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Class Note-3 
6. Laplace's Equation in spherical polar coordinate systems: Obtaining the form of 

equation. Solution using the method of separation of variables (up to angular 

part). 

Laplace’s equation in spherical polar coordinate system: 

Spherical polar coordinates are (𝑟, 𝜃, 𝜑). Expression of ∇ሬሬ⃗  in spherical polar coordinates is: 

∇ሬሬ⃗ = �̂�
𝜕

𝜕𝑟
+ 𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕

𝜕𝜑
 

Therefore:    

∇ଶ𝑢(𝑟, 𝜃, 𝜑) = ൬�̂�
𝜕

𝜕𝑟
+ 𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕

𝜕𝜑
൰ ∙ ൬�̂�

𝜕

𝜕𝑟
+ 𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕

𝜕𝜑
൰ 𝑢(𝑟, 𝜃, 𝜑) 

= ൬�̂�
𝜕

𝜕𝑟
+ 𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕

𝜕𝜑
൰ ∙ ൬�̂�

𝜕𝑢

𝜕𝑟
+ 𝜃

1

𝑟

𝜕𝑢

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕𝑢

𝜕𝜑
൰ 

= �̂�
𝜕

𝜕𝑟
∙ ൬�̂�

𝜕𝑢

𝜕𝑟
+ 𝜃

1

𝑟

𝜕𝑢

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕𝑢

𝜕𝜑
൰ + 𝜃

1

𝑟

𝜕

𝜕𝜃
∙ ൬�̂�

𝜕𝑢

𝜕𝑟
+ 𝜃

1

𝑟

𝜕𝑢

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕𝑢

𝜕𝜑
൰ 

+𝜑ො
1

𝑟 sin 𝜃

𝜕

𝜕𝜑
∙ ൬�̂�

𝜕𝑢

𝜕𝑟
+ 𝜃

1

𝑟

𝜕𝑢

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕𝑢

𝜕𝜑
൰ 

Remember:   

�̂� = sin 𝜃 cos 𝜑 𝚤መ̇ + sin 𝜃 sin 𝜑 𝚥መ̇ + cos 𝜃 𝑘; 

𝜃 = cos 𝜃 cos 𝜑 𝚤መ̇ + cos 𝜃 sin 𝜑 𝚥መ̇ − sin 𝜃 𝑘;  

𝜑ො = − sin 𝜑 𝚤̇መ + cos 𝜑 𝚥̇መ 

Then:   
𝜕�̂�

𝜕𝑟
=

𝜕𝜃

𝜕𝑟
=

𝜕𝜑ො

𝜕𝑟
= 0;  

𝜕�̂�

𝜕𝜃
= cos 𝜃 cos 𝜑 𝚤̂ + cos 𝜃 sin 𝜑 𝚥̂ − sin 𝜃 𝑘 = 𝜃,   

𝜕𝜃

𝜕𝜃
= −൫sin 𝜃 cos 𝜑 𝚤̂ + sin 𝜃 sin 𝜑 𝚥̂ + cos 𝜃 𝑘൯ = −�̂�,

𝜕𝜑ො

𝜕𝜃
= 0; 

𝜕�̂�

𝜕𝜑
= (− sin 𝜑 𝚤̂ + cos 𝜑 𝚥̂) sin 𝜃 = sin 𝜃 𝜑ො ,            

𝜕𝜃

𝜕𝜑
= cos 𝜃 𝜑ො, 

𝜕𝜑ො

𝜕𝜑
= −(cos 𝜑 𝚤̂ + sin 𝜑 𝚥̂) = −൫sin 𝜃 �̂� + cos 𝜃 𝜃൯; 
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Therefore: 

∇ଶ𝑢(𝑟, 𝜃, 𝜑) = �̂�
𝜕

𝜕𝑟
∙ ൬�̂�

𝜕𝑢

𝜕𝑟
+ 𝜃

1

𝑟

𝜕𝑢

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕𝑢

𝜕𝜑
൰ 

+𝜃
1

𝑟

𝜕

𝜕𝜃
∙ ൬�̂�

𝜕𝑢

𝜕𝑟
+ 𝜃

1

𝑟

𝜕𝑢

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕𝑢

𝜕𝜑
൰ 

+𝜑ො
1

𝑟 sin 𝜃

𝜕

𝜕𝜑
∙ ൬�̂�

𝜕𝑢

𝜕𝑟
+ 𝜃

1

𝑟

𝜕𝑢

𝜕𝜃
+ 𝜑ො

1

𝑟 sin 𝜃

𝜕𝑢

𝜕𝜑
൰ 

= �̂� ∙ �̂�
𝜕ଶ𝑢

𝜕𝑟ଶ
+ 𝜃 ∙

1

𝑟

𝜕�̂�

𝜕𝜃

𝜕𝑢

𝜕𝑟
+ 𝜃 ∙ 𝜃

1

𝑟

𝜕

𝜕𝜃
൬

1

𝑟

𝜕𝑢

𝜕𝜃
൰ + 𝜑ො ∙

1

𝑟 sin 𝜃

𝜕�̂�

𝜕𝜑

𝜕𝑢

𝜕𝑟
 

+𝜑ො ∙
1

𝑟 sin 𝜃

𝜕𝜃

𝜕𝜑

1

𝑟

𝜕𝑢

𝜕𝜃
+ 𝜑ො ∙ 𝜑ො

1

𝑟 sin 𝜃

𝜕

𝜕𝜑
൬

1

𝑟 sin 𝜃

𝜕𝑢

𝜕𝜑
൰ 

=
𝜕ଶ𝑢

𝜕𝑟ଶ
+ 𝜃 ∙

1

𝑟
𝜃

𝜕𝑢

𝜕𝑟
+

1

𝑟ଶ

𝜕ଶ𝑢

𝜕𝜃ଶ
 

+𝜑ො ∙
1

𝑟 sin 𝜃
sin 𝜃 𝜑ො

𝜕𝑢

𝜕𝑟
+ 𝜑ො ∙

1

𝑟 sin 𝜃
cos 𝜃 𝜑ො

1

𝑟

𝜕𝑢

𝜕𝜃
+

1

𝑟ଶ sinଶ 𝜃

𝜕ଶ𝑢

𝜕𝜑ଶ
 

=
𝜕ଶ𝑢

𝜕𝑟ଶ
+

1

𝑟

𝜕𝑢

𝜕𝑟
+

1

𝑟ଶ

𝜕ଶ𝑢

𝜕𝜃ଶ
+

1

𝑟

𝜕𝑢

𝜕𝑟
+ cot 𝜃

1

𝑟ଶ

𝜕𝑢

𝜕𝜃
+

1

𝑟ଶ sinଶ 𝜃

𝜕ଶ𝑢

𝜕𝜑ଶ
 

=
𝜕ଶ𝑢

𝜕𝑟ଶ
+

2

𝑟

𝜕𝑢

𝜕𝑟
+

1

𝑟ଶ

𝜕ଶ𝑢

𝜕𝜃ଶ
+ cot 𝜃

1

𝑟ଶ

𝜕𝑢

𝜕𝜃
+

1

𝑟ଶ sinଶ 𝜃

𝜕ଶ𝑢

𝜕𝜑ଶ
 

=
1

𝑟ଶ

𝜕

𝜕𝑟
൬𝑟ଶ

𝜕𝑢

𝜕𝑟
൰ +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕𝑢

𝜕𝜃
൰ +

1

𝑟ଶ sinଶ 𝜃

𝜕ଶ𝑢

𝜕𝜑ଶ
 

Or, ∇ଶ𝑢(𝑟, 𝜃, 𝜑) = ቈ
1

𝑟ଶ

𝜕

𝜕𝑟
൬𝑟ଶ

𝜕

𝜕𝑟
൰ +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕

𝜕𝜃
൰ +

1

𝑟ଶ sinଶ 𝜃

𝜕ଶ

𝜕𝜑ଶ
 𝑢(𝑟, 𝜃, 𝜑) 

Or, 𝛁𝟐 ≡
𝟏

𝒓𝟐

𝝏

𝝏𝒓
൬𝒓𝟐

𝝏

𝝏𝒓
൰ +

𝟏

𝒓𝟐 𝐬𝐢𝐧 𝜽

𝝏

𝝏𝜽
൬𝐬𝐢𝐧 𝜽

𝝏

𝝏𝜽
൰ +

𝟏

𝒓𝟐 𝐬𝐢𝐧𝟐 𝜽

𝝏𝟐

𝝏𝝋𝟐
 

Therefore Laplace’s equation in spherical polar coordinates can be written as: 

1

𝑟ଶ

𝜕

𝜕𝑟
൬𝑟ଶ

𝜕𝑢

𝜕𝑟
൰ +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕𝑢

𝜕𝜃
൰ +

1

𝑟ଶ sinଶ 𝜃

𝜕ଶ𝑢

𝜕𝜑ଶ
= 0 

⇒
𝝏

𝝏𝒓
൬𝒓𝟐

𝝏𝒖

𝝏𝒓
൰ +

𝟏

𝐬𝐢𝐧 𝜽

𝝏

𝝏𝜽
൬𝐬𝐢𝐧 𝜽

𝝏𝒖

𝝏𝜽
൰ +

𝟏

𝐬𝐢𝐧𝟐 𝜽

𝝏𝟐𝒖

𝝏𝝋𝟐
= 𝟎 … … … (6.1) 
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Separation of variables: 

To solve the differential eqn. we use method of separation of variables by assuming:   

𝜓(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌(𝜃, 𝜑) … … … (6.2) 

Then Laplace’s eqn. becomes, after some rearrangements:  

1

𝑅

𝑑

𝑑𝑟
ቆ𝑟ଶ

𝜕𝑅(𝑟)

𝜕𝑟
ቇ = −

1

𝑌

1

sin 𝜃

𝜕

𝜕𝜃
ቆsin 𝜃

𝜕𝑌(𝜃, 𝜑)

𝜕𝜃
ቇ −

1

𝑌

1

sinଶ 𝜃

𝜕ଶ𝑌(𝜃, 𝜑)

𝜕𝜑ଶ
 

Since two sides of the equation are functions of different variables, they are independent 

of each other. Therefore both of them are equal to a constant, say, 𝜆. Thus the above 

equation gives two equations, one angular and other radial:  

sin 𝜃
𝜕

𝜕𝜃
ቆsin 𝜃

𝜕𝑌(𝜃, 𝜑)

𝜕𝜃
ቇ +

𝜕ଶ𝑌(𝜃, 𝜑)

𝜕𝜑ଶ
+ 𝜆 sinଶ 𝜃 𝑌(𝜃, 𝜑) = 0 … … (6.3) [𝐀𝐧𝐠𝐮𝐥𝐚𝐫 𝐞𝐪𝐧. ] 

And    
1

𝑟ଶ

𝑑

𝑑𝑟
ቆ𝑟ଶ

𝑑𝑅(𝑟)

𝑑𝑟
ቇ −

𝜆

𝑟ଶ
𝑅(𝑟) = 0 … … … (6.4) [𝐑𝐚𝐝𝐢𝐚𝐥 𝐨𝐫 𝒓 𝐞𝐪𝐧. ] 

 

Orbital Angular Momentum Operator 

(You can avoid this) 

Multiplying throughout by −ℏଶ and rearranging eqn. (6.3) can be written as: 

𝑂𝑟, −ℏଶ ቆ
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕

𝜕𝜃
൰ +

1

𝑠𝑖𝑛ଶ𝜃

𝜕ଶ

𝜕𝜑ଶ
ቇ 𝑌(𝜃, 𝜑) = 𝜆ℏଶ𝑌(𝜃, 𝜑) … … (6.3A) 

In quantum mechanics,  

−ℏଶ ቆ
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕

𝜕𝜃
൰ +

1

𝑠𝑖𝑛ଶ𝜃

𝜕ଶ

𝜕𝜑ଶ
ቇ = 𝐿ଶ 

is an operator, which is the square of the orbital angular momentum operator 𝐿ሬ⃗.  

Therefore Eqn. (6.3A) can be written as: 

𝐿ଶ𝑌(𝜃, 𝜑) = 𝜆ℏଶ𝑌(𝜃, 𝜑) … … … (6.3. 𝐵) 

Eqn. (6.3B) is the eigen value equation of the operator 𝐿ଶ and 𝜆ℏଶ is the eigen value of 

𝐿ଶ.  
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To solve eqn. (6.3) again we apply the method of separation of variables by assuming 

𝑌(𝜃, 𝜑) = Θ(𝜃)Φ(𝜑). Then this eqn. becomes, after rearrangements: 

𝑠𝑖𝑛 𝜃

𝛩(𝜃)

𝑑

𝑑𝜃
ቆ𝑠𝑖𝑛 𝜃

𝑑𝛩(𝜃)

𝑑𝜃
ቇ + 𝜆 𝑠𝑖𝑛ଶ 𝜃 = −

1

Φ(𝜑)

𝑑ଶ𝛷(𝜑)

𝑑𝜑ଶ
. 

As before, the two sides of the equation are functions of different variables. So they are 

independent of each other and so are equal to a constant, say, 𝑚ଶ. Thus the above 

equation gives two equations: 

sin 𝜃

Θ(𝜃)

𝑑

𝑑𝜃
ቆsin 𝜃

𝑑Θ(𝜃)

𝑑𝜃
ቇ + 𝜆 sinଶ 𝜃 = 𝑚ଶ 

Or,
1

sin 𝜃

𝑑

𝑑𝜃
ቆsin 𝜃

𝑑Θ(𝜃)

𝑑𝜃
ቇ + ቆ𝜆 −

𝑚ଶ

sinଶ 𝜃
ቇ Θ(𝜃) = 0 … … … (6.5) [𝜽 𝐞𝐪𝐧. ] 

And     
𝑑ଶΦ(𝜑)

𝑑𝜑ଶ
+ 𝑚ଶΦ(𝜑) = 0 … … … (6.6) [𝝋 𝐞𝐪𝐧. ] 

To solve the 𝜃 eqn. and the 𝜑 eqn. we don’t need the expression or functional form of the 

potential 𝑉(𝑟). It will be required to solve the radial equation.  

Solution of the 𝝋 𝐞𝐪𝐧.: 

Equation (6.6) has solutions: 

Φ(𝜑) = 𝐵𝑒±ఝ for 𝑚 ≠ 0      and,           Φ(𝜑) = 𝐶 + 𝐷𝜑     for 𝑚 = 0. 

Φ and it’s derivative must be continuous within 0 ≤ 𝜑 ≤ 2𝜋.  Also for Φ to be single 

valued, one must have Φ(𝜑 + 2𝜋) = Φ(𝜑).  

Therefore  

(𝑖)          𝐵𝑒±(ఝାଶగ) = 𝐵𝑒±ఝ   ⇒ 𝑒±ଶగ = 1    ⇒  𝑚 = 0, ±1, ±2, ±3. 

(𝑖𝑖)        𝐷 = 0. 

Then, for all possible values of 𝑚, the solutions of eqn. (6.6) can be written as: 

𝚽(𝝋) = 𝑵𝝋𝒆𝒊𝒎𝝋,      𝐰𝐢𝐭𝐡  𝒎 = 𝟎, ±𝟏, ±𝟐, ±𝟑 … … …     … … … (𝟔. 𝟕). 

Where 𝑵𝝋 is a constant to be determined from boundary conditions. 
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Orbital Magnetic Quantum Number 

(You can avoid this) 

The 𝜑 eqn i.e. equation (6.6) can be modified as: 

𝑑ଶΦ(𝜑)

𝑑𝜑ଶ
+ 𝑚ଶΦ(𝜑) = 0  ⇒     −ℏଶ

𝜕ଶΦ(𝜑)

𝜕𝜑ଶ
= 𝑚ଶℏଶΦ(𝜑) 

Since Φ(𝜑) is single variable function, therefore 
𝑑

𝑑𝜑
 can be replaced by 

𝜕

𝜕𝜑
 ൨ 

⇒ ൬−𝑖ℏ
𝜕

𝜕𝜑
൰

ଶ

Φ(𝜑) = (𝑚ℏ)ଶΦ(𝜑) … … … (6.6A) 

But  

−𝑖ℏ
𝜕

𝜕𝜑
= 𝐿௭ … … … (6.6B) 

 is called the 𝑍 component of angular momentum operator in quantum mechanics.  

Therefore Eqn. (6.6A) can be written as: 

𝐿௭
ଶ

Φ(𝜑) = (𝑚ℏ)ଶΦ(𝜑) … … (6.6C) 

Eqn. (6.6C) is the eigen value equation of the operator 𝐿௭
ଶ
 for eigen function Φ(𝜑) and 

(𝑚ℏ)ଶ is the eigen value of 𝐿௭
ଶ
.  

From eqn. (6.7) and eqn. (6.6B) we get: 

𝐿௭Φ(𝜑) = −𝑖ℏ
𝜕

𝜕𝜑
൫𝑁ఝ𝑒ఝ൯ = 𝑚ℏ൫𝑁ఝ𝑒ఝ൯ = 𝑚ℏΦ(𝜑) 

Thus we see that the eigen values of the Z component of orbital angular momentum 

operator are 𝑚ℏ, where 𝑚 is zero or integer (positive or negative) but cannot have any 

half integer value. In quantum mechanics 𝒎 is called orbital magnetic quantum 

number. 
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Solution of the 𝜽 𝐞𝐪𝐧.: 

In eqn. (6.5), let cos 𝜃 = 𝑤 and  Θ(𝜃) = 𝑃(𝑤).   

Then   

𝑑

𝑑𝜃
=

𝑑

𝑑𝑤

𝑑𝑤

𝑑𝜃
= − sin 𝜃

𝑑

𝑑𝑤
= −ඥ1 − 𝑤ଶ

𝑑

𝑑𝑤
 

  and eqn. (6.5) becomes: 

−(1 − 𝑤ଶ)
𝑑

𝑑𝑤
ቆ−(1 − 𝑤ଶ)

𝑑𝑃(𝑤)

𝑑𝑤
ቇ + 𝜆(1 − 𝑤ଶ)𝑃(𝑤) − 𝑚ଶ𝑃(𝑤) = 0 

Or,
𝑑

𝑑𝑤
൭(1 − 𝑤ଶ)

𝑑𝑃(𝑤)

𝑑𝑤
൱ + ቆ𝜆 −

𝑚ଶ

1 − 𝑤ଶ
ቇ 𝑃(𝑤) = 0 … … … … (6.8) 

Or, (1 − 𝑤ଶ)
𝑑ଶ𝑃(𝑤)

𝑑𝑤ଶ
− 2𝑤

𝑑𝑃(𝑤)

𝑑𝑤
+ ቆ𝜆 −

𝑚ଶ

1 − 𝑤ଶ
ቇ 𝑃(𝑤) = 0 … … … … (6.9) 

This may be called the general form (with no restriction on 𝜆) of associated Legendre 

differential equation. To solve this eqn. we shall first obtain the solutions of the equation for 

𝑚 = 0. Then those solutions will be used to find the solutions of associated Legendre 

differential equation. Now with 𝑚 = 0 we have:  

(1 − 𝑤ଶ)
𝑑ଶ𝑃(𝑤)

𝑑𝑤ଶ
− 2𝑤

𝑑𝑃(𝑤)

𝑑𝑤
+ 𝜆𝑃(𝑤) = 0 … … … (6.10) 

Which can be called the general form (with no restriction on 𝜆) of Legendre differential 

equation. Using Frobenius method, we assume the trial solution:   

𝑃(𝑤) =  𝑎ఔ𝑤ఔା௦

ஶ

ఔୀ

, with  𝑎 ≠ 0 … … … (6.11) 

Then:  
𝑑𝑃(𝑤)

𝑑𝑤
=  𝑎ఔ(𝜈 + 𝑠)𝑤ఔା௦ିଵ

ஶ

ఔୀ

   ,
𝑑ଶ𝑃(𝑤)

𝑑𝑤ଶ
=  𝑎ఔ(𝜈 + 𝑠)(𝜈 + 𝑠 − 1)𝑤ఔା௦ିଶ

ஶ

ఔୀ

 

⇒ (1 − 𝑤ଶ)  𝑎ఔ(𝜈 + 𝑠)(𝜈 + 𝑠 − 1)𝑤ఔା௦ିଶ

ஶ

ఔୀ

− 2𝑤  𝑎ఔ(𝜈 + 𝑠)𝑤ఔା௦ିଵ

ஶ

ఔୀ

+ 𝜆  𝑎ఔ𝑤ఔା௦

ஶ

ఔୀ

= 0 
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⇒  𝑎ఔ(𝜈 + 𝑠)(𝜈 + 𝑠 − 1)𝑤ఔା௦ିଶ

ஶ

ఔୀ

−  𝑎ఔ(𝜈 + 𝑠)(𝜈 + 𝑠 − 1)𝑤ఔା௦

ஶ

ఔୀ

 

−  2𝑎ఔ(𝜈 + 𝑠)𝑤ఔା௦

ஶ

ఔୀ

+  𝜆𝑎ఔ𝑤ఔା௦

ஶ

ఔୀ

= 0 

⇒  𝑎ఔ(𝜈 + 𝑠)(𝜈 + 𝑠 − 1)𝑤ఔା௦ିଶ

ஶ

ఔୀ

−  𝑎ఔ[(𝜈 + 𝑠)(𝜈 + 𝑠 − 1) + 2(𝜈 + 𝑠) − 𝜆]𝑤ఔା௦

ஶ

ఔୀ

= 0 

⇒  𝑎ఔ(𝜈 + 𝑠)(𝜈 + 𝑠 − 1)𝑤ఔା௦ିଶ

ஶ

ఔୀ

−  𝑎ఔ[(𝜈 + 𝑠)(𝜈 + 𝑠 + 1) − 𝜆]𝑤ఔା௦

ஶ

ఔୀ

= 0 … … (6.12) 

Eqn. (15) should be valid for all values of 𝑤. Therefore the coefficients of each power of 𝑤  

must vanish separately. 

Equating the coefficient of 𝑤௦ିଶ to zero we get (remember: 𝜈 can not be negative): 

𝑎𝑠(𝑠 − 1) = 0 … … … (6.13) 

Equating the coefficient of 𝑤௦ିଵ to zero we get: 

𝑎ଵ(𝑠 + 1)𝑠 = 0 … … … (6.14) 

Equating the coefficients of 𝑤ఔା௦ equal to zero we have: 

𝑎ఔାଶ(𝜈 + 𝑠 + 2)(𝜈 + 𝑠 + 1) = 𝑎ఔ(𝜈 + 𝑠)(𝜈 + 𝑠 − 1) + 2𝑎ఔ(𝜈 + 𝑠) − 𝜆𝑎ఔ 

⇒ 𝑎ఔାଶ(𝜈 + 𝑠 + 2)(𝜈 + 𝑠 + 1) = [(𝜈 + 𝑠)(𝜈 + 𝑠 + 1) − 𝜆]𝑎ఔ 

⇒ 𝑎ఔାଶ =
(𝜈 + 𝑠)(𝜈 + 𝑠 + 1) − 𝜆

(𝜈 + 𝑠 + 2)(𝜈 + 𝑠 + 1)
𝑎ఔ  … … … (6.15) 

Since 𝑎 ≠ 0, from eqn. (6.13), we must have:  

𝑠 = 0  or  𝑠 = 1. 

Up to this step, 𝑎 is arbitrary. 

From (6.14) we have: 

𝑎ଵ =  arbitrary for  𝑠 = 0   

and  𝑎ଵ = 0  for 𝑠 = 1 
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Therefore 𝑠 = 1 leads to 𝑎ଵ = 0 and hence according to eqn. (6.15) all 𝑎ௗௗ = 0. Then only 

one series, which contains only odd powers of 𝑤, will be obtained as the solution:    

𝑃(𝑤) =  𝑎ఔ𝑤ఔାଵ

ఔୀ,ଶ,ସ…

= 𝑎𝑤 + 𝑎ଶ𝑤ଷ + 𝑎ସ𝑤ହ + ⋯ (6.16) 

But for 𝑠 = 0, 𝑎ଵis not necessarily zero and we obtain the general solution as the sum of one 

odd and one even series as: 

𝑃(𝑤) = 𝑎 + 𝑎ଶ𝑤ଶ + 𝑎ସ𝑤ସ + ⋯ + 𝑎ଵ𝑤ଵ + 𝑎ଷ𝑤ଷ + 𝑎ହ𝑤ହ + ⋯ 

𝑃(𝑤) =  𝑎ఔ𝑤ఔ

ఔୀ,ଶ,ସ…

+  𝑎ఔ𝑤ఔ

ఔୀଵ,ଷ,ହ…

 … … … (6.17) 

Thus the more general solution (6.17), which is a sum of two series, is obtained for 𝑠 = 0. 

However it should be noted that each of the two series of eqn. (6.17) or the odd series of eqn. 

(6.16) alone can satisfy equation (6.10) and can be taken as a solution of this equation.  

For 𝑠 = 0,  the recurrence relation (6.15) becomes: 

𝑎ఔାଶ =
𝜈(𝜈 + 1) − 𝜆

(𝜈 + 2)(𝜈 + 1)
𝑎ఔ … … … (6.18) 

Since   
𝐿𝑖𝑚

𝜈 → ∞

𝑎ఔାଶ

𝑎ఔ
𝑤ଶ =

𝐿𝑖𝑚
𝜈 → ∞

𝜈(𝜈 + 1) − 𝜆

(𝜈 + 1)(𝜈 + 2)
𝑤ଶ = 𝑤ଶ, 

the series of equation (6.17) [and also of eqn. (6.16)] converge for 𝑤ଶ < 1. But they become 

indeterminate at 𝒘𝟐 = 𝟏 or 𝒘 = ±𝟏. 

Legendre Differential equation and Legendre polynomials:  

In physics, we often encounter problems, where the boundary conditions require solutions to 

be finite or in other words, if series solution method is followed, then either the infinite series 

has to converge or the series has to terminate after finite number of terms. Therefore to have 

physically meaningful solutions within the range −1 ≤ 𝑤 ≤ 1 or 0 ≤ 𝜃 ≤ 𝜋, we must have 

the series terminated after finite number of terms. We will now see that the series solutions 

terminate if 𝜆 is restricted to be a product of two consecutive integers, like:   

𝜆 = 𝑙(𝑙 + 1) … … … (6.19) 

Where 𝑙 is 0 or a positive integer. Then: 
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𝑎ఔାଶ =
𝜈(𝜈 + 1) − 𝑙(𝑙 + 1)

(𝜈 + 2)(𝜈 + 1)
𝑎ఔ =

𝜈ଶ + 𝜈 − 𝑙ଶ − 𝑙

(𝜈 + 2)(𝜈 + 1)
𝑎ఔ =

(𝜈 − 𝑙)(𝜈 + 𝑙) + 𝜈 − 𝑙

(𝜈 + 2)(𝜈 + 1)
𝑎ఔ 

=
(𝜈 − 𝑙)(𝜈 + 𝑙 + 1)

(𝜈 + 2)(𝜈 + 1)
𝑎ఔ 

Or 

𝑎ଶ =
(0 − 𝑙)(0 + 𝑙 + 1)

(0 + 2)(0 + 1)
𝑎 = −

𝑙(𝑙 + 1)

2
𝑎 

𝑎ଷ =
(1 − 𝑙)(1 + 𝑙 + 1)

(1 + 2)(1 + 1)
𝑎ଵ =

(1 − 𝑙)(𝑙 + 2)

3!
𝑎ଵ 

… . 𝑒𝑡𝑐. 

A closer observation reveals that any single value of 𝒍 cannot simultaneously terminate both 

the series. When 𝑙 is even, the even series terminates, but the odd series does not. And when 𝑙 

is odd, the odd series terminates. For physically meaningful solution, the terminated series is 

taken and the other is rejected. 𝑃(𝑤) is suffixed by 𝑙, which is the highest power of 𝑤 in the 

accepted expansion. 

For example, for 𝑙 = 0, 1, 2, 3 …., as physically acceptable solution, we get: 

𝑃(𝑤) = 𝑎 

𝑃ଵ(𝑤) = 𝑎ଵ𝑤 

𝑃ଶ(𝑤) = 𝑎 + 𝑎ଶ𝑤ଶ = 𝑎 −
2(2 + 1)

2
𝑎𝑤ଶ = 𝑎 − 3𝑎𝑤ଶ 

𝑃ଷ(𝑤) = 𝑎ଵ𝑤 + 𝑎ଷ𝑤ଷ = 𝑎ଵ𝑤 +
(1 − 3)(3 + 2)

3!
𝑎ଵ𝑤ଷ = 𝑎ଵ𝑤 −

5

3
𝑎ଵ𝑤ଷ 

… … 

Note that 𝑎 of 𝑃(𝑤) and 𝑎 of 𝑃ଶ(𝑤) are not necessarily same. Similarly 𝑎ଵ of 𝑃ଵ(𝑤) and 𝑎ଵ 

of 𝑃ଷ(𝑤) are not necessarily same etc [see Table-1].   

With 𝜆 = 𝑙(𝑙 + 1), the equation (6.10) takes the form: 

(1 − 𝑤ଶ)
𝑑ଶ𝑃(𝑤)

𝑑𝑤ଶ
− 2𝑤

𝑑𝑃(𝑤)

𝑑𝑤
+ 𝑙(𝑙 + 1)𝑃(𝑤) = 0 … … … (6.20) 

where 𝑙 = 0, 1, 2 … .. 
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This is the standard form of well-known Legendre differential equation. The solutions 𝑃(𝑤) 

are called Legendre polynomials. They can be obtained from the Rodrigues formula: 

𝑃(𝑤) =
1

2  𝑙!
൬

𝑑

𝑑𝑤
൰



(𝑤ଶ − 1) … … … … … (6.21) 

It has been already mentioned that the suffix 𝑙 of 𝑃(𝑤) is the highest power of 𝑤 in the 

expression of 𝑃(𝑤). It is also evident from the Rodrigues formula. Highest power 𝑤 of in the 

expression of (𝑤ଶ − 1) is 2𝑙. And 𝑃(𝑤) is obtained by 𝑙 times differentiating (𝑤ଶ − 1) with 

respect to 𝑤. Thus in 𝑃(𝑤) the highest power of 𝑤 is 𝑙. 

Table-1 

First few Legendre polynomials 

𝒍 𝑷𝒍(𝒘) =
1

2  𝑙!
൬

𝑑

𝑑𝑤
൰



(𝑤ଶ − 1) 
𝚯𝒍(𝜽) = 𝑃(𝑤) 

= 𝑃(cos 𝜃) 

𝟎 𝑷𝟎 =
1

2 0!
൬

𝑑

𝑑𝑤
൰



(𝑤ଶ − 1) = 𝟏 1 

𝟏 
𝑷𝟏 =

1

2ଵ 1!
൬

𝑑

𝑑𝑤
൰

ଵ

(𝑤ଶ − 1)ଵ 

=
1

2
∙ 2𝑤 = 𝒘 

𝐜𝐨𝐬 𝜽 

𝟐 
𝑷𝟐 =

1

2ଶ 2!
൬

𝑑

𝑑𝑤
൰

ଶ

(𝑤ସ − 2𝑤ଶ + 1) 

=
𝟏

𝟐
(𝟑𝒘𝟐 − 𝟏) 

𝟏

𝟐
(𝟑𝒄𝒐𝒔𝟐𝜽 − 𝟏) 

𝟑 
𝑷𝟑 =

1

2ଷ 3!
൬

𝑑

𝑑𝑤
൰

ଷ

(𝑤 − 3𝑤ସ + 3𝑤ଶ − 1) 

=
1

48
(120𝑤ଷ − 72𝑤) =

𝟏

𝟐
(𝟓𝒘𝟑 − 𝟑𝒘) 

𝟏

𝟐
(𝟓𝒄𝒐𝒔𝟑𝜽 − 𝟑 𝐜𝐨𝐬 𝜽) 
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Associated Legendre Differential equation and Associated Legendre polynomials:  

With 𝜆 = 𝑙(𝑙 + 1), the equation (6.9) takes the form: 

(1 − 𝑤ଶ)
𝑑ଶ𝑃(𝑤)

𝑑𝑤ଶ
− 2𝑤

𝑑𝑃(𝑤)

𝑑𝑤
+ ቆ𝑙(𝑙 + 1) −

𝑚ଶ

1 − 𝑤ଶ
ቇ 𝑃(𝑤) = 0 … … … … (6.22) 

where 𝑙 = 0, 1, 2 … .. 

This is the standard form of well-known associated Legendre differential equation. It can be 

shown that (the details of the solution are not required here) the associated Legendre differential 

equation is satisfied by the associated Legendre polynomials given by the Rodrigues formula: 

𝑃
(𝑤) = (1 − 𝑤ଶ)

||
ଶ ൬

𝑑

𝑑𝑤
൰

||

[𝑃(𝑤)] … … … … … … (6.23) 

To obtain 𝑃
(𝑤), one has to differentiate 𝑃(𝑤) by |𝑚| times. It has been shown that the 

highest power of 𝑤 in 𝑃(𝑤) is 𝑤 , therefore one cannot differentiate 𝑃(𝑤) more than 𝑙 times 

for nonzero result. Thus for nonzero solution of the associated Legendre differential equation 

one must have: 

|𝑚| ≤ 𝑙, Or   𝑚 = −𝑙   to + 𝑙 in integer steps.  

First few associated Legendre polynomials are given in Table-2. 

Thus the associated Legendre polynomials 𝑃
(𝑤) = 𝑃

(cos 𝜃) are the solution of the 𝜃 

equation: 

 𝚯(𝜽) = 𝚯𝒍
𝒎(𝜽) = 𝑵𝜽𝑷𝒍

𝒎(𝐜𝐨𝐬 𝜽) = 𝑷𝒍
𝒎(𝒘) = 𝑵𝜽(𝟏 − 𝒘𝟐)

|𝒎|
𝟐 ൬

𝒅

𝒅𝒘
൰

|𝒎|

[𝑷𝒍(𝒘)] 

𝐰𝐢𝐭𝐡 𝒘 = 𝐜𝐨𝐬 𝜽 ;     𝒍 = 𝟎, 𝟏, 𝟐 … . .  𝒂𝒏𝒅 𝒎 = 𝟎, ±𝟏, ±𝟐 … . ±𝒍 

𝐚𝐧𝐝 𝑵𝜽 𝐢𝐬 𝐚 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 𝐭𝐨 𝐛𝐞 𝐝𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐞𝐝 𝐟𝐫𝐨𝐦 𝐛𝐨𝐮𝐧𝐝𝐚𝐫𝐲 𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝐬. 

Thus the solution of the angular part of Laplace equation is given by: 

𝒀(𝜽, 𝝋) = 𝒀𝒍𝒎(𝜽, 𝝋) = 𝑵𝝋𝑵𝜽𝑷𝒍
𝒎(𝐜𝐨𝐬 𝜽)𝒆𝒊𝒎𝝋 = 𝑵𝝋𝑵𝜽(𝟏 − 𝒘𝟐)

|𝒎|
𝟐 ൬

𝒅

𝒅𝒘
൰

|𝒎|

[𝑷𝒍(𝒘)]𝒆𝒊𝒎𝝋 

𝐰𝐢𝐭𝐡 𝒘 = 𝐜𝐨𝐬 𝜽 ;     𝒍 = 𝟎, 𝟏, 𝟐 … . .  𝒂𝒏𝒅 𝒎 = 𝟎, ±𝟏, ±𝟐 … . ±𝒍. 
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Table-2 

First few associated Legendre polynomials: 𝑷𝒍
𝒎(𝒘) for few small values of 𝒍 and 𝒎 

𝒍 𝑷𝒍(𝒘) 𝒎 𝑷𝒍
𝒎(𝒘) = (1 − 𝑤ଶ)

||
ଶ ൬

𝑑

𝑑𝑤
൰

||

[𝑃(𝑤)] = 𝚯𝒍
𝒎(𝜽) 

 𝟎 𝑷𝟎 = 𝟏 𝟎 𝑷𝟎
𝟎(𝐜𝐨𝐬 𝜽) = (1 − 𝑤ଶ) ൬

𝑑

𝑑𝑤
൰



[𝑃(𝑤)] = 𝟏 

𝟏 𝑷𝟏 = 𝑤 = 𝐜𝐨𝐬 𝜽 

𝟎 
𝑷𝟏

𝟎 = (1 − 𝑤ଶ) ൬
𝑑

𝑑𝑤
൰



[𝑃ଵ(𝑤)] = 𝑃ଵ(𝑤) 

= 𝑤 = 𝐜𝐨𝐬 𝜽 

±𝟏 

𝑷𝟏
±𝟏 = (1 − 𝑤ଶ)

|±ଵ|
ଶ ൬

𝑑

𝑑𝑤
൰

|±ଵ|

[𝑃ଵ(𝑤)] 

= ඥ(1 − 𝑤ଶ)
𝑑

𝑑𝑤
𝑤 = ඥ(1 − 𝑤ଶ) = 𝐬𝐢𝐧 𝜽 

𝟐 

𝑷𝟐 =
1

2
(3𝑤ଶ − 1) 

=
𝟏

𝟐
(𝟑𝒄𝒐𝒔𝟐𝜽 − 𝟏) 

𝟎 

𝑷𝟐
𝟎 = (1 − 𝑤ଶ) ൬

𝑑

𝑑𝑤
൰



[𝑃ଶ(𝑤)] = [𝑃ଶ(𝑤)] 

=
1

2
(3𝑤ଶ − 1) =

𝟏

𝟐
(𝟑𝒄𝒐𝒔𝟐𝜽 − 𝟏) 

±𝟏 

𝑷𝟐
±𝟏 = (1 − 𝑤ଶ)

|±ଵ|
ଶ ൬

𝑑

𝑑𝑤
൰

|±ଵ|


1

2
(3𝑤ଶ − 1)൨ 

= ඥ(1 − 𝑤ଶ)
𝑑

𝑑𝑤

1

2
(3𝑤ଶ − 1)൨ 

= 3𝑤ඥ(1 − 𝑤ଶ) = 3 𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽 

±𝟐 
𝑷𝟐

±𝟐 = (1 − 𝑤ଶ)
|±ଶ|

ଶ ൬
𝑑

𝑑𝑤
൰

|±ଶ|


1

2
(3𝑤ଶ − 1)൨ 

= 𝟑(1 − 𝑤ଶ) = 3𝒔𝒊𝒏𝟐𝜽 
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End of notes on angular part 

 

 

 

 

 

 

Orbital Angular Momentum Quantum Number and Eigen Values 

You can avoid this 

With 𝜆 = 𝑙(𝑙 + 1) Eqn. (6.3) becomes: 

𝐿ଶ𝑌(𝜃, 𝜑) = −ℏଶ ቆ
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕

𝜕𝜃
൰ +

1

𝑠𝑖𝑛ଶ𝜃

𝜕ଶ

𝜕𝜑ଶ
ቇ 𝑌(𝜃, 𝜑) = 𝑙(𝑙 + 1)ℏଶ𝑌(𝜃, 𝜑) 

Therefore eigen value of 𝐿ଶ is 𝑙(𝑙 + 1)ℏଶ. Thus the orbital angular momentum 𝐿 has the values:   

𝐿 = ඥ𝑙(𝑙 + 1)ℏ. 

The number 𝑙, which can be zero or positive integer, is called orbital angular momentum 

quantum number in quantum mechanics. 


