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As the reader will recall, however, discrete tim
pave much in common. In particular, if ¢
reslly -time case is very, very short, it wil] closely a
discer‘z se in essence.
tim

e and continuous time
he time period in the
pproach the continuouys-

piscrete Time, Differences, and Difference Equations

2

The change from continuous time to discrete time produces no effect
the fundamental nature of dyna_mic analysis, although the formulation of
y roblem must be altered. Basmally, our dynamic problem is still to find
th?;e path from some given pattern of change of a variable y through time.
anllt the pattern of.cha.nge ShOl.lld now be represented by the difference
Jotient AY/Ab which is the discrete-time counterpart of the derivative
dy/dt Recall, however, that ¢ can only take integer values; thus, when we
are comparing t'he values of y _ln two consecutive periods, we must have
pt =1 For this ReSHa, the difference quotient Ay/At can be simplified to
the expression AY; this is callefi the first difference of y. The symbol 4,
meaning difference, can accordingly be interpreted as a directive to take
he first difference of (y). ~ As such, it constitutes the discrete-time counter-
part of the operator symbol d/dt. ' |
The expression Ay-can take various values, of course, depending on
which two consecutive time periods are involved in the difference-taking (or
«gifferencing”’). To avoid ambiguity, let us add a time subscript to y and
define the first difference more specifically, as follows:

(16.1) Ayt = Y1 — Y

where y; means the-value of y in the tth period, and y,4, is its value in the
period immediately following the tth period. With this symbolism, we may
describe the pattern of change of y by an equation such as

(16.2) Ay =2
or

(163) Ayg = _0.111

Equations of this type are called difference equations. The reader should
note the striking resemblance between the last two equations, on the one
tand, and the differential equations dy/dt = 2 and dy/dt = —0.1y on the

claer.

UISCRETE TIME: FIRST-ORDER DIFFERENCE EQUATIONS oy



Even though difference equations derive their namq £
expressions such as Ay, there are alternate equivalent fOrerom diﬁepe
tions which are completely free of A expressions and which :f Such , %

re

®qu,,

venient to use. By virtue of (16.1), we can rewrite (16.2) i Moy, &
’ .

(16.2') Y1 — Y = 2

or
(16.2") yer =y + 2

For (16.3), the corresponding alternate equivalent forms are
(16.3") Y1 — 0.9y: =0

or

(163”) Y1 = Ogyg

The double-prime-numbered versions will prove convenient whey

- calculating a y value from a known y value of the preceding Deriov;e a
later discussions, however, we shall employ mostly the Single‘Prime'
bered versions, i.e., those of (16.2") and (16.3"). )

It is important to note that the choice of time subseripts ;
difference equation .1s- somewhat arbitrary. For instance, Wit'h0utm a
change in meaning, (16.2') can be, rewritten as y: — Y1 = 2, where jnl
refers to the period immediately preceding the tth. Or, we may expreg i:
equivalently as yue — Y41 = 2.

Also, it may be pointed out that, although we have consistently
used subscripted y symbols, it is also acceptable to use y(f), y(t + 1), ang
y(t — 1) in their stead. In order to avoid using the notation y(f) for both
continuous-time and discrete-time cases, however, in the discussion of
period analysis we shall adhere to the subscript device.

‘Analogous to differential equations, difference equations can be
either linear or nonlinear, homogeneous or nonhomogeneous, and of the
first or second (or higher) orders. Take (16.2') for instance. It can be
classified as: (1) linear, for no y term (of any period) is raised to the second
(or higher) power; (2) nonhomogeneous, since the right-hand side (where
there is no y term) is nonzero, and (3) of the first-order, because there
exists only a jurst difference Ay, involving a one-period time lag only. FIH H
contrast, a second-order difference equation, to be discussed in the ensuné
chapter, involves a two-period lag and thus entails three y terms: Y
Yy, as well as 1) .

Actually, that equation can also be characterized as h

num.

aving constar®
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o constant term (= 2). Since the constant-coefficient case
fﬁéieﬂts an e shall consider, this characterization will henceforth be

W
Foihe of O;:lemed- Throughout the present chapter, the constant-term
is plicitly I?S <0 be retained, though a method of dealing with the variable-
imr il &

¢ discussed in the next chapter.
ould check that the equation (16.3’) is also linear and
unlike (16.2’), it is homogeneous.

e a1 b
foh gase il sh
te[‘m The rea.der

f the first order; but
0

Solving 2 First-order Difference Equation
16’2 . L . .
In solving & differential equation, our objective was to find a time

As we know, such a time path is a function of time which is
path () from any derivative (or differential) expressions and which is
otally free nsistent with the given differential equation as well as with its
Brf,GCtly c((i)itions. The time path we seek from a difference equation is
i““"?&l c.onnature' Again, it should be a function of —a formula defining
Simﬂarlis of y in every time period—which is consistent with the given
;?;e::nce ‘equation as well as with its initial conditions. Besides, it must

{ contain any difference expressions such as Ay, (or expressions like
no |

- 4) G el ;
= Solving differential equations is, in the final analysis, a matter of

integration. How do we solve a difference equation?

iterative method Before developing a general method of attack, let us
first explain a relatively pedestrian method, the iterative method—which,
though crude, will prove immensely revealing of the essential nature of
a so-called “‘solution.”

In this chapter we are concerned only with the first-order case; thus
the difference, equation describes the pattern of change of y between two
tnsecutive periods only. Once such a pattern is specified, such as by
(162”), and once we are given an initial value Yo, 1t is no problem to find y,
from the equation. Similarly, once y; is found, y, will be immediately
obtainable, and so forth, by repeated application (iteration) of the pattern
Qf_fh‘?”ge specified in the difference equation. The results of iteration
" then permit us to infer & time path.

EXQ;’/‘ ek . . 5 . 1
. ;1” P ~=1  Find the solution of the difference equation (16.2), assuming

“",(;:1‘:11 value of yo = 15. To carry out the iterative process, it is more
}\!an;&ﬂ}“';"'“t t0 use the alternative form of the difference equation (16.2"),
T =y 4+ 2, with yo = 15. From this equation, we can deduce

Dighh

“RETE Tipg.
VE: FIRST.ORDER DIFFERENCE EQUATIONS 505




step-by-step that
y1 = Yo+ 2
yr =11+ 2= (@ +2)t2=y+2Q2)
ys = va+2 = [yo +2@)] + 2 = yo + 3(2)

and, in general, for any period ¢,
(16.4) yi=yo+t(2) =15+ 2t

This last equation specifies the y value of any time petin
initial period ¢ = 0); it therefore constitutes the solutiop g

d (incl .
ud
f (16_2) lng the

The process of iteration is crude—it corresponds rough]
simple differential equations by straight integration—byt, j4 = Y to g Vig
out clearly the manner in which a time path is gen Wonp TVves t, Doing
the value of y, will depend in a specified way on the value of y i-n th _Eenera],
ately preceding period (yi-1); thus a given initial valye Yo will suel o
lead to y1, s, . - . , via the prescribed pattern of change, °°°SSive1y

EXAMPLE 2 Solve the difference equation (16.3); this time, ]et
value be unspecified and denoted simply by yo. Again it is more ¢
to work with the alternative version in (16.3”), namely, v, i
iteration, we have

the injtjy)
OnVenjgnt
= 0.9y, By
Yy = O.Qyo

Yo = 09y1 = 0-9(09?}0) = (09)2‘])‘0
ys; = 0.9y2 = 0.9(0.9)%y0 = (0.9)%*yo

9

In general, we can summarize.these into the solution
(16.5) y. = (0.9)'yo

To heighten interest, we can lend some economic content to this
example. In the simple multiplier analysis, a single investment expenditure
in period 0 will call forth successive rounds of spending, which in turn wil
bring about varying amounts of income increment in succeeding time periods
Using y to denote income increment, we have yo = the amount of investment
in period 0; but the subsequent income increments will depend o the
marginal propensity to consume (MPC). If MPC = 0.9 and if the incomé




oriod 8 C.onsum'ed only in t'he next, Period, ¢, 9
o e A umed in Per.lod I resu.ltmg n an income incrempercfgnt of 3,
_ 0.9y0. By similar reasoning, we can find 5, _ ent in
{ of ¥ Jre precisely t.,he. results of the iteratiy
- ev,vOr ds, the mul.tlpller process of income Beneratioy, ca.r;
ob Jifference eq“mmon SlTCh " (¥6'3”) »and g 80lutiop like
" hat the magnitude of income incromq, . 18 0 be i 4
us “MPLE 3 Solve the difference equatiop
EXA

Y
- ese
€ Procegg Cited above Ir;

described
(16.5) will g

1Y time perioq
myer — MY =0

normalizing and transposing,
on ' .

n
Yie1 = E Ye

thh is the same as (163!1) i EXa
Erg by n/m. Hence, by analogy,

“f n\t
Y = (‘;n')yﬂ

i this may be writgey

mple 2 exe eplacement of
the solutjop should be

1008 to differentig]
(b for base) and attach the
more general multiplicative const, i ad of Yo), then we see that

Y = Abt

We shall find that thig expression A bt

fence equations as the expressio
Howe )

the b

will play the same Important role in
n Ae did in differentia] equations.
onential expressions, the former is to
basee. It stands to reason that, just
-time path y(f) depends heavily on the value
will hinge principally upon the value of b.

2se b, whereas the latter 1s to the
8 1h¢ type of the continuous
Of 7, the discrete-time path y,

“neral methog By this time, the reader must have become quite
"-’i;ﬂ'f;.-,c;d with the various similarities between differential and dlﬁerepce
Auitiong As might be conjectured, the general method of soh.mon
Mesently g be explained will again parallel that for differential equations.
DISCRey

507
£ TIME: FIRST-ORDER DIFFERENCE EQUATIONS




are seeking the solution to thg first. :
SURpCRIIR S 1o Idep dlfferene
equation 5

(16.6) Y1+ aye = ¢

The general solytio, - .
where a and ¢ are two constants. The g .

f two components: a particular wntegral Yoo } which, -
w : -
?fm'lhz complete nonhomogeneous equation (16.6

) and a ¢o ‘
; ¢ Mplem,,
Junction y., which is the general solution of the redyceq ®quatioy, o (P;:?)!qry
(16.7) Yerr + ay: = 0

6).
The y, component will again represent the

€ ik . y} and
Ye component signifiés the deviations of the time path from th equ the
level. ' The sum of y, and Y» will constitute g general Solution bee

presence of an arbitrary constant, A der to de
solution, an initig] condition will be needed.

equilibriym, leve]

: alge of
AS before, in o . “Tth

ﬁnltiZe b

Let us first deal with the complementary funection, ur e Perien,
with Example 3 suggests that we may try a solutiop of the for i Ab?
(with 4 b = 0); in that case, we also have Y1 = Apth1 f these Valy,
of y, and Ye+1 hold, the homogeneoys equation (16.7) will beco

AbH + gApt =
which, upon canceling the nongerq Common factor AbY, yields

b+aq= or b= —g
This means that for the tria) solution to work, we myst setb = — @; thus the
complementary function shoylg be written as

Yt =k, then y will maintain

» and we ‘mygt have y,; = k also.

S Into (16.6) yields

c and k=_C

Writers cajy it a particular solution.
508




4

bis pa1-1;icular k value satisfies the equation, the particular integral
507 " yritten 89
be
c8? c
L0 a = —1

. a constant, a stationary equilibrium is indicated in this case,
7his belffgit happens that @ = —1, however, the particular integral ¢/(1 + a)
. jefined, and some othex: solution of the nonhomogeneous equation

oust be sought. In this event, we employ the now-familiar trick
(16‘6) . 4 solution of the form y, = kt. This implies, of course, that
of trYII;Gg(t +1). Substituting these into (16.6), we find

1 =

Y c
k(t_i-l)-}"akt:c and k=m=c
[because a = —1]
thus Yr (i) = G

This form of the particular integral is a nonconstant function of ¢ ; 1t there-
” represents a moving equilibrium.

Adding y. and y, together, we may now write the general solution in
one of the twWo following forms:

fo

c
l1+a

(16.9) ¥ = A(—a)+ct=A4+ct (@a=-1)

(16.8) Y= A(—a) + (@ —1)

Neither of these is completely determinate, in view of the arbitrary constant
A. To eliminate this arbitrary constant, we resort to the initial condition
that .= yo when ¢ = 0. Letting ¢ = 0 in {16.8), we have

yo=A+

C C
d .l =i
e bl e

Consequently, the definite version of (16.8) is

(16.8") y = (yo . ﬁ) (=0} < l_h:-—a (@ —1)

Letting ¢ = 0 in (16.9). on the other hand, we find Yo = A, so that the .
definite version of (16.9) is

169) w=gote (a=-1)

g The reader should check the validity of each of these solutions by the
“1owing two steps: First, by letting ¢ = 0 in (16.8"), see that the latter
eﬁ‘““’l reduces to the identity yo = yo, signifying the satisfaction of the

In1tal
“Hillg

! condition. Second, by substituting the y: formula (16.8") and a

DiscrReT
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similar yq1 formula—obtained by replacing t with (e

: g 1) i
(16.6), see that the latter reduces to the identity ¢ < ) in (16,3:

: . ; C, Signife.: )~
time path is consistent with the given difference eqllationgmf%nng thathlt‘)
the validity of solution (16.9’) is analogous. he_ cheekth“-

. :

EXAMPLE 4 Solve the first-ordér diffex"ence equation
. Yer1 — Oy =1 (Yo = 7)
Following the procedure used in deriving (16.8"), we can fip

Gk @ d
a solution y. = Ab‘.(which implies y, n1 = AbH), Subst’it’utingz;by trYir,g
into the homogeneous version ¥i+1 — 5y: = 0 and ¢ anceling g ese Valyg,
factor Abt, we get b = 5. Thus, e com,n()n
Yo = A(5)
To find y,, try the solntion y. = k, which implies y,,, = . Subst
these into the complete difference equation, we find k = — it eneltutm
)
oy
Yo n

It follows that the general solution is
Ye=y.typ, = A() — 1

Letting ¢ = 0 here and utilizing the initial condition y, = § e obtaiy
A = 2. Thus the definite solution may finally be written as

ye = 2(5) — 1

Since the given difference equation of this example is a special cage
of (16.6), with a = —5, ¢ = 1, and yo = %, and since (16.8') is the solution
“formula’ for this type of difference equation, we could have found oy
solution by inserting the specific parameter values into (16.8), with the
result that

7 1 , A
w= (3= 125) O+ g2 g

which checks perfectly with the earlier answer. -

Note that the y.41 term in (16.6) has a coefficient equal to uni.t}’- Itf
a given difference equation has a nonunity coefficient for this term, 1t mus
be normalized before using the solution formula (16.8").

EXERCISE 16.2

1ye
1 Convert the following difference equations into the form of (16.2°)

-9
a oz )
(a) Ay, 7 (b) Ay, = 0.2y, (C) Ay = _yf

¢ ANALYSE
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i ok

(d) Yer — Y =3 e = e

16.4 The Cobweb Model

To illustrate the use of first-order difference equations in

1l cite two variants of the market model for g Si:COnorhic

ariant, known as the cobweb model, differs éle com.
om oy

in that it treats @, as a function not of current
Price

ding time period.

analysis, we sha
modity. The first v
earlier market models
but of the price of the prece

the model Consider a situation in which the producer’s output deg;
must be made one period in advance of the actual sale—such ap1¥ deCl.Sion
t}lral production, where planting must precede by an appreciabsl 1N agricy].
tlmfz .the‘harvesting and sale of the output. Let us assume that e length of
decision in period ¢ is based on the then-prevailing price P,. Sa.;n:::h?utput

1S out-

put will not be available for sale until period (t + 1), however, P
4 ) ¢ will

determine not @ but @
. st+1.  Thus we now h L
ave a “‘lagged”” supply functiop:

Qs.t+1 = S(Pt)

or, equivalently,
Qst = S(Pt-—l)

i; i‘ h 'y 1 1 ( )
rm

G BlEY

1nteresti’111‘gk4ynanﬁc price patterns will result

aking the linear versi .

R L sions of these (lagged) suppl

ctions, and assuming that in each time per?olzii}?; c:n(ulnliggéd)
arket price

s

* We are makin i
g the implicit .

be placed on ' cit assumption h
: the market, wi ere that the entire . .
Is appropriate when the 'CW!th no part of it held in storage Ol;tpurf kol b
i 0 . d : . u i
is ever kept. A model with ‘mmodlty in question is perishabl ch an a.s§umpt|on

Inventory will be considered in th ; Ortwhen N

e next section.
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i (e,8 > 0)
_y4+ P (¥ <0;8>0)

ing the last two equations into th
. e firs
08 single first-order difference e quati:;)’n h:::feowifr, the model can
ows:

(1 . Q st
Stitut’

e
" ﬂPg-]'ﬁP;__l-’-'O!""Y
]ve this equation, it is desi
108 olve ation, esirable first ize i
e : ks e e st to normalize it and shift
g alter ¢t to (¢t + 1), etc.]. The

the U

result’ ) o
1633) pmtglt =g
4l the® be a replica of (16.6), with the substitutions
6
y = o a=- and c = @~
B 8

[nasmuch 88 5 and 8 are both positive, it follows that a # —1 Co
we can apply formula (16.8'), to get the time path : o

12 P;=(P—E———I)(:§)‘ Ll
16.12) St Fa ] ATV R

nts the initial price.

where Po T€Prese

Three polnts may be observed in regard to this time path.

the expression (a — )/ (8 + 8), which constitutes the
can be taken as the equilibrium

the cobwebs

Ip the first place,
Jar integral of the difference equation,

particu
price of the model !
P = LS |
B+ o

Being a constant, this is a stationary equilibrium. Qubstituting P into our

solution, we can express the time path P alternatively in the form

(1612) P, = (Po—P) (:;3_"5)‘ .

f};‘-fj’-;ds us .to the second point, namely, the significance of the expression
(P, — P). Since this corresponds t0 the constant A in the Abt term, 1ts

;Tiie reader may verify this as follows: When price is we must have
F= P, = B. By setting P1 = Pr-1= P in (16.11) and sol i
\ia — /(8 + 8. This procedure is, of course, the familiar 0
ntegral by the use of the simplest (constant) trial solution.

in equilibrium.
ving for P, we obtain P =
ne of finding @ particular

VISCRETE TIME:
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g o B d<p

Q (S steeper than D) @ (S flatter thap D)
\
Q30—
L\ O————""
QR.@¢———— | |
|
Q1O ! J
| | |
| nee
iy
6 o éc‘
0 P, RPRE
(a)
FIGURE 16.2

sign will bear on the question of whether the time path will commence 3bove
or below the equilibrium (mirror effect), whereas its magnitude will degig,
how far above or below (scale effect).’ Lastly, there is the expressiOH
(—8/B), which corresponds to the b component of Abt. Since our modg
specification has it that 8, & > 0, we must have an oscillatory time path,
It is this fact which gives rise to the cobweb phenomenon, as we shall
presently see. There can, of course, arise three possible varieties of oscillation
patterns in the model. According to Table 16.1 or Fig. 16.1, the oscillation

will be
‘explosive
regular if & %ﬁ
damped

In order to visualize the cobwebs, let us depict the model (16.10
Fig. 16.2. The second equation of (16.10) plots as a downward-sloping
linear demand curve, with its slope numerically equal to 8. Similarly, 2
linear supply curve with a slope equal to & can be drawn from the third
equation, if we let the @ axis represent in this instance a lagged quantity SUP”
plied. The case of 5 > 8 (S steeper than D) and the case of 8 < B (S flatte!
than D) are illustrated in diagrams a and b, respectively. In either &%
however, the intersection of D and S will yield the equilibrium price F*

in di ' ' i and supply

When 6 > B, as in diagram qa, the interaction of demand and . p “
. “," w P

Given an initial price

-

) in

will produce an explosive price path as follows.
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’ assumed a,bove. P), we ¢an fol, g
;efve that the quantlt’i Supplieq in the hex rro_“’hea A
e o clear the market, the a0ty e (berigg )
r erhi chis possible if and only if X Mande :

W

" . beQ

. Ceig g M Derigq S
iy . Now, via the S curve, th, Dricee;au leve] |
0 in period 2, and to g] LW
plied in period 2, and to gy ¢

uppP

¢ at the level of P, accordiy
sel

e o we can trace oyt the
eqfsonlllg!

mply following the arrow
of B

. 0 the emand ¢ :Dl‘i(:e
Priceg and quantitiesl;:" .b €eating thig
he d eads In the iagra,m 8u Sequent Periodg
© pweb” around the demapq and Supply Curve » therep,
co1 Po, Py, Py . . ., we Observe i, b ap 2T “Omparing th d
Jevels £ 0 but also g teng > Lase not, only g 0sei] Price
of change bu ' ency for Price tq Widep ; " Matory nas
teﬂ:ime goes by.  With the cobyep, being Woven fr, its :
B  is divergent and explosiye,
ab By way of contrast, in the oase of diagrap, 3 where §
geaving process Will create a cobyep, that is cend:eriorien'::ad.<
we follow the arrowheads, we ghqy be lec{ €Ver closer to the inte
the demand and supply curves, wheye p 1S, While stil] oge
ice path is convergent.
¥ In Fig. 16.2 we have not sho

ility, namely, that of
3 = 8. The procedure of graphica] i
analogous to the other two cages,

exercise.

B, a simila,
fom P, if
Isection of
atory, thig

. d, however, ig perfectly
It is therefore left to the reader as g
The above discussion has dealt op]

P); after P, 1s found, however, it takes 1
t)s

athof @.  The second equation of (16.10) relates Qac to Py, so that if (16.12)
}gr (16.12") 1s substituted into the demand equation, the

time path of Q,
can be obtained immediately. Moreover, since Qa: mus

t be equal to Q,
in each time period (clearance of market), we can simply refer to the time
1m

th as @, rather than Q4. On the basis of Fig. 16.2, the rationale of thz)s
b t i - “
| Is)ab titution is easily seen. Each point on the D curved r:late?a 1:;]208 :rve
oy iod: 1 nction
In] ] d; therefore the demand fu
ertaining to the same time period; ' o
fo map the time path of price into the time p'ath of (iua}ntisyof o iR
The reader will note that the graphical techniqu
1near.
applicable even when the D and S curves are gonllnea

Y with the time path of P (that is,
ut a short step to get to the time

EXERCISE 16.4

he condition
nd analyze t
I On the basis of (16.10), find the time path of @

for its convergence.
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