 07 08 09 10 11 12	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin , Electron transfer proteins: Cytochromes and Ferredoxins. Term II Hydrlytic enzymes: carbonate bicarbonate buffering system and carbonic anhydrase and carboxyanhydrase A Biological nitrogen fixation Photosynthesis: Photosystem-I and Photosystem-II. , Toxic metal ions and their effects, chelation therapy Pt and Au complexes as drugs	
C13T	Lec no 01 02 03 04 05 06 07 08 09 10 11 12	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin , Electron transfer proteins: Cytochromes and Ferredoxins. Term II Hydrlytic enzymes: carbonate bicarbonate buffering system and carbonic anhydrase and carboxyanhydrase A Biological nitrogen fixation Photosynthesis: Photosystem-I and Photosystem-II. , Toxic metal ions and their effects, chelation therapy Pt and Au complexes as drugs Term III	
C13T	Lec no 01 02 03 04 05 06 07 06 07 08 09 10 11 12 13	Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin , Electron transfer proteins: Cytochromes and Ferredoxins. Term II Hydrlytic enzymes: carbonate bicarbonate buffering system and carbonic anhydrase and carboxyanhydrase A Biological nitrogen fixation Photosynthesis: Photosystem-I and Photosystem-II. , Toxic metal ions and their effects, chelation therapy Pt and Au complexes as drugs Term III Metal dependent diseases	
C13T	Lec no 01 02 03 04 05 06 07 08 09 10 11 12 13 14	Topics to be covered Term I Course outcome Elements of life: essential and beneficial elements, major, trace and ultratrace elements Basic chemical reactions in the biological systems and the role of metal ions Metal ion transport across biological membrane Na+/K+-ion pump Dioxygen molecule in life Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin , Electron transfer proteins: Cytochromes and Ferredoxins. Term II Hydrlytic enzymes: carbonate bicarbonate buffering system and carbonic anhydrase and carboxyanhydrase A Biological nitrogen fixation Photosynthesis: Photosystem-I and Photosystem-II. , Toxic metal ions and their effects, chelation therapy Pt and Au complexes as drugs Term III Metal dependent diseases Problem & solution	

Teaching plan: 2022-23 (Even Semester) Kalyan Sur Dept. of Chemistry

Semester II			
Syllabus	DSC – IBT: Ionic equilibria:		
allotted	(Theory) Alcohols , Phenols and ethers C3T: Chemical Periodicity		
DSC – IBT	Lec	Topics to be covered	
	No		
		Term I	
	01	Prep ⁿ of 1^0 , 2^0 and 3^0 alcohols, Ester hydrolysis reduction of aldehydes, ketones, carboxylic acids and esters.	
	02	<u>Reaction</u> : with Na, HX (Lucas Test), victor mayer method, Esterification, $oxid^n$ with Pcc, alkaline KMno ₄ , acidic dichromate, Conc. HNO ₃	
Alcohols,	03	Opprnaur oxid ⁿ , diols: oxid ⁿ of diols. MPV reduction, Piracol – Pinacolone Rearrangement.	
phenols &	04	Prepn. Of Phenol, Cumenephenol process from diazonium salts	
ethers		<u>Reactions</u> : Electrophilic Substitution, Nitration, halogenations & Sulphonation.	
	05	Reimer-tiemann reaction, Gattermann-koch reaction, Houben-Hoesch Condensation,	
		Schotten-Baumann Reaction.	
	06	PYQ's discussion.	
	07	Frequently asked Questions (FAQ's) Discussion.	
		Term II	
	08	Moderate, strong & weak electrolyte, degree of ionisation factors affecting degree of ionisation, ionisation constants.	
	09	Ionic product of water. Ionisation of weak acids & Bases, pH scale; common ion	
		effect.	
	10	Salt hydrolysis - calculation of hydrolysis constant Degree of hydrolysis and pH of	
		different salts.	
	11	Buffer solutions, solubility and solubility pdt of sparingly soluble salts – application of solubility product Principle.	
	12	Numerical practice.	
	13	PYQ's Discussion	
	14	FAQ's discussion.	
Syllabus Allotted	Paper	C3T: Chemical Periodicity	
		Term I	
	01	Modern IUPAC Periodic Table, Effective nuclear charge, Screening effects and penetration, slater's Rule	
	02	Atomic radii, ionic radii, Covalent radii Lanthanide contruction	
	03	IP, electron gain enthalpy, EN. (Pauling's, Mulliken's and AR scales)	
	04	Factors affecting these properties, group electronegativities group trends & Periodic trends in these properties in respect of S, p and d-block elements.	
Chemical	05	Secondary periodicity, Relativistic effect, Inert pair effect.	
Periodicity	06	PYQ's MCQ's	
	07	FAQ's, most probable Question discussion	
Semester IV			

Syllabus	C9T: Inorganic Chemistry-III	
Alloted	{INODIC gases, INORGANIC POLYMERS.} DSC IDT: Transition elements (3d series) Coordination chemistry CFT	
	Lec	Topics to be Covered
С9Т	No.	L
		Term I
	01	Noble gases:- occurrence and uses, rationalisation of inertness of noble gases;
		Clathrates; prepn. & properties of XeF ₂ , XeF ₄ and XeF ₆ .
	02	Nature of bonding in noble gas compounds (VBT & MOT).
	03	Xenon-oxygen compds,
	04	Molecular shapes of noble gas compounds (VSEPR Theory)
Inorganic	05	Assignments
Chemistry-	06	PYQ's, MCQ's, FAQ's
III		Term II
	07	Inorganic polymers: Types of inorganic polymers,.
	08	composition with organic polymers, synthesis, structure and applications of silicone
	09	Composition with organic polymers, synthesis, structure and applications siloxanes
	10	Borazines, phosphazenes.
		Term III
	11	Silicates.
	12	PYQ's, FAQ's, MCQ's
	13	Problem discussion
Transitions	Lect	Topics to be covered
coordination	110.	Term I
Chemistry.	01	General group trends wrt EC, valency, colour, magnetic property and catalytic
	02	Ability to form completes and stability of various oxidation state (Latimer
		diagrams) for Mn, Fe & Cu.
	03	Lanthanoids and actinoids:- EC, OS, colour, magnetic proper
	04	I erfill II I anthanide contruction separation of lanthadies (ion exchange method)
	04	CFT, oh. Symmetry, CFSE, crystal field effects of weak and strong fields.
	06	Tetrahedral symmetry, factors affecting the magnitude of D., spectrochemical
	07	Comparison of CFSE for oh and Td completes, Tetragonal distortion of oh.
		Geometry.
		Term III
	08	Jahn-Teller distortions, square planar coordination.
	<u> </u>	QusAns. Discussion
	10	
	OTOT	Semester VI
Syllabus	C131:0	organometanic Unemistry
Anottea	Lat	Tarias to be servered
	Lec	1 opics to be covered

no	
	Term I
01	Definition and classification of OMC on the basis of bond type.
02	Concept of hapticity of organic ligands; Formal charge
03	18-electron and 16 ē rules (pictorial mo approach).
04	Application of 18 ē rule to metal carbonyls; nitrosyls and cyanides.
05	General methods of preparation of mono and binuclear carbonyls of 3D-series.
	Term II
06	Structures of mononuclear and binuclear carbonyls.
07	π -acceptor ligands, π -acceptor behaviour of CO, synergic effect and use of IR data
	to explain extent of back-bonding
08	Zeise's salts: prepn., structure, evidences of synergic effect.
09	Ferrocene: prepn., reactions (acetylation, alkylation, metallation)
10	Mannich condensation.
	Term III
11	Reactions of om complexes: substitution, oxidative addition
12	Reductive elimination and insertion reactions.
13	Questions and Discussion.
14	PYQ's of JAM & CSIR NET and SET exam.

Teaching Plan - 2022-23 (Even semester) Sanjoy Kumar Bera Department of Chemistry

Semester II			
Syllabus	DSC2P: physical+Organic practical		
allotted	No Theory classes		
	Semester IV		
Syllabus	GE4T: Conductance, Solutions.		
Allotted	d DSC4T: chemical kinetics, solids		
	GE4F	P: physical+ Analytical and Environmental chemistry (prac)	
	SEC2	P: qualitative and quantitative Identification and estimation of carbohydrates,	
	proteins, lipids practical		
	Lec	Topics to be covered	
	No		
		Term I	
	01	Definition of conductance, cell constant, specific and equivalent	
	00	Conductance and their relationship.	
	02	Variation of specific and equivalent Conductance with dilution, kohlrausch's	
	02	law, numerical problem.	
	03	Ostwald's dilution law, application of conductance measurement(
	04	Definition of solubility and lonic product of water)	
	04	Definition of transport number, abnormal transport number, How transport	
	05	Dringinlas of Hittorf's equation and maying boundary method for	
	05	determining transport number.	
	06	Numerical problem solution.	
GE4T	07	Previous year question ans discussion.	
	Term II		
	08	Tutorial classes.	
	09	Definition of Ideal, non Ideal solutions, and Raoult's law, devia of Raoult's	
		law - non ideal solution.	
	10	Vapour pressure composition and temperature - composition curves for Ideal	
		and non ideal solutions.	
	11	Distillation of Solutions Lever rule Azeotropes critical solution temperature.	
	12	Effect of impurities of partial miscibility of liquids.	
	13	Principles of steam distillation and it's applications.	
	Term III		
	14	Nernst distribution law and it's applications.	
	15	Solvent extraction and it's applications.	
	16	Question answer discussion.	
		Term I	
	01	The concept of reaction rates. Effect of temperature, pressure, catalyst on	
L	1		

		reaction rates.	
	02	Order and molecularity of a reaction, Derivation of integrated rate equations	
		for zero, first and second order reactions.	
	03	Half life equations for zero, first, second order reactions, unit of rate	
		constants.	
	04	General methodsbfor determination of order of a reactions.	
	05	Concept of activation energy, Arrhenius equation and it's application.	
	06	Collision theory and activated complex theory of bimolecular reactions.	
DSC4T	07	Numerical problem discussion.	
	08	Forms of solids, symmetry elements, unit cells, crystal system concept	
		Term II	
	09	Types of Bravais Lattice and identification of lattice planes.	
	10	Law of crystallography, concept of interfacial angles, law of rational indices.	
	11	Concept of Miller indices, x - Ray diffraction by crystal, Bragg's law.	
	12	Structure of NaCl, kCl, CsCl(qualitative treatment only).	
		Term III	
	13	Defects in crystals.	
	14	Glasses and liquid crystal.	
	15	Numerical problem solving	
	16	Unit questions answers discussion.	
		Semester VI	
<i>a</i> u i	Syllabus DSE2T:Green chemistry		
Syllabus	DSE2	1. Oreen enemistry	
Syllabus Allotted	DSE2 DSE2	2P: Green synthesis practical	
Allotted	DSE2 DSE2 Lect	P: Green synthesis practical Topics to be covered	
Allotted	DSE2 DSE2 Lect	P: Green synthesis practical Topics to be covered Term I	
Allotted	DSE2 DSE2 Lect 01	P: Green synthesis practical Topics to be covered Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstaales in the purpoit of the goals of green chemistry	
Allotted	DSE2 DSE2 Lect 01 02 03	P: Green synthesis practical Topics to be covered Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples	
Allotted	DSE2 DSE2 Lect 01 02 03 04	2P: Green synthesis practical Topics to be covered Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and hyproducts	
Allotted	DSE2 DSE2 Lect 01 02 03 04 05	P: Green synthesis practical Topics to be covered Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and byproducts. Prevention/ minimization of toxic products reducing toxicity.	
Syllabus Allotted	DSE2 DSE2 Lect 01 02 03 04 05 06	2P: Green synthesis practical Topics to be covered Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and byproducts. Prevention/ minimization of toxic products reducing toxicity. Use of Green solvents.	
Allotted	DSE2 DSE2 Lect 01 02 03 04 05 06	P: Green synthesis practical Topics to be covered Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and byproducts. Prevention/ minimization of toxic products reducing toxicity. Use of Green solvents. Term II	
Allotted	DSE2 DSE2 Lect 01 02 03 04 05 06 07	Instruction Term I P: Green synthesis practical Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and byproducts. Prevention/ minimization of toxic products reducing toxicity. Use of Green solvents. Term II Energy requirements for reactions -use of microwaves and ultrasonic	
Allotted	DSE2 DSE2 Lect 01 02 03 04 05 06 07	Description Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and byproducts. Prevention/ minimization of toxic products reducing toxicity. Use of Green solvents. Energy requirements for reactions -use of microwaves and ultrasonic energy. Selection of storting meterials, availance of unnecessory derivativation	
Syllabus Allotted	DSE2 DSE2 Lect 01 02 03 04 05 06 07 07 08 09	P: Green synthesis practical Topics to be covered Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and byproducts. Prevention/ minimization of toxic products reducing toxicity. Use of Green solvents. Term II Energy requirements for reactions -use of microwaves and ultrasonic energy. Selection of starting materials, avoidance of unnecessary derivatization. Use of catalytic reagents for Green surthesis	
Allotted DSE 2T	DSE2 DSE2 Lect 01 02 03 04 05 06 06 07 08 09 10	P: Green synthesis practical Topics to be covered Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and byproducts. Prevention/ minimization of toxic products reducing toxicity. Use of Green solvents. Term II Energy requirements for reactions -use of microwaves and ultrasonic energy. Selection of starting materials, avoidance of unnecessary derivatization. Use of catalytic reagents for Green synthesis. Prevention of chemical accidents Designing greener processe. Principle of	
Allotted DSE 2T	DSE2 DSE2 Lect 01 02 03 04 05 06 07 07 08 09 10	Description Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and byproducts. Prevention/ minimization of toxic products reducing toxicity. Use of Green solvents. Term II Energy requirements for reactions -use of microwaves and ultrasonic energy. Selection of starting materials, avoidance of unnecessary derivatization. Use of catalytic reagents for Green synthesis. Prevention of chemical accidents Designing greener processe. Principle of ISD.,Bhopal Gas tragedy.	
Allotted DSE 2T	DSE2 DSE2 Lect 01 02 03 04 05 06 07 08 09 10	P: Green synthesis practical Topics to be covered Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and byproducts. Prevention/ minimization of toxic products reducing toxicity. Use of Green solvents. Term II Energy requirements for reactions -use of microwaves and ultrasonic energy. Selection of starting materials, avoidance of unnecessary derivatization. Use of catalytic reagents for Green synthesis. Prevention of chemical accidents Designing greener processe. Principle of ISD.,Bhopal Gas tragedy. Term III	
Allotted	DSE2 DSE2 Lect 01 02 03 04 05 06 07 08 09 10 10	Instruction of the second s	
Allotted DSE 2T	DSE2 DSE2 Lect 01 02 03 04 05 06 07 08 09 10 11	P: Green synthesis practical Topics to be covered What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and byproducts. Prevention/ minimization of toxic products reducing toxicity. Use of Green solvents. Term II Energy requirements for reactions -use of microwaves and ultrasonic energy. Selection of starting materials, avoidance of unnecessary derivatization. Use of catalytic reagents for Green synthesis. Prevention of chemical accidents Designing greener processe. Principle of ISD.,Bhopal Gas tragedy. Term III Strengthening/ development of analytical techniques to prevent and minimize the hazardous substances in chemical process	
Allotted DSE 2T	DSE2 DSE2 Lect 01 02 03 04 05 06 07 08 09 10 10 11 12	Instruction Image: Project of the synthesis practical Topics to be covered Term I What is Green chemistry? Need, Goals, Limitations of green chemistry Obstacles in the pursuit of the goals of green chemistry. Twelve principles of Green chemistry and explanations and examples. Designing a Green synthesis, prevention of waste and byproducts. Prevention/ minimization of toxic products reducing toxicity. Use of Green solvents. Term II Energy requirements for reactions -use of microwaves and ultrasonic energy. Selection of starting materials, avoidance of unnecessary derivatization. Use of catalytic reagents for Green synthesis. Prevention of chemical accidents Designing greener processe. Principle of ISD., Bhopal Gas tragedy. Term III Strengthening/ development of analytical techniques to prevent and minimize the hazardous substances in chemical process Tutorial class	

	14	Problem solving
	15	All unit problem discussion.

Teaching Plan - 2022-23 (Even semester) Laboni Giri Department of Chemistry

Semester II				
Syllabus	DSC2P: physical+Organic practical			
allotted				
	Semester IV			
Syllabus	CC97	C9T:Co-Ordination chemistry -1		
Allotted	GE47	E4T: Environmental chemistry		
	DSC-	4T: Kinetic Theory of gases, Liquid state		
	GE4I	P: physical + Analytical and Environmental chemistry (prac)		
	SEC2	2P: qualitative and quantitative Identification and estimation of carbohydrates,		
	prote	ins, lipids practical		
	T			
	Lec	Topics to be covered		
	INU	Torm I		
	01	Introduction of Coordinate bonding		
	02	Defination of Double salt and complex salt		
	02	Sidwick concept of co-ordinate bond limitation of sidwick concept		
	0.5	Sidwick concept of co-ordinate bond, initiation of sidwick concept		
	04	Pauling's Electroneutraluty principle, application of this principle		
	05	Werner's theory of coordination complexes,		
	06	Classification of ligands, defination of ligands and examples		
	07	Defination of Ambidentate ligands, chelating ligand, Flexidentate ligands and examples		
		Term II		
CC9T	08	Previous year question answer discussion		
	09	Tutorial classes		
	10	Coordination numbers, IUPAC nomenclature of coordination complexes (up to two metal centers		
	11	Discussion about Isomerism in coordination compounds		
	12	constitutional and stereo isomerism, example		
	13	Geometrical and optical isomerism in square planar complexes		
		Term III		
	14	Geometrical and optical isomerism in octahedral complexes		
	15	Chapter revision		
	16	Previous year Question answer discussion.		
		Term I		
DSC4T	01	Postulates of Kinetic Theory of Gases and derivation of the kinetic gas equation		
	02	viation of real gases from ideal behaviour, compressibility factor, causes of deviation. Van der Waals equation of state for real gases		

	03	Boyle temperature (derivation not required). Critical phenomena, critical constants and their calculation from van der Waals equation
	04	Andrews isotherms of CO2. Maxwell Boltzmann distribution laws of molecular velocities and molecular energies (graphic representation –derivation not required) and their importance.
	05	Temperature dependence of these distributions. Most probable, average and root mean square velocities (no derivation)
	06	Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules.
	07	Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only).
		Term II
	08	Numerical problem solve
	09	Previous year question answer discussion
	10	Surface tension and its determination using stalagmometer.
	11	Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer
	12	Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only).
		Term III
	13	Tutorial class
	14	Question ans answer discussion
	15	Previous year question answer discussion
		Term I
	01	The Atmosphere: composition and structure of the atmosphere; troposphere, stratosphere, mesosphere and thermosphere; ozone layer and its role.
	02	Major air pollutants: CO, SO2, NOx and particulate matters – their origin and harmful effects.
	03	Problem of ozone layer depletion; green house effect; acid rain and photochemical smog
	04	Air pollution episodes: air quality standard; air pollution control measures: cyclone collector, electrostatic precipitator, catalytic converter.
	05	The Hydrosphere: environmental role of water, natural water sources.
	06	Water treatment for industrial, domestic and laboratory uses.
CE4T	07	Water pollutants; action of soaps and detergents, phosphates, industrial effluents, agricultural runoff, domestic wastes
OL+1		Term II
	08	Thermal pollution, radioactive pollution and their effects on animal and plant leaf
	09	Water pollution episodes: water pollution control measures : waste water treatment:
	10	Water pollution control measures :chemical treatment and microbial treatment
	11	Water quality standards: DO,BOD,COD,TDS and hardness parameter
	12	Desalination of sea water : reverse osmosis, electrodialysis
		Term III

	13	The Lithosphere: water and air in soil, waste matters and pollutants in soil	
	14	Waste classification, treatment and disposal.	
	15	soil pollution and control measures.	
	16	Unit questions answers discussion.	
Semester VI			
Syllabus Allotted	CC-	13T:Catalysis by Organometallic Compounds DSE2P: Green synthesis practical	
	Lec	Topics to be covered	
	no		
	Term I		
	01	Synthetic and catalytic applications of organometallic compounds	
	02	Classification of catalyst on the basis of nature and physical state	
	03	Theory of homogeneous and heterogeneous catalyst.	
	04	Defination of homogeneous and heterogeneous catalyst,TON(Turn over number)	
	05	Hydrogenation of alkenes using of wilkinson's catalyst, features of wilkinson catalyst.	
	06	Hydroformylation reaction(oxo process)	
		Term II	
0.0120	07	Wacker Process and mechanism	
CC131	08	Synthetic gasoline (Fischer Tropsch reaction)	
	09	Ziegler-Natta catalysis for olefin polymerization.	
	10	All unit revision	
	11	Tutorial class	
	Term III		
	12	Previous year question answer discussion	
	13	Question answer discussion	
	14	Problem solving	
	15	All unit problem discussion.	