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6.

Class Note-3
Laplace's Equation in spherical polar coordinate systems: Obtaining the form of
equation. Solution using the method of separation of variables (up to angular

part).

Laplace’s equation in spherical polar coordinate system

Spherical polar coordinates are (7, 6, ). Expression of Vin spherical polar coordinates is
1 0
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Therefore:
0 ( 6u+916u+ 1 au)
Tar r a0 (prsin90<p
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+o 1 0 A6u+916u+A 1 au)
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Therefore Laplace’s equation in spherical polar coordinates can be written as

16(26u> 1 a( 96u>+ 1 0%u
sin 96/ " r2sin2 6 dp?

— T
r2or or r2sin 6 00

d ( 26u>+ 1 9 ( au> 1 d*u 0 61
=>—(r2— —=0 ....... :
ar\" ar) " sine a0 sin 6 30/ ' sin? 0 d¢? (6.1)
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Separation of variables:

To solve the differential eqn. we use method of separation of variables by assuming:

Y(r,0,p) =R(r)Y(6,¢) .. .. .. (6.2)

Then Laplace’s eqn. becomes, after some rearrangements:

Y sin 6 90

1d( ,0R() 11 a9/ o0v0,9)\ 1 1 09%Y(6,9)
——|r = sin 0 ———
Rdr or 00 Ysin26 0d¢?

Since two sides of the equation are functions of different variables, they are independent
of each other. Therefore both of them are equal to a constant, say, A. Thus the above
equation gives two equations, one angular and other radial:

0 aY(6,9)\  0°Y(6,¢) -
sm9%<sm9 50 > + 357 + A1sin“0Y(0,9) =0 ..... (6.3) [Angular eqn. |
and L (22RO 2 poy - 6.4) [Radial
nd S \"" ) = r)=0...... (6.4) [Radial or r eqn. |

Orbital Angular Momentum Operator
(You can avoid this)

Multiplying throughout by —h? and rearranging eqn. (6.3) can be written as:

0 (5 a(' 96)+ L) (6,0) = WY (0,0) .....(63A
" sin6 26\’ 30) " sinz6 992 ) ¥ T , Q) e (6.3A)

In quantum mechanics,
b2 1 6(_96>+ 1 92 _ 2
sing 96 \>" 7 30) " sin26 0p?)

is an operator, which is the square of the orbital angular momentum operator L.

Therefore Eqn. (6.3A) can be written as:
I?Y (6, p) = AR%*Y (6, @) ... ... ... (6.3.B)

Eqn. (6.3B) is the eigen value equation of the operator L? and AA? is the eigen value of
2.
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To solve eqn. (6.3) again we apply the method of separation of variables by assuming
Y (6, p) = 0(0)D(¢p). Then this eqn. becomes, after rearrangements:

1 d?®(p)
O(p) do?

sin0d(  do(o) dsin? 6 =
0(0) a6 sinf — sin“ 0 =
As before, the two sides of the equation are functions of different variables. So they are
independent of each other and so are equal to a constant, say, m?. Thus the above
equation gives two equations:

sinf d [ 6d®(6) +Asin? 8 = m?
0(0) 48 sinf — sin?0 =m
0 L4 (na @O\ (G- ™ Vo) =0 6.5) [0
I, ey Sy snZ g =0 .o (6.5) [0 eqn.]
d2®
And d(p(z(p ) - m2d(p) = 0. (6.6) [@ eqn. ]

To solve the 8 eqn. and the ¢ eqn. we don’t need the expression or functional form of the
potential V(). It will be required to solve the radial equation.

Solution of the ¢ eqn.:

Equation (6.6) has solutions:
®(p) = Bet™? form #0 and, ®(p) =C+Dp form=0.

® and it’s derivative must be continuous within 0 < ¢ < 2. Also for @ to be single
valued, one must have ®(¢ + 21) = ®(¢).

Therefore

(i)  Be*m@+2m — petim¢ o o2mim — 1 = 1 =0,41,42,43.

(ii) D =0.
Then, for all possible values of m, the solutions of eqn. (6.6) can be written as:

®(p) = Nye™?, with m=0,£1,+2,4+3 ... . (6.7).

Where N, is a constant to be determined from boundary conditions.
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Orbital Magnetic Quantum Number
(You can avoid this)

The ¢ eqn i.e. equation (6.6) can be modified as:

d*® (@)
dg?

, 0% ()
dp?

+m?d(p) =0 = —h

= m?h2d(p)

d d
[Since ®(¢) is single variable function, therefore — can be replaced by %]

de
a 2
= (—ih%> ®(p) = (MA)2D(Q) ... (6.6A)
But
9
~ihoo =L (6.6B)

is called the Z component of angular momentum operator in quantum mechanics.

Therefore Eqn. (6.6A) can be written as:

L ®(@) = mh)2®(e) ... ...(6.6C)

Eqn. (6.6C) is the eigen value equation of the operator izz for eigen function ®(¢) and

(mh)? is the eigen value of ZZZ.

From eqn. (6.7) and eqn. (6.6B) we get:

- d . .
L,®,,(p) = —ih%(N(pe”""’) = mh(N(pe””‘p) = mhd,, ()

Thus we see that the eigen values of the Z component of orbital angular momentum
operator are mh, where m is zero or integer (positive or negative) but cannot have any
half integer value. In quantum mechanics m is called orbital magnetic quantum

number.
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Solution of the 0 eqn.:
In eqn. (6.5), let cos @ = w and ©(6) = P(w).

Then

d _ddw__ . d__ ——d
a0 awdo  Waw T VT,

and eqn. (6.5) becomes:

—(1-w?) i(—u —w?) dP(W)) +A(1 = w2)P(w) —m2P(w) = 0
dw dw
2
Or, %((1 —w?) dI;S:”) + <A -1 T_nwz> Pw)=0 ........(68)
2 2
or, (1—W2)dd1;(f) - Wdi;gv) +(/1— 1’_”W2>P(W) =0 o (69)

This may be called the general form (with no restriction on A) of associated Legendre
differential equation. To solve this eqn. we shall first obtain the solutions of the equation for
m = 0. Then those solutions will be used to find the solutions of associated Legendre
differential equation. Now with m = 0 we have:

dZP(W) — 2w dP‘(A‘:V) + AP(W) =0...... (610)

_ 2
A=wi)—z d

Which can be called the general form (with no restriction on 1) of Legendre differential
equation. Using Frobenius method, we assume the trial solution:

(o]

P(w) = Z a, W' with g # 0 .. ... (6.11)
v=0
dP(w - d?P(w -
Then: W) = z a,(v +s)wvtst J = z a,(v+s)(v+s—1DwVts—2
dw 4 dw? .
V= V=

= (1 —-w?) Z a,(v+s)(v+s—DwvtsZ — ZWZ a,(v+s)wytsTl 4 AZ a,w’* =0
v=0 v=0 v=0
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oo

= Z a,(v+s)v+s—DwVts2Z — Z a,(v+s)v+s—1wvts
v=0

v=0
- Z 2a,(v + s)wVts + Z Aa,wV*s =0
v=0 v=0

[ee)

= Z;av(v +)(V+s— w2 - Z;av[(v +)V+s—D+2(0+s)—Aw s =0

[ee]

= Z a,(v+s)v+s—DwVs2 — Z a,[v+s) v+s+1)—AwVs =0.... (6.12)
v=0

v=0

Eqn. (15) should be valid for all values of w. Therefore the coefficients of each power of w

must vanish separately.

Equating the coefficient of w2 to zero we get (remember: v can not be negative):

aps(s—1)=0...... (6.13)

Equating the coefficient of w1 to zero we get:

a;(s+1)s=0...... (6.14)
Equating the coefficients of w¥** equal to zero we have:
a2 (v+s+2)v+s+1)=a,(v+s)v+s—1)+ 2a,(v+s) — Aa,
Sa,,v+s+2)v+s+ 1) =[v+s)v+s+1)—2A]a,

+s)v+s+1)—2
(v+s+2)(v+s+1)av

= QAyip =

Since ay # 0, from eqn. (6.13), we must have:
s=0ors=1.
Up to this step, a is arbitrary.
From (6.14) we have:
a, = arbitrary for s =0

and a; =0 fors=1
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Therefore s = 1 leads to a; = 0 and hence according to eqn. (6.15) all a,34 = 0. Then only

one series, which contains only odd powers of w, will be obtained as the solution:

P(w) = z a,w't = aow + a,w? + a,w® + -+ (6.16)
v=0,24...

But for s = 0, a;is not necessarily zero and we obtain the general solution as the sum of one
odd and one even series as:

P(w) = ay + aaw? + aw* + -+ + a;wt + azw3 + asw® + -

P(w) = Z a,w + Z AW (6.17)

v=0,2,4... v=1,3,5...

Thus the more general solution (6.17), which is a sum of two series, is obtained for s = 0.
However it should be noted that each of the two series of eqn. (6.17) or the odd series of eqn.
(6.16) alone can satisfy equation (6.10) and can be taken as a solution of this equation.

For s = 0, the recurrence relation (6.15) becomes:

_ viv+1)—2
Ayiyo = mav .........

_W D ———————

Smcev—wo a, TvoowrDwt+2)” T

the series of equation (6.17) [and also of eqn. (6.16)] converge for w? < 1. But they become

indeterminate at w? = 1 or w = +1.

Legendre Differential equation and Legendre polynomials:

In physics, we often encounter problems, where the boundary conditions require solutions to
be finite or in other words, if series solution method is followed, then either the infinite series
has to converge or the series has to terminate after finite number of terms. Therefore to have
physically meaningful solutions within the range —1 <w <1 or 0 < 8 < m, we must have
the series terminated after finite number of terms. We will now see that the series solutions

terminate if 4 is restricted to be a product of two consecutive integers, like:
A=11+1)...... (6.19)

Where [ is 0 or a positive integer. Then:
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v+ D -l0+1) vHv-P-1 v-D+D+v-I
YT+ YT+ 0+ DY T T s+ P

_(v—l)(v+l+1)
T T+ +D W

Or
_O-DO+i+1)  WI+1)
ZET0r 0+ T 2 B
_A-DA+I+D (A-DU+2)
BT+ BT 3 &

..etc.

A closer observation reveals that any single value of [ cannot simultaneously terminate both
the series. When [ is even, the even series terminates, but the odd series does not. And when [
is odd, the odd series terminates. For physically meaningful solution, the terminated series is

taken and the other is rejected. P(w) is suffixed by [, which is the highest power of w in the
accepted expansion.

For example, for l = 0,1, 2, 3 ...., as physically acceptable solution, we get:
Py(w) = ag

Pi(w) = a;w

2(2+1
P,(w) = ay + a,w? = q, —%aow2 = ay — 3ayw?
1-3)3+2 5
Ps(w) = qyw + azw3 = a;w + (;#alw3 = mw —§alw3

Note that ay of Py(w) and a, of P,(w) are not necessarily same. Similarly a; of P;(w) and a,
of P;(w) are not necessarily same etc [see Table-1].

With 2 = [(l + 1), the equation (6.10) takes the form:

d’P(w) ) dP(w)
dw?2 W dw

(1-w?)

+IL+DPW) =0...... (6.20)

wherel =0,1,2.....
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This is the standard form of well-known Legendre differential equation. The solutions P;(w)
are called Legendre polynomials. They can be obtained from the Rodrigues formula:

1 dy
ﬁ(ﬁ) W2 = DV oo (6.21)

P(w) =
It has been already mentioned that the suffix [ of P;(w) is the highest power of w in the
expression of P;(w). It is also evident from the Rodrigues formula. Highest power w of in the
expression of (w? — 1)!is 21. And P,(w) is obtained by [ times differentiating (w? — 1) with
respect to w. Thus in P;(w) the highest power of w is L.

Table-1
First few Legendre polynomials
1 /dy 0,(6) = P (w)
l _ - (= 2 _ 1)\l
) 2L (dw) b =1 = P;(cos 0)
1 ,d\°
0 P"_200|(W) wi-1D=1 '
1 sdn\
Py =— (—) (w? — 1)t
1 2 1!1 dw cos 0
= E 2w =w
1 /d\°
P2= > |(—) (W4—2W2+1) 1
2 22 2! fw E(3cos2¢9— 1)
= E(3W2 - 1)
1 /dy°
_ 6 4 2
3—3—'(—> (W —3w* 4+ 3w —1) 1
3 12 31\dw 1 5(500530—3c056)
=—(120w3 — 72w) = = (5w? — 3w)
48 2
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Associated Legendre Differential equation and Associated Legendre polynomials:

With A = [(l + 1), the equation (6.9) takes the form:

2

d?pP(w) dP(w)
— 2w
1—w?

dw? dw

(1-w?) + (z(z +1) - >P(W) =0 o (622)

wherel =10,1,2.....

This is the standard form of well-known associated Legendre differential equation. It can be
shown that (the details of the solution are not required here) the associated Legendre differential
equation is satisfied by the associated Legendre polynomials given by the Rodrigues formula:

[m|

ml / d
PM(w) = (1 — w?) 2 (E) [Py oo e (6.23)

To obtain P/™*(w), one has to differentiate P,(w) by |m| times. It has been shown that the
highest power of w in P,(w) is w!, therefore one cannot differentiate P,(w) more than [ times
for nonzero result. Thus for nonzero solution of the associated Legendre differential equation
one must have:

Im| <1, Or m = -l to + lininteger steps.
First few associated Legendre polynomials are given in Table-2.

Thus the associated Legendre polynomials P (w) = P/"(cos 6) are the solution of the 8

equation:

|m|

Im| / d
0(6) = OF'(8) = NyP]'(c0s 6) = PP'(w) = No(1—w?)2 () [Piw)]

withw=cos@; 1[=0,1,2....andm =0,+1,1+2 ...+l

and N, is a constant to be determined from boundary conditions.

Thus the solution of the angular part of Laplace equation is given by:

|m|

. iml / d .
Y(6,9) = Y11, (6, 9) = NyNoP['(cos 0)e™? = NyNo(1 —w?) 2 (E) [P;(w)]e'™

withw=cosf@; 1=0,1,2....andm =0,+1,+2...+L
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Table-2
First few associated Legendre polynomials: P}"(w) for few small values of [ and m

iml / d ™
Py(w) m | PP =(1-w)z (o) [AW)] = 67(e)
d 0
Po=1 0 PY(cos 8) = (1 — w?)° (E) [P, (w)] = 1
d 0
. PY = (1—w?) () [P,w)] = Py(w)
=w =cos0
Py =w=cos@
|£1]
Pit=-w? () [P
+1
=y -w?)—w =,(1—-w?2) =sin8
ST ow =
d 0
S| nea — w2 () [P, = [P,(w)]
1 1
= E(SWZ -1) = E(Bcosze -1)
|+1]
P, = %(3w2 -1 PIt=(1- Wz)liz—1I (%) E (Bw? — 1)]
1 d
=5 Bcos*0 - 1) H =/ -wd)— [z Bw? - 1)]
= 3w,/(1 —w?2) =3cosOsind
1+21 / d |£2] 1
+2 Pt =a-wy () [pew -]
= 3(1 — w?) = 3sin?0
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Orbital Angular Momentum Quantum Number and Eigen Values

You can avoid this

With 4 = [(l + 1) Eqn. (6.3) becomes:

16( 0 1 02

I’Y(,¢) = —h? | ——|(sin — Y(0,0) = 1(l + Dh2Y (0
6, p) (sin669 sin + )(,q)) (I+1Dr*Y (6, p)

ae) sin26 d¢p?
Therefore eigen value of L2 is [(I + 1)A?. Thus the orbital angular momentum L has the values:
L=+ 1)

The number [, which can be zero or positive integer, is called orbital angular momentum

quantum number in quantum mechanics.

End of notes on angular part
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