

Question Paper

B.Sc. General Examinations 2021

(Under CBCS Pattern)

Semester - III

Subject : MATHEMATICS

Paper : DSC 1C / 2C / 3C - T

Full Marks : 60

Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[REAL ANALYSIS]

(Theory)

Group-A

Answer any *four* of the following questions :

12×4=48

- 1. (a) Prove that Union of two countable sets is countable.
 - (b) If a power series $\sum_{n=0}^{\infty} a_n x_0^n$ converges for $x = x_0 \neq 0$ then prove that the power series is absolutely convergent for all x when $|x| < |x_0|$.
- 6

6. (a) Show that a finite set has no limit point.

- (b) Prove that $\lim n^{\frac{1}{n}} = 1$.
- (c) Show that the sequence $\{f_n\}$ converge to a function f for all real x where $f_n(x) = \frac{1}{n^3 + n^4 x^2}$.
- 7. (a) Find Sup A and in fA where $A = \{x \in \mathbb{R} : 3x^2 + 8x 3\}$.
 - (b) Show that there does not exist a rational number r such that $r^2 = 5$.
 - (c) Prove that the union of two closed sets in R is a closed set. 4+4+4
- 8. (a) Show that the sequence of functions $\{\tan^{-1}nx\}_n, x \ge 0$ is uniformly convergent in any interval [a, b] but is only pointwise convergent in [0, b].
 - (b) State and prove Cauchy's General Principle of convergence. 6+6

Group-B

Answer any *six* of the following questions : $2 \times 6 = 12$

- 1. Prove that for all $n \ge 2$, $(n+1)! > 2^n$.
- 2. Find the value/values of x for which the power series $\sum_{n=0}^{\infty} n! x^n$ converges.
- 3. Determine the domain of the real function $f(x) = \sqrt{2 + x x^2}$.
- 4. If $x_n = 2 + (-1)^n 2^{-n}$, then show by definition that the sequence $\{x_n\}$ is convergent.
- 5. Show that the function defined by $f(x) = \frac{1}{x}, x \in [1, \infty)$ is uniformly continuous on $[1, \infty)$.

- 6. Give an example of the open cover of the set (0, 1] which does not have a finite sub cover.
- 7. Examine if the set *S* is closed in *R*, where $S = \left\{x \in R : \sin \frac{1}{x} = 0\right\}$.
- 8. Examine the convergence of the series $\frac{1}{3} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 + \left(\frac{4}{9}\right)^4 + \dots + \dots$
- 9. Find the radius of convergence of the power series $\sum (\sqrt[n]{n} + 1)^n \cdot x^n$
- 10. Find $\lim_{x\to 0} \sum_{n=1}^{\infty} \frac{\cos nx}{n(n+1)}$.