

বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. General Examinations 2022

(Under CBCS Pattern)

Semester - VI

Subject: PHYSICS

Paper: DSE 1B/2B/3B - T

Full Marks : 40

Time : 2 Hours

Candiates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Solid State Physics

Answer any *four* from Q1 to Q6 and answer any *two* from Q7 to Q10.

1. Obtain an expression for interplanar distance. Show that for a simple cubic crystal

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$
, symbols have their usual meaning.

 Explain Meissner effect. Explain the difference between type I and type II superconductor on the basis of Meissner effect.

3. (a) State Dulong and Petit's law.

(b) Define Debye temperature and discuss Drawbacks of Debye theory. 2+3

5

4.	(a)	Explain polarizabillity.
	(b)	Deduce Clausius Mosotti Equation. 1+4
5.	(a)	How the conductivity of metal and semiconductor changes with temperature and why?
	(b)	What is forbidden energy gap ? Give the order of band gap for a metal, semiconductor and insulator. $3+2$
6.	Giv	e an account of Superconducting state on the basis of BCS theory. 5
7.	(a)	The distance between (111) planes in a face centred crystal is 2Å. Determine the lattice parameter and atomic diameter.
	(b)	Derive the expressions for reciprocal lattice vectors. Show that the reciprocal lattice for a body centred cubic (bcc) structure is face centred cubic (fcc).
	(c)	The primitive translation vectors of the hexagonal space lattice may be taken as
		$a_{1} = (3^{1/2} a / 2) \hat{x} + (a / 2) \hat{y}, \ a_{2} = -(3^{1/2} a / 2) \hat{x} + (a / 2) \hat{y}, a_{3} = c\hat{z}$
		(i) Show that volume of the primitive cell is $(3^{1/2}/2)a^2c$
		(ii) Describe and sketch the first Brillouin zone of the hexagonal space lattice. 2+2
8.	(a)	Calculate the structure factor of a face centred cubic crystal. Find out the condition for missing planes in case of X-ray diffraction for this structure $4+2$
		This ship plates in case of X lay annacion for this structure.
	(b)	Explain Bragg's law of X-ray diffraction.3
	(b) (c)	Explain Bragg's law of X-ray diffraction.3What types of radiation other than X-rays are commonly used to obtain diffraction patterns ?1
9.	(b) (c) (a)	Explain Bragg's law of X-ray diffraction.3What types of radiation other than X-rays are commonly used to obtain diffraction patterns ?1Give dispersion relation for one dimensional monoatomic lattice. Plot phonon dispersion curve for monotomic molecule.6+1
9.	 (b) (c) (a) (b) 	Explain Bragg's law of X-ray diffraction.3What types of radiation other than X-rays are commonly used to obtain diffraction patterns ?1Give dispersion relation for one dimensional monoatomic lattice. Plot phonon dispersion curve for monotomic molecule.6+1What is phonon ? Distinguish between acoustic and optical phonons.1+2
9.	 (b) (c) (a) (b) (a) 	Explain Bragg's law of X-ray diffraction.3What types of radiation other than X-rays are commonly used to obtain diffraction patterns ?1Give dispersion relation for one dimensional monoatomic lattice. Plot phonon dispersion curve for monotomic molecule.6+1What is phonon ? Distinguish between acoustic and optical phonons.1+2Describe the quantum mechanical theory of paramagnetism. At what condition quantum mechanical results approaches to classical one ?6+1
9. 10.	 (b) (c) (a) (b) (b) 	Explain Bragg's law of X-ray diffraction.3What types of radiation other than X-rays are commonly used to obtain diffraction patterns ?1Give dispersion relation for one dimensional monoatomic lattice. Plot phonon dispersion curve for monotomic molecule.6+1What is phonon ? Distinguish between acoustic and optical phonons.1+2Describe the quantum mechanical theory of paramagnetism. At what condition quantum mechanical results approaches to classical one ?2
9. 10.	 (b) (c) (a) (b) (c) 	Explain Bragg's law of X-ray diffraction.3What types of radiation other than X-rays are commonly used to obtain diffraction patterns ?1Give dispersion relation for one dimensional monoatomic lattice. Plot phonon dispersion curve for monotomic molecule.6+1What is phonon ? Distinguish between acoustic and optical phonons.1+2Describe the quantum mechanical theory of paramagnetism. At what condition quantum mechanical results approaches to classical one ?6Define paramagnetic susceptibility.2What do you mean by effective number of Bohr Magneton ?1

বঙ্গানুবাদ		
প্রশ্ন ১ থেকে প্রশ্ন ৬ পর্যন্ত যে কোনো চারটির উত্তর দাও এবং		
প্রশ্ন ৭ থেকে প্রশ্ন ১০ পর্যন্ত যেকোনো দুইটির উত্তর দাও		
1. আন্তঃসমতলের দূরত্বের জন্য রাশিমালা বাহির কর। একটি সরল ঘনক স্ফটিকের ক্ষেত্রে দেখাও যে		
$d_{hkl} = rac{a}{\sqrt{h^2 + k^2 + l^2}}$, প্রতীকগুলির তাদের স্বাভাবিক অর্থ বহন করে। 5		
2. Meissner effect ব্যাখ্যা কর। Meissner প্রভাবের ভিত্তিতে টাইপ I ও টাইপ II অতিপরিবাহীর মধ্যে		
পার্থক্য ব্যাখ্যা কর। 2+3		
3. (a) ডুলং এবং পেটিটের সূত্রগুলির বিবৃতি দাও।		
(b) Debye তাপমাত্রা সংজ্ঞায়িত কর এবং Debye তত্ত্বের ভ্রুটিগুলি আলোচনা কর। 2+3		
4. (a) মেরুকরণযোগ্যতা ব্যাখ্যা কর।		
(b) ক্লসিয়াস মোসোত্তি সমীকরণটি (Clausius Mosotti Equation) নির্ণয় কর। 1+4		
5. (a) তাপমাত্রার সাথে ধাতু ও অর্ধপরিবাহীর পরিবাহিতা কিভাবে পরিবর্তিত হয় এবং কেন? 3		
(b) নিষিদ্ধ শক্তি ফাঁক কি? একটি ধাতু, অর্ধপরিবাহী এবং অন্তরক এর জন্য ব্যান্ড গ্যাপের ক্রম দাও। 2		
ে বিসিএস জন্মের ভিত্তিতে সপ্রাবকন্দাকিং অবস্থার একটি বিবরণ দাও।		
7. (a) মুখকেন্দ্রিক স্ফটিকের (111) তলের মধ্যে দূরত্ব 2Å। ল্যাটিস প্যারামিটার এবং পারমাণবিক ব্যাস নির্ধারণ কর।		
(b) রেসিপ্রোকাল ল্যাটিস ভেক্টরের জন্য রাশিমালাগুলি নির্ধারণ কর। দেখাও যে একটি বডি কেন্দ্রিক ঘনক		
(bcc) কাঠামোর জন্য পারস্পরিক জালি হল মুখ কেন্দ্রিক ঘনক (fcc)। 4		
(c) ষড়ভুজ স্থান জালির আদিম অনুবাদ ভেক্টর হিসাবে নেওয়া যেতে পারে		
$a_1 = (3^{1/2} a / 2) \hat{x} + (a / 2) \hat{y}, \ a_2 = -(3^{1/2} a / 2) \hat{x} + (a / 2) \hat{y}, \ a_3 = c\hat{z}$		

		(i) দেখাও যে আদিম কোষের আয়তন হল $\left(3^{1/2}/2 ight)a^2c$
		 (ii) যড়ভূজ স্থানের জালির প্রথম ব্রিলুইন অঞ্চল বর্ণনা কর এবং নক্শা কর। 2+2
8.	(a)	একটি মুখ কেন্দ্রিক ঘন স্ফটিকের গঠন ফ্যাক্টর গণনা কর। এই কাঠামোর জন্য X-রশ্মি ব্যাবর্তনের ক্ষেত্রে অনুপস্থিত তলের অবস্থা খুঁজে বের কর। 4+2
	(b)	ব্র্যাগের X-রশ্মি ব্যাবর্তনের সূত্র ব্যাখ্যা কর। 3
	(c)	X-রশ্মি ব্যতীত অন্য কোন ধরনের বিকিরণ সাধারণত ব্যাবর্তন প্রতিমান পেতে ব্যবহৃত হয়? 1
9.	(a)	এক মাত্রিক এক পরমাণু জালির জন্য বিচ্ছুরণ সম্পর্ক দাও। একপরমাণু অণুর জন্য ফোনন বিচ্ছুরণ বক্ররেখা আঁকো। 6+1
	(b)	ফোনন কি? শব্দসম্বন্ধীয় এবং আলোকীয় ফোননগুলির মধ্যে পার্থক্যগুলি লেখ। 1+2
10.	(a)	প্যারাম্যাগনেটিজমের কোয়ান্টাম তত্ত্ব বর্ণনা কর। কোন অবস্থায় কোয়ান্টাম তত্ত্বের ফলাফল ক্লাসিক্যাল তত্ত্বের কাছে আসে? 6+1
	(b)	প্যারাম্যাগনেটিক সংবেদনশীলতা সংজ্ঞায়িত কর। 2
	(c)	বোহর ম্যাগনেটনের (Bohr Magneton) কার্যকরী সংখ্যা বলতে কী বোঝ?

(5)

Or,	
Digital and Analog Circuits and Instrumentaion	
Full Marks : 40Time : 2 Hours	
Group A	
Answer any <i>four</i> from the following questions : $5 \times 4 = 10$	
1. (a) Subtract 110110-10110 by 2's complement method.	
(b) Find the binary equivalent of the decimal number 34. Also find the decimal equivalent of the binary number 110010. 3+2	
2. (a) What is full adder ? Write down its truth table.	
(b) Construct a full adder using two half adders. 2+3	
3. Briefly discuss the working principle of a photodiode. 5	
4. (a) Briefly explain all the configurations of a BJT.	
(b) Draw the input output characteristics of any configuration. 3+2	
5. (a) Explain the concept of virtual ground in an OPAMP.	
(b) What is CMRR in an OPAMP ? 3+2	
6. (a) Draw the block diagram of a CRO.	
(b) Write few applications of a CRO. 3+2	
Group B	
Answer any <i>two</i> from the following questions : $10 \times 2=20$	
7. (a) Write down the truth tables, Boolean expression of XOR and XNOR gates and draw their symbols.	
(b) Using NOR gates only construct AND, OR, NOT gates. 5+5	

8.	(a)	Explain the working principle of a 4 bit binary adder.	
	(b)	Simplify the following function using K map :	
		$F(A, B, C) = \Sigma(3, 5, 6, 7)$	5+5
9.	(a)	Briefly explain the working principle of a half wave rectifier with a neat circuit dia	gram.
	(b)	What is zener breakdown of a zener diode ? Draw the I-V characteristics of a diode.	zener 5+5
10.	(a)	Draw the circuit diagram of an Integrator using an OPAMP and derive the expe of its output voltage in terms of input voltage.	rssion
	(b)	Explain the working principle of an adder using an OPAMP.	5+5
		বঙ্গানুবাদ	
		বিভাগ ক	
		নিচের প্রশ্নগুলো থেকে যেকোনো চারটি প্রশ্নের উত্তর দাও : 5×	4=20
1.	(a)	২ এর পরিপূরক (2's complement method) পদ্ধতি দ্বারা ১১০১১০-১০১১০ বিয়োগ কর	Į
	(b)	৩৪ এই দশমিক সংখ্যাটিকে বাইনারি সংখ্যায় পরিবর্তন কর। ১১০০১০ এই বাইনারি সং	থ্যাটির
		সমতুল্য দশমিক সংখ্যা বাহির কর।	3+2
2.	(a)	পূর্ণ যোগকারী (full adders) কি? এর সত্যতা সারণী (truth table) লেখ।	
	(b)	দুটো অর্ধেক যোগকারী (half adder) দিয়ে একটি পূর্ণ যোগকারী (full adder) বানাও।	2+3
3.	ফটে	টাডায়োড (photodiode) এর কাজের নীতিটি সংক্ষেপে আলোচনা কর।	5
4.	(a)	একটি BJT এর সমস্ত সংযোগ (configurations) সংক্ষেপে ব্যাখ্যা কর।	
	(b)	যেকোনো সংযোগ এর (configurations) ইনপুট আউটপুট বৈশিষ্ট্য লেখচিত্রগুলি আঁকো।	3+2
5.	(a)	একটি OPAMP এর ভার্চুয়াল গ্রাউন্ডের ধারণা ব্যাখ্যা কর।	
	(b)	একটি OPAMP এর CMRR কি?	3+2

6. (a) একটি CRO নক্শা চিত্র অঙ্কন কর।
(b) একটি CRO এর কয়েকটি ব্যবহার লেখ। 3+2
বিভাগ - খ
নিচের প্রশ্নগুলো থেকে যে কোনো দুটো প্রশ্নের উত্তর দাও। 2×10=20
7. (a) XOR এবং XNOR গেট এর সত্যতা সারণী (truth tables) আর বুলিয়ান অভিব্যক্তি (Boolean expression) লেখ আর তাদের প্রতীক আঁক।
(b) শুধুমাত্র NOR গেট ব্যবহার করে একটি AND, OR, NOT গেটগুলি তৈরি করে। 5+5
8. (a) একটি ৪ বিট বাইনারি অ্যাডারের (4 bit binary adder) কার্যনীতি ব্যাখ্যা কর।
(b) K মানচিত্র (K map) ব্যবহার করে নিম্নলিখিত ফাংশনটি সরলীকরণ কর
$F(A, B, C) = \Sigma(3, 5, 6, 7)$ 5+5
9. (a) পরিষ্কার বর্তনী চিত্র সহযোগে একটি অর্ধ তরঙ্গ সংশোধক (half wave rectifier) এর কার্যপ্রণালী সংক্ষেপে ব্যাখ্যা কর।
(b) জেনার ডায়োডের জেনার ব্রেকডাউন কী? জেনার ডায়োডের (I-V) বৈশিষ্ট্য লেখছিদ্রগুলি আঁক।
5+5
10. (a) একটি OPAMP ব্যবহার করে একটি সমকলকের নক্শা-চিত্র অঙ্কন কর এর আউটপুট ভোল্টেজ এর রাশিমালা বের কর।
(b) একটি OPAMP ব্যবহার করে একটি অ্যাডারের (adder) কার্যনীতি ব্যাখ্যা কর।
5+5

(8)

Or,

Nuclear and Particle Physics

Full Marks : 60

Group A

1. Answer any *five* questions :

- (a) What are nuclear magic numbers ?
- (b) What do you mean by nuclear spin?
- (c) Show that the energy equivalent of 1u or (1 amu) is about 931 MeV.
- (d) Explain the principle of ionization chamber.
- (e) Write down the Bethe-Weizsäcker semi-empirical formula for the nuclear binding energy mentioning each term.
- (f) Define nuclear reaction cross section. Write down its unit.
- (g) Why is β -spectrum continuous ?
- (h) What is Cerenkov radiation ?

2. Answer any *four* questions :

- (a) Show that $R = r_0 A^{1/3}$, where *R* represents radius of a nucleus of mass number *A* and r_0 is the nuclear radius parameter. Determine the radii of a ¹⁶O and a ²⁰⁶Pb nuclei, given that $r_o = 1.4$ fm. 3+2
- (b) State and explain Geiger-Nuttall law.

5

5

- (c) Describe a GM counter and explain its operation.
- (d) State some of the important conclusions drawn from the Rutherford's experiment on the scattering of *α*-particles. A 5.1 MeV *α*-particle approaches a gold nucleus with an impact parameter 2.6 fm. Calculate the angle of scattering.

2×5=10

Time: 3 Hours

5×4=20

- (e) What are the basic similarities between a liquid drop and a nucleus ? How were these similarities developed into the liquid drop model for the nucleus ? 2+3
- (f) What are the experimental evidences of nuclear shell structure ? Write down the basic assumptions of the nuclear shell model. 3+2

Group B

Answer any *three* from the following questions : $10 \times 3=30$

- (a) Define mass defect and packing fraction. Show the variation of packing fraction with mass number.
 - (b) Write down the characreristic freautres of nuclear force.
 - (c) In passing through an ionization chamber, an α -particle produces 15×10^4 ion pairs and is completely stopped. Calculate the kinetic energy of the α -particle and the charge colloceted by each plate. Given that in producing an ion pair, α -particle loses 35 eV of energy.
- 4. (a) Why is α -spectrum a line spectrum? Calculate the Q-value in the following α -decay:

 $^{239}Pu \rightarrow ^{235}U + ^{4}He$

Given, $M(^{239}Pu) = 239.052158 \text{ amu}, M(^{235}U) = 235.043925 \text{ amu}$ and

$$M(^{4}He) = 4.002603 \text{ amu}$$
 2+2

- (b) Find the ground-state spin and parity of ${}^{7}Li$ and ${}^{19}Ne$ nuclei using shell model. 3
- (c) Calculate the average binding energy per nucleon of ${}^{56}Fe$ nucleus.

Given : $m_p = 1.007825$ amu, $m_n = 1.008665$ amu and $m_{Fe} = 55.934939$ amu. 3

5. (a) Show schematically the variation of number of β -particles with energy. Explain why this β -particle energy spectrum is continuous. 2+2

2

(b) What are the difficulties in interpretation of β -spectrum? Explain how the Pauli's neutrino hypothesis resolved these difficulties. 3+3 2+26. (a) What is accelerator ? What are its essential parts ? (b) Describe with schematic diagram the basic principle of a van de Graff electrostatic generator. 6 7. (a) What do you mean by an elementary particle ? How are the elementary particles classified on the basis of their masses, interaction or statistics ? 2+32 (b) What are the different types of fundamental interactions ? (c) What is the origin of γ -rays? What are the processes through which a γ -ray of 1 keV energy will interact with matter ? 2+1বঙ্গানবাদ বিভাগ ক 1. যেকোনো পাঁচটি প্রশ্নের উত্তর দাও : $2 \times 5 = 10$ (a) নিউক্লিয় ম্যাজিক সংখ্যা কি? (b) নিউক্লিয়াসের ঘূর্ণন বলতে কি বোঝ? (c) দেখাও যে 1 u অথবা (1 amu) এর সমতুল্য শক্তি প্রায় 931 MeV। (d) আয়নকরণ কক্ষের নীতি ব্যাখ্যা কর। (e) Bethe-Weizsäcker এর অর্ধ পরীক্ষামূলক নিউক্লিয় বন্ধন শক্তির সূত্রটি লেখ। সূত্রটির প্রতিটি রাশি উল্লেখ কর। (f) নিউক্লিয় বিক্রিয়া প্রস্থচ্ছেদের সংজ্ঞা দাও। এর একক কি? (g) β-বর্ণালী ক্রমাগত কেন? (h) Cerenkov বিকিরণ কি?

2. যে	কানো চারটি প্রশ্নের উত্তর দাও : 5×4=20
(a)	প্রমাণ কর $R=r_0A^{1/3}$, যেখানে R হলো A ভর সংখ্যা যুক্ত একটি নিউক্লিয়াসের ব্যাসার্ধ এবং r_0 হলো নিউক্লিয় ব্যাসার্ধ ধ্রুবকবিশেষ।
	একটি ${}^{16}O$ এবং একটি ${}^{206}Pb$ নিউক্লিয়াসগুলির ব্যাসার্ধ নির্ণয় কর যখন $r_o=1.4~{ m fm}$ । $3+2$
(b)	Geiger-Müller নিয়মটি বিবৃতি ও ব্যাখ্যা কর। 5
(c)	Geiger-Müller যন্ত্রের বর্ণনা দাও এবং এর কার্যপ্রণালী ব্যাখ্যা কর। 5
(d)	রাদারফোর্ডের আলফা-কণা বিক্ষেপণ পরীক্ষা থেকে প্রাপ্ত গুরুত্বপূর্ণ সিদ্ধান্তগুলি লেখ। একটি 5.1 MeV আলফা-কণা গোল্ড নিউক্লিয়াসের দিকে 2.6 fm ইমপ্যাক্ট প্যারামিটার নিয়ে ধাবিত হল। আলফা-কণার বিক্ষেপণ কোণ নির্ণয় কর। 3+2
(e)	একটি তরল বিন্দু এবং একটি নিউক্লিয়াসের মধ্যে সাদৃশ্যগুলি লেখ। এই সাদৃশ্যগুলি থেকে কিভাবে নিউক্লিয়াসের তরল বিন্দু প্রতিরূপ প্রতিষ্ঠিত হল? 2+3
(f)	নিউক্লিয়াসের খোলক গঠন এর স্বপক্ষে পরীক্ষালব্ধ প্রমাণগুলি কি কি? নিউক্লিয়াসের খোলক প্রতিরূপ এর মূল স্বীকার্যগুলি লেখ। 2+3
	বঙ্গানুবাদ
	বিভাগ খ
	নিচের প্রশ্নগুলো থেকে যেকোনো তিনটি প্রশ্নের উত্তর দাও : 10×3=30
1. (a)	ভর ত্রুটি এবং সমাবেশ ভগ্নাংশ এর সংজ্ঞা লেখ। বিভিন্ন নিউক্রিয়াসের ক্ষেত্রে ভর-সংখ্যার সঙ্গে সমাবেশ ভগ্নাংশ পরিবর্তনের লেখচিত্র প্রদর্শন কর। 2+2+2
(b)	নিউক্লিয় বলের চারিত্রিক বৈশিষ্ট্যগুলি লেখ। 2
(c)	একটি α -কণা একটি আয়নকরণ চেম্বারের মধ্য দিয়ে যাবার সময় 15×10^4 সংখ্যক আয়ন জোড়া উৎপন্ন করে এবং সম্পূর্ণভাবে থেমে গেলো। α -কণার গতি শক্তি এবং প্রতিটি প্লেট কত আধান সংগ্রহ করলো তা নির্ণয় করো। দেওয়া আছে একটি আয়ন জোড়া উৎপন্ন করতে α -কণা 35 eV শক্তি ব্যয় করে।

P.T.O.

4. (a) G	কন $lpha$ -বর্ণালী একটি রেখা বর্ণালী? নিম্নলিখিত $lpha$ -ক্ষয়ের জন্য Q-মান গণনা কর :
2	$^{239}Pu \rightarrow ^{235}U + ^{4}He$
2	গদত্ত : $M(^{239}Pu) = 239.052158$ amu, $M(^{235}U) = 235.043925$ amu এবং
Δ	$M(^{4}He) = 4.002603 \text{ amu}$ 2+2
(b) C	খালক প্রতিরূপ ব্যবহার করে ⁷ Li এবং ¹⁹ Ne নিউক্লিয়ার ভূ-স্তরের স্পিন এবং প্যারিটি বের কর। 3
(c) ⁵	⁶ Fe নিউক্লিয়াসের গড় বন্ধনশক্তি প্রতি নিউক্লিয়ন গণনা কর।
2	খদত, $m_p = 1.007825$ amu, $m_n = 1.008665$ amu এবং $m_{Fe} = 55.934939$ amu ত
5. (a) শ ব	াক্তির সহিত eta -কণার সংখ্যার পরিবর্তনের নির্দিষ্ট লেখচিত্র প্রদর্শন কর। কেন eta -কণার এই শক্তি র্ণালী নিরবচ্ছিন্ন? 2+2
بر (b) ب	<i>৫</i> -কণার এই শক্তি বর্ণালী ব্যাখ্যা করতে কি কি অসুবিধা হয়েছিল? কিভাবে পাউলির নিউট্রিনো প্রকল্প াই অসুবিধাগুলি দূর করলো তা ব্যাখ্যা কর। 3+3
6. (a) ত্ব	ন্রণ যন্ত্র কি? এর অত্যাবশ্যক অংশগুলি কি কি? 2+2
(b) এ	।কটি ভ্যান ডি গ্রাফ ইলেক্ট্রোস্ট্যাটিক জেনারেটরের চিত্রসহ মূলনীতি বর্ণনা কর। 6
7. (a) (a)	মীলিক কণা বলতে কি বোঝ? মৌলিক কণাগুলিকে কিভাবে তাদের ভর, বল বা পরিসংখ্যান এর দ্বারা শ্রণি বিভাজন করা হয়েছে? 2+3
(b) रि	ইভিন্ন ধরনের মৌলিক বলগুলি কি কি? 2
(c) <i>শ</i> ক	⁄ -রশ্মির উৎস কি? একটি 1 keV শক্তির १⁄ -রশ্মি কোন কোন প্রক্রিয়াতে পদার্থের সাথে ক্রিয়া স্রবে?