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C11T
Quantum Mechanics and Applications # Credits 04

Syllabus Chapter: 3. Quantum theory of hydrogen-like atoms

Angular momentum operators:

In classical mechanics the angular momentum of a particle having position 7* and linear momentum

p is given by:

[Note that L is described with respect to a point, from which the position vector is measured, i.e.

with respect to the origin. Thus L depends on the choice of origin. ]

In quantum mechanics, position and momentum are represented by operators # and ﬁ, given by:

<L

=7 andp = —ihV.

And therefore the angular momentum operator Lis given by:

X —ihV = —ih # X V.

=

X p=

=

L=

However, quantum mechanical particles have another type of angular momentum called spin

angular momentum (§ ) which has no classical analogy with the classical angular momentum. The

~

operator, representing the spin angular momentum, is called spin angular momentum operator (§ )

[We shall discuss about the spin angular momentum in a little detail later.] To differentiate from

spin angular momentum, in quantum mechanics L is called orbital angular momentum and Lis
called orbital angular momentum operator.

In quantum mechanics, the most frequently used operators related to orbital angular momentum,

are [? and L, representing respectively the square and Z-component of orbital angular momentum.

Components of orbital angular momentum operator

z--n(a 0)-2—-n(a a)-z--n(a a) 3.2
x = T\Y5 Zay, y = Tih{zo2—xo-); z = —1 xay o) (3.2)
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Commutation relation among L,, LyL,

A A AN

[Zx'zy] = [ypz — ZDy, 2Dy — 56\}7’\2] = [9D2 2Dx) — [9D2, XD,] — [ZApAy'ZAﬁx] + [ZApAyl fp’\z]
Now P, = —ih% and X = x and so on.

Therefore, only pairs among %, ¥, Z, Py, Dy, D, which do not commute, are X and p,, y and p,,

Z and p,.

Also [%,p,] = [9,p,] = [2,P,] = ik

Therefore: [Ly, Ly] = [yp,, 2Bx] — (90, 2D,] — [2Py, 20| + |2y, P.]

= [ybo Pxzl + [Byz,xP;] = yDxlBs 2] + Byx[2,0,] = yPx (i) + pyx(in)
= if(xp, — yPx)

i.e [LyL,|=inL, Similarly [L,, L,|=ihl,; and [L,Ly]=ihL,...... (3.3)

Spin Angular Momentum ( Ky )

Like every small particle, electron also has spin angular momentum ( [y ) which is different from
orbital angular momentum. Spin angular momentum of an electron is its intrinsic angular
momentum. Orbital angular momentum can change due to transition of the electron from one
quantum state to another, but spin angular momentum of an electron never changes. Electron
spin is a quantum mechanical phenomenon and is different from the classical spin of a body
which is the sum of the orbital motions of its constituent particles about the spin axis. Corresponding
to its spin motion, electron has spin magnetic moment also. Existence of electron spin was first
suggested by and its theoretical basis was first given by Goudsmit & Uhlenbeck in 1925 to explain
anomalous Zeeman effect. They also explained the result of Stern-Gerlach Experiment (1922) with
the concept of electron spin. The concept of electron spin has been developed by Pauli (1927) and
further, with the development of relativistic quantum mechanics, by Paul Dirac (1928).

To understand that spin is not a classical concept, you may do the following problem:

Problem 4.25 If the electron were a classical solid sphere, with radius

32
Y

, YT Amegme?

(the so-called classical electron radius, obtained by assuming the electron’s mass is
attributable to energy stored in its electric field, via the Einstein formula E = mc?),
and its angular momentum is (1/2)%, then how fast. (in m/s) would a point.on the
“equator’” be moving? Does this model make sense? (Actually, the radius of the.
electron is known. experimentally to be much less than r., but this only makes

matters worse.)
Griffiths, Introduction to Quantum Mechanics, 2" Edition, Page-172, Problem: 4.25.
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3.1.1

General theory of angular momentum

Spin angular momentum has no expression similar to that of orbital angular momentum as
expressed by equation (3.1). But both spin and orbital angular momentum operators satisfy the
common relations given below. Representing both spin and orbital angular momentum operators

byj and their components by J,, fy, J, these relations can be written as:

i = Ji + fyj + J,k [Where i,], k are unit vectors along X, Y & Z axes] ......... (3.44)
& A2 a2 a2

="+ 0+ e (3.4B)

[jx'jy] = ihjz' [jy:jz] = ihjx' [jz'jx] = ihjy -------- (34C)
Based on these relations the theory of angular momentum was developed.

Commutation relation among % and Jy, [y, J,:

2 ]

="+ + 1" 0]

= [T + [ g + 15 ]

= VSl + UsdyiJoe] + Uz s]

= Jelle Sl + Useo ST + Iy Uy Sl + Uy Uy + Tl S ] + U Sl

=Jy(=info) + (=in )]y + ] (in J,) + (i Jy )],

=0

Thus [f2,J,] =0. Similarly, [/2],] =0 and  [f%],]=0........ (3.5)

i.e. J2commute with the components of J.

Or, compactly: []‘2 ﬂ =0......... (3.5A)

J?and any component of f , say J,, can have simultaneous eigen function, say f. If 442 and uh are

eigenvalues of J? and J, for their simultaneous eigen function f, then we should have:

J2f = AR%f ... (3.64) and J,f = uhf ....... (3.6B).

3.1.1.1 ‘Ladder operators’

J+ = Jx £ i, are called ladder operators for reason to be clear in the following discussions. Note
that j; = Jz.
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# Commutation relation of / with ladder operators

[72.].] = [1%.J.] £ i[J%.J,] = 0, since j? commutes with fi, f,, and J,. ......... (3.7)
# Commutation relation of J, with ladder operators

Uods] = Undil £ il dy] = in, £ 2 ) = +h(Jy £ if,) = +hfs oo (3.8A)
Vodi] = Uodel £illoy] =F1, (3.8B)

il = Uy Bl il 0] = —in, (3.80)

# Let [2and ], have the simultaneous f. Show that ]:_r f will also be the simultaneous eigen

function of /2and J,.

J2(+f) = JoJ*f = JoAr?f = Ar%(J.f) [since J2commute with [ |

i.e. Jif is the eigen function of J2.

FUsf) = UnJelf +Jifof = £0]of + Jounf = thf f + phfo f = (uh £ W) (Jf)
Thus ]:_r f is the eigen function of J,.

Therefore /. f is the simultaneous eigen function of J?and J,.

# Home Task: If J,f = uhf, and  J?f = Ah%f, then show that:

J.UJ+f) = (£ B)(J+f),

7.(1.°F) = wh £ 20) (1.°F),

7. (1:°F) = (uh 30) (1. °F) ..

and J2(J.f) = an2(f),  J2(Ja'f)=an2(J.°F),  J2(1ef) =402 (JF) oo

# Ladder operators:

We have:

Juf = unf

JUsf) = wh+m(Uef) & LU-f)=wh-n({-f)
L) = whv2n) (15F) & L(7°F) = wh—20) (.°F)
L) = wh+30) (17F) & J.(J°f) = uh—30) (J-°f )

LU = wr+n) (L) & LU"f) = wh - n)("F)
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Thus by each operation of J, on f, we obtain a function for which the eigen value of J, is raised by
h. Similarly by each operation of /_ on f, we obtain a function for which the eigen value of J, is
lowered by h. Therefore J, is called raising operator and J_ is called lowering operator. Or in

general fi are called ladder operators.

However it should be noted that, by operating on any eigen function f, J, cannot raise or lower the

eigen value of J2.

~

# Show that: J2 =] J= +J,” F hj,

Proof: J.Jz = (£ 1,)(x Fi,) =Tx +J,° FiGJy —J,00

=2 =1 F il )] =2 -1 F i)

Therefore,  Jufs = J2 —J," £ i),

=] =]z +], Fhf,

# Limit on the number of operation of the eigen function by raising or lowering operator
Wehave, if J,f =phf, and  J?f = Ah%f, then:

J:U+ef) = 0w+ D{Jf) &  J,U-f) =nu-1D{-f)

L) =nw+2 (1) & L(°F) =h-2) (1. f)

LU =m0 (7)) & L0F)=ne-9 (1)

LU =rw+n(" ) & LU =ru-n(J"f)

And

JPUsf) = a02(Jof), T (jizf) = Ah? (jizf)' J? (ji3f) = Ah? (ji3f)'

J("f) = an* (1" f)

Thus for the eigen functions obtained by multiple operations of J; on f, the eigen value of ,

changes in each step by +# but the eigen value of /% remains constant.

Now, we have, J3 =G+ 5 + U5
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Also the expectation value of the square of an observable is always positive. i.e.
20 & (%) 20

Therefore (J2) > (J,%) and hence the eigen value of j2 is greater than the eigen value of fzz.

Now each operation by J, on the eigen function raises the eigen value of J, by A, but the eigen value

of J? remains the same i.e. 2. This operation cannot continue infinitely and there must be some

upper limit of the number of this operation, since eigen value of fzz must not exceed that of J2. If
f., be the eigen function obtained by maximum number of allowed operation by J, then further

operation by J, will produce null result.
Thus J,f, = 0.

On the other hand, by each operation of the eigen function by the lowering operator, the eigen value
of J, decreases by A. After n times of operation by the lowering operator, we obtain an eigen
function, for which the eigen value of J, is A(u — n). With the increase of n, initially the magnitude
of A(u — n) decreases and as n exceeds u, A(u — n) becomes negative and its magnitude starts to

increase. Consequently, the eigen value of fzz, i.e. h?(u — n)? will increase and may exceed Ah2,
which is unacceptable. Thus there must be some upper limit of the number of allowed operation of

the lowering operator on f.

Thus, if f; be the eigen function obtained by maximum number of allowed operation of J_ on f,
then J_f; = 0.

# Allowed eigen values of J, and J?:

From 5. We can write
Pf = (fe + 1" + 1) f =T Jof + 1 + of =J-Juf + u2h2f + ph?f ....G)

and

~

Pf = (ud- ]2 = 1o) f =TJ-f + 1" F = hof = JoJ-f + u2h2f — ph?f ......(i)

Let Aj and Aj’ be the eigen values of J, for eigen functions £, and f; respectively. i.e. these are the

highest and lowest eigen values of J,.

Then using (i):

PN A A a2 A . . Ll

]2fu =) Jifut )z fut W fu =0+ hzfzfu + hz]fu = hz](] + Dfy.
And using (ii):
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Jfo =T fi + 1 fi = Wofo = 0 + 8% f — R f, = 12 (' — DS

Since J? have same eigen value A for raised or lowered eigen function, therefore:
A=h%(G+1)=h%5'(G' - 1)

=>j' =—jorj =j+1.

But j' = j + 1 gives eigen value of J, for f; to be (j + 1)A which is greater than the eigen value
of J, for f, i.e. greater than jh. This is impossible.

Therefore j' # j + 1 and we must have j' = —j only.
Thus the highest and the lowest eigen values of J, are jh and —jh.

And since the eigen values of J, are raised or lowered by £ in each step of operation of the eigen

function by f, or J_, the eigen values of J, will be:
—jh, =G — Dh, . ,(J —1Dh, jh.

Or in general, eigen values of J, are given by:

J, = mh, where m = —j to + j in integer steps.

Also eigen values of 2 are given by: AR? = j(j + 1)h2.

# Restrictions on the values of j.

Since m changes from—j to+j in integer steps, so we must have:
j=—j+ N, [whereN is an integer]

= 2j=N, = j=N/2

Thus j is an integer (for N = even) or half integer (for N = odd). Thus:
j=0, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, ... .. etc.

For each value of j,

m= —j, —j+1,.... ....j—1, j,total 2j + 1 number of values

Example: if j = 3, then m = -3,-2,-1,0,1,2,3

i.e. if j is integer, thenm = 0,1, ..... +j.
And if j =§, then m = —E,—E,—l.l,i,i

2 2’ 27 2’2’2’2
i.e. if j is half integer, then m = i%, i% ...... +
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3.1.1.2 Eigen functions suffixed by j and m:

Now the eigen functions should be suffixed by j and m as fj,,. They can also be represented by the
ket [jm).

Thus /2 fjm = J2jm) = j( + DRZ|jm) = j( + DR*fim,
And ]zfjm = J,ljm) = mh|jm) = mhfjma
withj=0,1/2,1,3/2,2,5/2,3,7/2, ... ... etc.cand m=—j,—j+1,...,.. — 1,j.

j and m are called angular momentum quantum number and magnetic quantum number.

Note that all the above relations for components f can be proved and are applicable for components

of L (orbital angular momentum) and S (spin angular momentum). And all the relations for J? can

be proved and are applicable for L? and $? also.

*However there is some extra restriction on the orbital angular momentum quantum number
and orbital magnetic quantum number as we shall see later.

3.1.2 Orbital Angular Momentum:

3.1.2.1 Expressions of Ly, Ly, L, in spherical polar coordinates:

L=#xp

=7 X —ihV

Y (A L .y
R rar r a0 (prsinGE)(p

= h(Aan+Ax§16+AxA ! a)
- rar " r a0 rr (prsin96<p

_ _h(Aa i 1 6)
~"\%3 " Ysingag

Using the expressions:

6 =cosOcosi+cosOsingj—sinfk and @ =—singi+cose]

We get:

E d ~ 1 0
L= —ih((—sinq)i+cos<pj)%— (cosBcosq)i+costingoj—sian)m%)

Thus:
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N

L,=—inh (— sin(p% — cot O cos (p%)

- ) a . 7}

L, = —ih (cosrp% - cotOsmtp%) T (3.9)
- .0

Lz = —lh% J

3.1.2.2 Prove the relation: L, = +e**h (:—e

, i}
+icot@ 5).
Ans.: We have

- d 0
L, = —ih(—sinq)%— cotHcos<p%>

- 0 d
L, = —ih (cos (p% — cot @ sin q)%>

Then
L,=L,+il,=—ih|(—sinp +i )0 t6( +isi )a
+ =Ly +il, =—i sing +icos ¢ 50 co cos@ +ising 90

= —ih (iei‘pi— cotf ei® i) = e“"h(i + icot91>
00 dp a0 dp

~

- - 9] 0
L_.=1Ly—ilL,= —ih((—sinfp—icosqo)%—cotB(cosq)—isinq))%>

= —ih (—ie_i i —cotfe i i) = —e"iop (i - icotBi>
90 dp 06 g

62

3.1.2.3 Prove the relation: L,L_ = —h? (692

9 2902 -i)
+cot969+cot 66¢2+16q)

Ans.: We have

Z—i¢h(a+' tHa) di_= —ifﬂh<a ; tea)

FT TG TP gg) e B-= e TR Ge T g

Therefore L.L_ iy = —h2et <i+icotei>e‘i‘l’ (i—icotei>¢
T 26 3¢ 20 ¢
(0 0 .0 9

= —h%e'® (%+ icotQ%) (e‘“”% —icotfe ¥ %)
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= —h2el® [<i+ icot@i) (e_i 61/)) ( 9 + lCOtQi) (i cotf et 6_
B 90 dp 90 20 A dp

10 oY o
el e 3
e 30 e 30 +ico 90 e~ 20
6( 0 o0 ) P d
50 icotOe 3 ico 30
. 62 62
= —RZel® [e‘ 0915 +icotf (—le—up)_lp +icotfe-i® a(pg’e
) . 2 F 92
—i(— cosec® §)e™ % —icotfe™¢ 0901/:/) —i%cot? 0 <—Le_l‘l’ % +e l/))]
) 0%y G FY
_Hh2,lp -i __ —ip _ 7 ip
h<e [e 692+c0t69 ae+lc0tee 9930

2

d00¢

.0 ) .0
+icosec? e 9 _ icotfe™? —icot’fe v —
do ]

92
_ % oY 2 2 l/J
= —h? [692 + cot® 3 +i(cosec? § — cot 9) +cot 9

L.L_ Y =—h? 62+ t90+ t2902+a]
+L = ggz T Cotlgg Tt O5mHig Y

L,L_=-n? 62+ 02 4 t2902+ ]
e T E A R PR

3.1.2.4 Express the operator L? in spherical polar coordinates.

Ans.: We have

~

2 =I,0s +1,°

T hi,
[Substitutingf L in the relation J? = ]+]Jr +]Z + h]Z]

Taking the 15 relation [? = L,L_ + fzz — hL,

. . . ~ o~ ~ 2
And substituting expressions of L, L_ and L, we get:

[? = —h? 02+ tea+ t2602+a h262+h2
- 962 " Vg T Ot P02 T he 902 T 30
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= —h? az+ t90+ t2962+' +a2 ;0
- 962 T g T O 902 T a0 T a2 T L ag

) 0?2 0 ) 0?
= —h*| =—=+ cot 0 — + cosec 9—2

ErE a0 By,
Or, L?=-h? 10(_ea)+ 1o 3.10
bE T sineae \*" " a6) T sine g2 ) (3.10)
Remember: L, = —ih—......... (3.9
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3.2

3.2.1

3.2.2

Hydrogen Atom:

Hydrogen atom is a two body problem consisting of the nucleus and the electron revolving about
their common centre of mass. The problem can be converted to a one body problem in which the
nucleus can be considered fixed and the electron moving around the nucleus will have the effective

meMpy
me+MN’

mass | = m, and My being the mass of the electron and the nucleus respectively.

Motion in Spherically Symmetric Potential:

eZ

Potential of the electron in hydrogen atom is: V()= ——— i, (3.11)

Nature of the potential is spherically symmetric (central potential) and this suggests that spherical
polar coordinates will be suitable for the treatment of hydrogen atom problem.

The potential is time independent. Therefore it is possible to write time independent Schrodinger
equation for hydrogen atom:

2

h
- %Vzlp(r! 91 (P) + V(T)lp(r: 91 QD) = E‘P(TI 91 (P)

In spherical polar coordinates

v2_16(20>+ 1 6(_96)+ 1 02
“r2or\" ar) T 7Zsing 00 \>" " 90) " 72sinz o A2

Therefore the Schrodinger equation becomes:

hz[l i) ) 0 1 0 i) 1 2
(r )+ (sine—)+

~2u|r2ar\" ar) Y Zsma ae 30) 7z e Ga_goz]l’b(r’ 0,9) +V()Y(r,6,9) = EY(r,0,9)

0 [52(r35) + 575 (90 35) + g WO 0.0) + o~V .00 =0
"o \" ar) Tsinaaa \>" " 50 sin? 6 02 ¥(r,0,¢ 72 NP, 0,¢) =

..(3.12)

Separation of variables:

To solve the differential eqn. we use method of separation of variables by assuming:
Y(r,0,9) = R()Y (6, p).

Then Schrodinger eqn. becomes, after some rearrangements:

1d<20R(r)> 2ur? 1 1 a(si (’)Y(G,(p)) 1 1 9%Y(6,¢)

i E-V@)] = —o—— —Z
rar\" o ) TRz E-VOl= 353 26 Ysin20 02
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Since two sides of the equation are functions of different variables, they are independent of each
other. Therefore both of them are equal to a constant, say, 4. Thus the above equation gives two
equations, one angular and other radial:

96 ing V0. #) +32y(9,(p)+/1 in?0Y(6,p) =0 3.13) [Angul
sin 30 sin 50 PPE sin ,0) =0 ... (3.13) [Angular eqn. |
1d( ,dR
And _zd_< dg)> [E V(r )]——]R(r)—O ......... (3.14) [Radial or r eqn.]

Note: The angular part i.e. equation (3.13) can be written as

1 a _90Y(6,<p) 1 0%Y(6,9)
sing o \°" 20 sin? @  d¢?

=AY (,Q) ... (3.134)

But the angular momentum operator L? is given by:

2o g2 1 6( 96)+ 1 0%
- sing 90\ %36) T sin20 3,7

Therefore Eqn. (3.13A) can be written as:

I?v (6, p) = —h? 1 a( ea)+ 16 Y(6, ) = Ah?Y (6, ¢) ...(3.13B
A sinf 96 sin 90) " sin26 9¢? ¢ ¢) - (3.138)

Therefore Eqn. (B) is the eigen value equation of the operator L? and AA? is the eigen value

of I?. We will see shortly more interesting things related to this.

To solve eqn. (3.13) again we apply the method of separation of variables by assuming:

Y(0,9) =0(60)2(p)

Then this eqn. becomes, after rearrangements:

simfd (  de(d) 3 0 - 1 d2d>(<p)
0@ do \"""" "de sin’ o(p) de?

As before, the two sides of the equation are functions of different variables. So they are independent

of each other and so are equal to a constant, say, m?. Thus the above equation gives two equations:

sinf d ( de(o)
sin 6

Asin2 6 = m?
0(0)do o >+ st =m
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1 d<_ d@(@)) ( mz)
Or, ——|sinf———|+(1- 06)=0 ...... (3.15) [0 eqn. ]

sin 8 do do sinZ @
d*®
And d(p(;p) +m2®(p) =0 ........ (3.16) [¢ eqn. ]

To solve the 8 eqn. and the @ eqn. we don’t need the expression or functional form of the
potential V(7). It will be required to solve the radial equation.

3.2.2.1 Solution of the ¢ eqn.:

Equation (3.16) has solutions:
@(p) = Bet™? form#0 and, d(p)=C+Dep form=0.

@ and it’s derivative must be continuous within 0 < ¢ < 2m. Also for @ to be single valued, one
must have @ (¢ + 2m) = @ (¢).

Therefore:
(i)  Betm@+2m) = petime o pt2mm — 1 o ;m =0,+1,+2,+3.
(ii) D =0.

Then, for all possible values of m, the normalised solutions can be written as:

®(p) = Nye™?, with m=0,+1,+2,+3.......

Where N(p is the normalisation constant which can be obtained from the normalisation condition:

21 2m
f o ddg = f N, e" ™ N, emodp = 1= |N,|" = 21
0 0

1 .
= Ny, = 5> assuming N,, to be real.

Thus the discrete solutions of eqn. (3.16) are given by:

®,,(p) = %eimw, withm=0,+1,42,43 ... ... .. e (3.17) .
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Note: The ¢ eqn i.e. equation (3.16) can be modified as:

d*o ()
dp?

%0 ()
M) =0 B —h S = mh(p)

d 4]
[Since ®(¢) is single variable function, therefore % can be replaced by %]

2

9
N (—m£> ®(9) = (M)2D(Q) ... . (3.16A)

But the Z component of angular momentum operator, i.e. L, is given by:

Therefore Eqn. (3.16A) can be written as:
L2®(p) = (mh)2® (@) ... (3.16B)
Therefore Eqn. (3.16B) is the eigen value equation of the operator L,* for eigen function

®(¢) and (mh)? is the eigen value of L,>.

Also:

., 0 i i .
L&, (¢) = —mﬁ(v%em) = mh (v% e””‘p) = mhd,, (@) [using (3.17)]

Thus we see that the eigen values of the Z component of orbital angular momentum
operator are mh, where m is zero or integer (positive or negative) but cannot have any

half integer value. m is called orbital magnetic quantum number.

## Extra restriction on orbital angular momentum quantum number and orbital magnetic
quantum number:

In general angular momentum quantum number j can be zero, positive integer and netative half
integer.

Magnetic quantum number m can be zero, positive and negative integer if j is an integer and
positive and negative half integer if j is a half integer:

m=0,+1, ... +j ifj is integer.

m = i%, +% ...... + j ifj is half integer.
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But, as we have seen above, the orbital magnetic quantum number can be zero and positive and
negative integer only:

m=0,%£1,12,....
If [ is orbital angular momentum quantum number then from the general theory of angular

momentum we can say that the limiting values of magnetic orbital quantum number m are related
to [ as:

m=0,+1,..+ L

Since m cannot be a half integer, therefore [ also cannot be a half integer. Thus though in general
the angular momentum quantum number j can be a positive integer or a positive half integer, the
orbital angular momentum quantum number [ can only be a positive integer.

3.2.2.1 Solution of the 8 eqn.:

In Eqn. (3.15), let cos @ = w and ©(0) = P(w). [Since 0 < 0 <m,s0 -1 < w(=cos0) < +1]

Then =L _ e o /1owzL. andeqn.(3.15)b :
en B dwadn - sin T we and eqn. (3.15) becomes:
d dP
~a-w) L (- -wy L) L 2 - wrpw) - m2pw) = 0
dw dw
d 24 dP(w) m? _
or, E((l —w )W> (A=) PW) = 0 e (318)

The 2" order differential equation (3.18) has two linearly independent solutions, each of which is
an infinite series (Frobenius method) with recurrence relation:

B viv+1)—2 319
av+2—(V+1)(V+2)av........( .19)
Lim @iz o _ Lim v0+D=-4 S,
v oo a, _v—>oo(v+1)(v+2)w =W’ ... (3.194)

Thus the infinite series converge for w? < 1, but they become indeterminate at [w| = 1 or w =
+1 (Note:w ==1,for0 =0&m).

To be physically meaningful solutions the series should be finite everywhere not only between
—1<w<+1butalsow = +1.

Now, for A = [(l + 1), where [ =0,1,2,3, ......... , any one of the two series terminates for v = [
and becomes a polynomial in w, which remains finite at w = +1 and this finite series or polynomial

is acceptable as a physically meaningful solution for all values of 8, including 0 and 7.
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Thus eqn. (3.18) has physically meaningful solutions if:
=l(l+1),where 1 =0,1,2,3, ... ... ... i.e. 0 or any positive integer ........ (3.20)

Then eqn. (3.17) becomes:
d ( ) m?
ﬂ(ﬂ —w?) ) + <l(l +1) - 1= W2>P(W) =0 ........(3.21)

Which is the well-known ‘associated Legendre differential eqn.” with solutions:

P(w) = P™(w) = P/"(cos 0)

P™(w) or P[™(cos ) are called associated Legendre functions and can be given by the Rodrigues’s
formula:

|m|

Im| s d
PMw) = (1 —w?) (E) [PLW)] oo (3.22)

There are different conventions of defining P/ (w) and eqn. (8) is one of them*. In the convention

followed here, we see that: P ™ (w) = P/ (w).

If m = 0 then eqn. (3.21) becomes Legendre differential equation with solutions:

P(w) == l,( ) W2 =Dl (323)
In (w? — 1)! maximum power of w is 21. So it is clear from eqn. (3.23), that in P,(w), maximum

power of w is I. Therefore P;(w) can be differentiable < [ times for non-zero result. Thus, as seen

from eqn. (3.22), to get non-zero P/™(w) we must restrict m as:

lm| <l or, m=-1,-1+1,..-1,0,1,..1-1,1 ......... (3.24)

Note 1: With A = [(l + 1) eqn. (3.13A) becomes:

L?Y(0,¢p) = —h? 1 a( a>+
Pl = sinf 96 sin 6 00

2

)y(a 0) = Il + DAY (6, 9)

. (3.130)

sin?6 dp?

Therefore eigen value of L? is [(l + 1)A2. Thus the orbital angular momentum L has the
values:

Note 2: L, =mhand m=—-[,—-1+1,..—1,0,1,..1 — 1,1. Thus m has 2] + 1 number of

values. Extreme of m are restricted by . Therefore m is often written as m;.
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Table-3.1
P;(w) and P}*(w) for few small values of l and m

U] P =g () wr-nt [ m | P = a-w)E (L) )
0 _ 1 d\’ 2 0 _ 0 0 _ 20 (4 ’ _
Po=so(oo) -1 =1 Py =(1-w?)° () [Pw) =1
d 0
P, P = (1-w)° () [Pw)]
0
1 /dy\* =P, (w)
BIEY (E) w? = 1!
=w=cos6O
_l'ZW
2 Pt = (1 —w)'F (L) )
+1 Y o
= cos 0O 1 -w?) de
=, (1—-w?2)=sin8
d 0
o | PE= w2 (G ()] = [Rw))
=2(3w? — 1) =3 (3cos?0 — 1)
P,
1 d \? P;—rl =(1- Wz)liz_1| (ﬁ)lill E (Bw? — 1)]
== (—) w* —=2w?+1)
22 21 \dw +1 .
= ma[g (Bw? — 1)]
= %(3w2 -1)
= 3w,/(1 —w?2) =3 cos@sin b
= %(3C0820 -1)
+2 2L ranE2l oo
Pt =-whe () [fewe -]
+2

=3(1 -w?)

= 3sin%0
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Thus the normalised solutions of the 8-eqn. is:
0(0) = 01, (0) = Ny P[" (W) = Ny P (cos 6)

where Ny, is the normalisation constant which can be obtained from the normalisation condition:
-1
[ W 12w = 1

w=1

-1

| o 2+ |mD
Since f Prrw)P"(w)dw = 2+ D A=y e
w=1
. 1 :(2l+1)_(l—|m|)!
we have |N;,|* = f‘;1|P{"(W)|2dW > QDL (3.25)

= N;,, = te' Where e is an arbitrary complex phase factor.

.6\/(2l+1)_(l— Iml)!

2 U+ mpy
2
ey a—my|  @+n a-m
# Verily: ie&] 2 a+mD| T 2 a+mpr

(21+1)  (=|mD!
2 (1+|m|)!

However Ny, is taken as Nj,, = € [where € = (—1)™ for m = 0 and € = 1 for

m < 0], to make 0,,(0) and Y;,,(6, ¢) same as in other conventions of defining P/™. Note that €
is always equal to 1 or —1.

Thus the solutions of the 8 equation and the angular eqn. are given by:

21+ 1 (1 — |m|)!
4 (I + |m|)!

1/2
0,m(0) =€ [ ] P"(cosB) ...ovovine v . (3.26)

With 1 =0,1,2, ... ... ; m=0,1£1, .. .. +1

20+ 1( — |mDN*? .
(- |)] ———

Ylm(&q))#[ am (+mpy P L (3.27)

withe = (1) form>0 & e=1form<0
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Table-3.2

P1*(w) and Y;,,(0, @) for few small values of l and m

1
P (w) 2t +1d = 1mDYE imo
m Yim(6,9) =€ a0+ m])! P™(cos B)e
(From Table 3.1)
withe = (—1)"form>0 & e=1form<0
0+1(—0)"? 1
0 Py (cos0) =1 Y00(0,9) = [—( ) ] Ple® = —
4 (1 +0)! Var
/2
2+10-01"" ., |3
0 PY(cos8) = cos 6 Y10(0,9) =[ o (l+0)!] Ple® = Ecose
/2
_[2+1a-v9"* . .
=F|[—— +1,tip
Y141(0,9) +[ A 1)!] Pt'e
1 P'(cos6) =sinf
3
=+ |z= sinfe*'?
8t
1
2x2+12-0)2 .
= @
0 PY(cos ) Y20(6, 9) 4t 2+ 0)!] Pre
=1(300529—1) _ |5 (3cos20 — 1)
2 = |1en cos
1
_[2x2+1@2-1)]2 41 4
Y 0 = +1 ,+ip
211(0,0) = F yp (2+1)!] :
+1
P;"(cos 0) = 3 cos O sin 6 15
= F |=—cos Osin @ et'?
8t
-2
2x2+12 -2 ,, .,
= +2 ,+2i¢p
Y24+2(0,9) P 2)!] P;
+2

P;*2(cos 0) = 3sin%6

’ 15 ,
— P2 +2i¢p
397 sin“0e
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#Prove:Y;_,,(0,¢) = (—1)™[Y},,(6, @)]*

Proof: Let m = m,, where m, is +ve.

/2
20+ 1(1 = [meD!]* .
Then Ylm(B.qo) — Ylmo(ev (P) — (_1)m0 [ o (l — |m0|), leo(cos 9)elmo¢’
0 .
204+ 11— mo)!]"? .
- [ At El + moil] P™ (cos B)e'mo?
0 .
21+ 1 (1 — my)!

1/2
[Yin (6, 0)]" = [Ylmo (0, (P)]* = (—1)™o [ ] leo(COS H)e—imoqo

4 (I +my)!

20+ 1 (1= |—my !
4 (L + |—mg|)!

1/2
And Y _m(6,9) =Y _m,(6,0) = [ ] P (cos §)e~imo?®

20+ 1 (L —my)!™? .
= [ ( o) le"(cos 6)e~tmo?

4 (I + my)!

Vim0, 9]
T (D™

_ i@, 01
(=D

= (D" [Yim(6,0)]"

Hence the proof.

End of Notes on Angular part.
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*Special Page
Doing the following mathematics is optional, must avoid it if you have

not enough time to waste

One convention of defining P/™(w) has been discussed in the preceding section. Another

convention of defining /™ (w) is:

my/d\™
Prw) = (1 —wd? () [Pw)]
-msd\ ™ l— !

With 0 < m (integer) <.

- m)!
# Prove: P;™(w) = (—1)'"%1);"(‘”)

Ans.:

d n-—s N

Libniz’s formula: (%)n [A(x)B(x)] = Zn: (n—n—;)'s' (E) A(x) (%) B(x).
$=0

l+m l+m

Therefore (%) w? -1 = (%) [(w+ D'w — 1)
S ) s (4

~

(I +m)! I |

- S:m(l +m—s)!sl (s —m)! (w+ 1) (1 —s)!

(W _ 1)[—5

~

(L +m)! il I . 3
= =m(l+m—s)!s!(s—m)!(l_s)!(W+1) (w — 1)}

1%

l
1
= UD*+m)! Z U+m—=s)s!(s—=m)(l—s)! w+ 17w — 1)
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w+1D°(w—1)tm w+ D'(w -1t
Imiold—m)! T U=Dim+ D U(l—m—11 1"

=21+ m)!(

w+ D (w — 1) w4+ 1D m(w —1)°
T DI-DI(-—m-DI1 | mi{—m)ol )
l-m I-m
Again: (%) w2 —1)! = (%) [ + D'(w = D]

3

= %(j—x)m (w+ 1) (;—x)s (w1

S

Il
=

l-m

(I —m)! I o )
:s=o(l‘m‘s)’sl(5+m)!(w+1) =BT
N (I —m)! [ i

- A-m-=s)s!l(s+m)'(l _'S)!(W+1)5+m(w_1)l—s

Il
o

S

I-m
1 +m -s
= (I =m)t () ; (I-—m=3s)s!l(s+m)(l—s)! (w+ D)7 (w - 1)f

w+ D™(w - 1! w+ DWFm(w - 11
- (l_m)!(“)2< G—miomill —m-Dlm+Dd-D "

w+ DY (w —1)m*! w+D'w—-1)™

T N0—m-DI—D!m+ D! 0 —m)ilim )
m (W +1D)°(w— 1i-m w+ DY(w —1)i-m-1

= (=mlaD*w + H™w - 1) ( G—miomill  (-m-DL(m+DI(-1D)!

w+ D1 (w — 1)t w+ D (w —1)°
P U—m-DIA-DIm+ D! ol —m)liml >

I-m
I R N O e L )

Therefore = (w? —1)™m
d A\ N2 +m)! (I +m)!
(@w) @2-v
d l-m B (l _ m)| . d l+m
= (G) @V =y n () ey
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Now, P, ™(w)=(1-— w3z (%) [P (w)]

=0 () [aal) o] =ameF g (E) e
- o - () ) o]

= Com R W (1) i)

BRI

2l+1) _ (I —m)!
2 I+ m)!

In this convention N, is equal to Ny, =\/

2lI+1) (I—m)!
4 .(l+m)!

P™(cos B)e'™?

And Ylm(9,<p)=\/

Note that

2l+1) ! )
Y _m(0,9) = \/( 4—; ). El tz;' P ™(cos )e~ime

P™(cos §)e~im®

Cersn avmy  a-m
T A Y

204+ 1) (I—m)! .
=(=Dm J( o )-El_l_Z;!le(cose)e“m‘/’:(—l)m[Ylm(0,<p)]*

This result is same as that obtained by our other convention. Thus use of € [= (—1)™ for m > 0
and = 1 for m < 0] in the other convention is justified.
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3.2.3 Solution of Radial Equation:

With A = I(l + 1), where | = 0,1,2 ... the radial equation (3.14) becomes:

1d{( ,dR() I(l+1)
= dr( = > 72 [E V(r)] — 2 R(r)=0 ... (3.27)
WithV(r) = — n—: this equation becomes:

ol

1d< dR>+2y 4 Ze? l(l+1)R_
rzar\’ d h? ATreyr r2 a

1d(2dR) [ZME 2u Ze? l(l+1)]R_0

or, —— =
bz T ar h?  h?4me,r r2

..(3.28)

To make the equation simpler, we put:

. /—SuE 3 —8uE 8u|E|
(1) a = T ...... (328A) and (ll) p = ar=\/Tr =\/TT ...... (328B)

—8uUE _ 8;1|E|
2 n2

[Note that, since the energy of the electron of a Hydrogen atom is negative, therefore ——

—8uE
h2

is positive. Hence a = is not imaginary. |

And from eqn. (3.28):

a’? d (p? dR 2uE N 2u Zae?  a?l(l+1) R -
2 ¢ dp h?  h24meyp p? B

14 T ATTEND

1d dR 1 1 2u Zae?  afl(l+1

2
li(l)Z dR)+ [_1 2uZe —l(l+1)]R _ (329

4 + dmeyh?ap p?

Now we put:

2uZe?  2uZe®
A= . (3.294)
dmegh’a 47‘[60 h? 8,u|E 47‘[60 2|E 47‘[60 —2
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Then eqn. (3.29) becomes:

d’R 2dR [A2 1 I1+1)
———|R=0 o (3330)
D

_— + —_— —_————
dp* pdp
At p — oo, the above equation reduces to:

d?R 1R_0
dp2 4=

1
having solutions: R = Ae*2P where A is any constant.

Therefore as the solution of eqn. (3.30) we can assume a trial solution of the form:
41

R =F(p)e~2’,

where F(p) is a function in p and is to be determined to obtain the solution for R.

1 1
However we reject the solution R = F(p)e*2” because R must remain finite at p — oo but e*2”
blows up at p — oo and proceed with:

1
R=F(p)e 2" ........(3.30A)
hen B9 oLy _ (L)t
en dp_dpe > e = > e
p d’R _ d’F L 1dF L 1dF _%p+1 1F L d*F dF 1F L
an dp? _dpze dee dee 2°2"° ~ \dp? dp 4 ¢

1 1
=e 2P (F” —F' +ZF)

And eqn. (3.30) reduces to:

1\ 1 2 1y 1 4 1 Ig+1D]. 1
(F”—F’+—F>e 2p+—(F’——F>e L e Fe 2’ =0
4 p 2 p 4 p?

1 A1 10+1)
—~ _7lF=0
p 4 p?

1 2
=>F'"—F +-F+—F —=F +
4 p p

2 A—-1 10+
=>F”+(——1>F’+ ————|F=0
p p p

= p2F" + 2p—pDF +[A=Dp =10+ DIF =0 e eee e cee e e (3.31)
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This 2™ order differential equation can be solved by Frobenius series method assuming:

F(p) = z a,p’*s, with ag #0, ... oo (3.31A)
V=0
Then F'(p) = z a,(v+s)p¥*ts1 and F"(p) = z a,(v+s)(v+s—1)pvts—2
v=0 v=0

Then eqn. (13) becomes:
p? z a,(v+s)v+s—1p’+t2 + ZpZ a,(v +s)pVtsTt — p? z a,(v+s)pvtst
v v v

+(1— 1)pz a,p’ -1+ 1) z a,p’* =0
v v

Or, z a,(v+s)v+s—1)p¥*tHS+2 z a,(v+s)p¥ts — z a,(v + s)pvtsti
v

v v

+(A—-1) z a,p’ st — 1l + 1) z a,p’™ =0
v v

or, Z @[+ )W +s—1)+2+s) — 11+ D]p"*

v

=Y @l - @- Dl =0

v

Or, Y a,+s+1-Dp =Y a [+ ) +s+ 1)~ 10+ D]pH =0

v v

Eqn. (3.32) should be valid for all values of p. Therefore the coefficients of each power of p must
vanish separately. Equating the coefficient of p® to zero we get (remember v = 0,1,2, .... [eqn.

(3.31A)]; i.e. v can not be negative):

ap[s(s+1)—1(l+1)] =0.

Since ay # 0 [see eqn. (14)], so we must have:

s2—P+s—-1=0 = (s—=D(G+1+1)=0 = s=lor —({+1).

Now, for s = —(I + 1), the 15 term in the expression of F(p) i.e. agp~ ¢V — o0 at p — o0, even
for I = 0.

Therefore only acceptable value of s is s = [.

C11T Ch-3 Quantum theory of H atom # Debasish Aich, Dept. of Physics, Kharagpur College 27



Then Eqn. (3.31A) becomes:

[ee] [00)

F(p) = z a,p’*s = z a,p’tt = p! z a,p” with ay #0, ... .........(3.31B)
v=0

v=0 v=0
And Eqn. (3.32) becomes:

Zav(v +1+1-=)p +*t —Zav[(v +DW+HI+ D -1+ D]p"* =0

v v

Z a,(v+1+1—2)pvtitt — Z a,(v?+2vl +v)p’*tt =0

v v

z a,(v+1+1—21)p T+t — z a,v(v+ 21+ 1)p't =0

v v

Equating the coefficient of p¥**1 to zero we get the following recursion relation:

_ v+i+1-24
DT T D 2+2)T

e (3.33)

Now for large values of v,

Ay VvHI+1I-2 1
a, @wW+DW+20+2) v

Again in the expression of e”, i.e.

P = P’ = v
el =) —r=) Ay’ (say),
v=0 ) v=0

Ayyr V!
A,  (W+1!

— " for large values of v.

Thus for large values of v, F(p) = p' Y%, a,p” behaves like p'e?. And R = F(p)e"/? [eqn.
(3.30A)] behaves like pleP’/2, which tends to infinity for p — oo and thus is not acceptable.
Therefore the series Y 5=, a,p" should terminate at some value of v. This can be done by restricting

A to be equal to some integer n i.e. imposing the condition:

v+Ii+1-—2 _ v+il+1—n
D020+ " D20+ 2™

such that a,,; = vanishes for

v=n-I1-1...........(3.34°A)

C11T Ch-3 Quantum theory of H atom # Debasish Aich, Dept. of Physics, Kharagpur College 28



Again if a, 1 vanishes, then all higher coefficients a, 45, @y 43, - wov - will also vanish and the series

will terminate. The non-vanishing coefficient of highest order term will be a, = a,_;_;.

Thus the series Y-, a,p” converts to a polynomial

n-l-1
L(p) = z a,p¥
v=0
n-l-1
and then F(p) = p z a,p’ = p'L(p) . .. (3.35)
v=0

Note that if the integern < 0, then, v =1 —1—1=n—1[— 1 becomes - ve, which contradicts
the assumptionv = 0,1,2 ...... (see eqn. (3.31A)).

Therefore n will have only positive integral values:

3.2.3.1 Before proceeding further in solving the radial equation, let us explore the following
interesting results:

(i) Energy eigen values:

From eqns. (3.29A) & (3.34) we have:

_Ze [ _

" 4megh\N —-2E n
E uzve! Z7e” ith 1,2 3.36

= — = — , withn=1,2 ... .
" 32m2h2€y2n? 8meyayn? (3:36)
4Amh2e, _ _
Where ay = o2 is the well known expression of first Bohr radius.
U

—8uE 8 Z2e4 1 Ze? 27
anz\/ s ”—\/ p_# s e (337)

A2 |h?32m%h2e,2 n? - 2mh?%egn - agn
For Z = 1, eqn. (3.36) gives Bohr energies of Hydrogen atom.

(i) Principal quantum number: The integer n is called principal quantum number and gives the
discrete energy levels of Hydrogen atom, which are the same as given by Bohr theory of Hydrogen
atom.
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(iii) Relation between orbital angular momentum quantum number and principal quantum
number (I <n—1):

We have

(a) [=01,2,..... ;
(b) v=n—Il—-1,ie.l=n—-—v—1; and

(c) v=012..1e vy, =0.

Then, for a given n:

lnax =M —Vpin—1=n-1

Thus [ can have integral values between 0 and n — 1. Therefore [ has n number of values.

3.2.3.1 Radial Wave Functions:

With 4 = n, from equation (3.31A):

n-Il-1
F(p) = p' z a,p’ =p'L(p), n=123....c....(3.31B)
v=0

F'(p) = 1p'~'L(p) + p'L' (p)

F"(p) = 1(L = Dp'%L(p) + 1p* 'L’ (p) + Ip' L' (p) + p'L" (p)
=1l = Dp"2L(p) + 21p" L' (p) + p'L" (p)

The equation

P’F' +2p—p)F +[A-Dp—-11+1]F=0..............(3.38)

reduces to:

p?[l(L — 1)p'2L(p) + 21p*~ L' (p) + p'L" (p)] + (2p — p*)[lp'*L(p) + p'L' (p)]
+[(n—=Dp -1+ D]p'Lp) =0

Or, I(l—1)p'L(p) + 21p"* L' (p) + p'*2L" (p) + 21p'L(p) + 2p"**L' (p)
—1p"™1L(p) — p"* 2L (p) + (n — Dp'**L(p) — 1L + Dp'L(p) =0

Or, p"*HpL"(p)+Q2l+2-p)L'(p)+(n—1-1)L(p)} =0

C11T Ch-3 Quantum theory of H atom # Debasish Aich, Dept. of Physics, Kharagpur College 30



Since this Eqn. is true for all values of p, so the bracketed term must vanish:

pL"(p) + QL+ 2—p)L'(p) + (n—1—1)L(p) =0

d?L dL
p dp(zp) +QL+2- p)% +mn—-1l—-—1DLp)=0.....c.......(3.39)

Solving Eqn. (3.29) is not simple. Let us compare Eqn. (18) with associated Laguerre differential

equation:
d?1? (x) dr? (x)
q q Py — *
X— ot (p+1-x) P (@—P)Lg(x) =0 s sev e . (3.394)

where LIZI (p) are the associated Laguerre polynomials. We see that Eqns. (3.39) & (3.39A) become
identical forp =2l +1landg =n+ L.

Therefore the solutions of equation (3.39) are given by associated Laguerre polynomials L2 (p).
Equation (3.31B) becomes:

n-l-1
Fu(p) =pt z a,p’ = p'L(p) = p'L2EE (D) e cee e e e (3.40)
v=0

# Associated Laguerre Polynomials:

Associated Laguerre polynomials LZ (x) are given by (see Zettili) Rodrigues formula as:

d p
100 = (52) L) o (3:41)

Where L, (x) are Laguerre polynomials given by:

q

d
LoG) = ¥ () (K9e™) o (342)

Laguerre polynomials L, (x) satisfy Laguerre differential equation:

d*Lg(x) dLg(x)
dx? +(1-x) dx

+qLg(x) =0 .eeie e eev e ... (3.39B)

Therefore from eqn. (3.30A) [R = F(p)e /%], eqn. (3.40)[Fy(p) = p'L2} (p)] and eqn.
(3.28B) [p = ar] we can write:

R = F(p)e™/? = p' L3} (p)e~?/? = ple™P/2 L7l (p)

Ry = Ny (anr)l e—anr/ZLil_l-_l-ll (anr)

where N,; is normalisation constant.
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N,,; can be evaluated from the normalisation relation:

f Ry ridr =1
0

[ee)

1
Or,  Nu'—5 | ep? L3l (p)p*dp = 1
n

aon\3 B
or, Ny’ (ﬁ) f e Pp2LZH (p)p*dp = 1
0

Orthogonal relation of associated Laguerre polynomials is given by:

2n[(n + 1)!)3

-p2l2l+1 2qp =
fe p* Lyt (p)p*dp CEYESN]
0

Therefore:
3
(n—1-1)! m—1-1) ;22 \3 Z\2 |[(n—1-1)!
N = i\/Zn[(n TERCE i\/Zn[(n E (a0n> =+2 (a0n> N CEDIE

We chose negative value of N,,; to make the first wave function of hydrogen atom positive.

3
iz /(n PR
N, = —2 (aon ) oI (3.43)

Then the radial wave functions are given by:

N w

(n-=1-1)!
n[(n+ D3

e~ /2 (q, ) L2H ()

Ru(r) = —2( d )

agn

R (1) = —j (n—1- L)t (ZZ )3e‘%(%)lﬁlﬁ (%) ......... (3.44)

2n[(n+ D3 \aqyn agn

m=1—1! 72\ __/2r\ 2r

20+1
Ry (r) = — ( ) e @on (—) Ly (—) [For Hydrogen atom Z = 1]
agn agh

2n[(n + D3 \ayn
..(3.45)
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Thus the final solution for the hydrogen atom wave function is given by:

Yum(,0,9) = Ry (1)Yim (6, ) ... ... (3.46)
With

1 %/(n—l—l)! 2r\' __1_ 2r
R (r) = =2 (nao ) n[(n+ D']3 (na0> e "o Lyl (n_ao>
Yim(0,0) =€ [2l4—; ! 8 ; :Z:;:]l/z P™(cos )e'™?®
Withn=12,....; 1=012,....(n—1); m=0,41, ...+ L

Ande =(—1)mform=>0 & e=1form<0

4mh2e,
a =
0 uez

P/™ = associated Legendre polynomials and L2} = associated Laguerre polynomials.

*Note that there are another convention of writing the associated Laguerre differential
equation. In this convention this equation is given by [See Boas and Arfken]:

d?Lk (x) dLk (x)
x —

2 +(k+1-x) . +nlE(X) =0 v e e (A)

In this convention associated Laguerre polynomials LX (x) are given by (see Arfken)
Rodrigues formula as:

k

d krd\"
100 = (¥ () Lnak(0) =

(H) (e7*x™K) oot e (B)

e *x

n!

Where L, (x) are Laguerre polynomials and in this convention are given by:

e* rd\" ~
L,(x) = ﬁ(ﬂ) (x™e™) oii e (€©)
Laguerre polynomials L, (x) satisfy Laguerre differential equation:
dsz(x) dLm(x)
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# First few radial wave functions:

Let we want to find the expressions of first few radial wave functions namely R,;; = R{g, R0 and R,;. Then
required values of n & [ are 1,0; 2,0 and 2,1. Therefore the values of p and g will be:

n=1l=0= p=2l+1=1, g=n+l=1
n=210l=0>=> p=2l+1=1, g=n+l=2
n=21l=1>= p=2l+1=3, gq=n+1=3

. . . . . p _
Then the required associated Laguerre polynomials required in Hydrogen Atom problem are Lg(x) =

L7 (x), L} (x) and L3 (x) and the required Laguerre polynomials ~ Lq(x) = Ly (x), L(x) and L3 (x).

Table-3.3

Ly(x), Ly (x), L3(x); Li(x),L}(x), L3 (x)

d\? d\P
Lyt = ¥ () (xte™) 1) = (=) LeGo)
n=,l=0;, p=2l+1=1qg=n+l=1
1 dy' d
Li(x) = e* (;_x) (xle™) =e*(1—x)e™™ Li(x) = (a) Ly(x) = a(l —x)
Li(x)=1-x Li(x) = -1
n=2Il=0p=1q=2
d\? d
() = e (g5) (Pe™) = eriCex—xe 1 = () 10

=e*[(2 —2x)e ™ — (2x — x%)e™¥] d
=—(2—4x+x?)
=2—2x—2x+x? dx

1 —
Ly(x) =2 —4x + x? Ly(x) = -4+ 2x

n=2l=4Lp=2l+1=3,g=n+1=3

d\’ d\*
Li(x) = e* (E) (x3e™*) = e* (E) [(3x? — x3)e™™] 433
13w = () L
= exi [(6x —3x%)e ™ — (3x% — x3)e™¥] *
7 dx d\3
= (—) (6 —18x + 9x2 — x3)

d dx
x CEy2 4 43)p—X
e* [(6x —6x“ + x°)e™™] e

=e*[(6 — 12x + 3x%)e™ — (6x — 6x2 + x3)e™*]

= L3(x)=-6
= L3(x) =6 — 18x + 9x? — x3
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Table-3.4

Ry9, Ry and R4

3

d\P 1N\2 [((n—1—-1)!/2r\' - 2r

D - (= -2 A nag J2l+1( -
Lq®) (dx) Lq(®) Rt 2<na0) n[(n+l)!]3(na0) ¢ Lt (nao)

n=,l=0p=2l+1=1q=n+1l=1

3 r
Li(x) = -1 —2 ( !

ro=2(2)" ew(- 1)
10 = a exp ao

n=21l=0p=2l+1=1q=n+1=2

Ry = Ry

3 —0—1) o r

3 3

2( 1 )7 1 _%Ll(r) 2( 1 )51 _%( 4+2r)

= — P — —_ 0 —) = — [— — 0 —_ R
2a, 24 ¢ *\ay, 2a, 4° ao

Ron — 2 1 1 r r
20 — (2(10) ( Zao) exp ( Zao)

Li(x)=—-4+2x

n=21l=14p=2l+1=3,q=n+1=3

Ry =Ry
3 1
1 \2 [2—-1-1D)!/2r - 2r
-l ) e a )
2a, 2[(2 + D3 \2a, 2a,
3
2(1)5 1 (r)_% (—6)
2a9/ 2 x63\aq

R = () () (55
21 _\/§ zao 2(10 exp zao

L3(x) = -6

Similarly we can show:

r

/ L / _r
mo=2(@) -2 E ] R ram ) (- 1))

3/2 2 _T
R32 = L (L) (L) e 3 . ...
3v10 3a0 3a0
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31

Radial wave function of H atom

\/}2

20

https://www.desmos.com/calculator/uwv75iytfu

Fig. 3.1 Plot of first few radial wave functions of hydrogen atom

C11T Ch-3 Quantum theory of H atom # Debasish Aich, Dept. of Physics, Kharagpur College 36




The time independent part of hydrogen atom wave function i.e. the solution of the time independent

Schrodinger equation for hydrogen atom is given by:
Yum (™, 0,9) = Ryy(1)Yim (6, @) ... ... .. (3.46)

With symbols having usual meaning.

The probability of finding the electron in a volume element
dt =drrdfrsinf do = r?drsin6 dfde

is given by:

pdt = [Ynim|?dt = [Ry ()12 (8, @)|°r?dr sin 6 dOde

= [Ru (MI?r?dr|Y;,, (6, @)|* sin 6 dode

The probability of finding the electron in a spherical shell between radii r and r + dr is given by:

T 27
f fIan(r)IZIYzm(B,<p)|2r2drsin9d9d<p
=0

0=0 =0
T 27T

=|an(r)|2r2drf jIYzm(G,@)IzsiHHdBdfp
6=0 ¢=0
T 27

= Ru@Prdr [ [ 1Vin(@,0)1 sin0 dody
6=0 =0

But Y;,,(6, ¢) are normalised in the limit & = 0 to 7w and ¢ = 0 to 27. Therefore

T 27
f lelm(G,q))lzsinGde(p =1
6=0 @=0
Thus:
T 27 T 2T
|| 1Ru@ ¥ @.0)Prarsine dodg = Ru@r2dr [ [ Win@,0)1 sin 6 dodep
6=0 ¢=0 6=0 =0

= |Rp (r)|?r?dr
= Dp;(r)dr

Where D,;; (1) = |[R,;(M|*r% ......... (3.47) is called the radial probability density.
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Expressions of radial probability densities D,,;(r) for small values of n and [

To see the plots of D,;; browse https://www.desmos.com/calculator/hd85wvs3me

For Dy, D4, D3¢ browse https://www.desmos.com/calculator/z5j8saSkre

For D,;, D3, browse https://www.desmos.com/calculator/nans2odfle

For Dj, browse https://www.desmos.com/calculator/ee3daxe6ht

Table-3.5
Dnl(r) = |Rnl(r)|2r2
n,l Rnl
Foragy=1
1\  _2r
12 Dio() = Rio()r2 = 4 (=) 72¢
1,0 R10=2(—) e Qo Qo
Qo
= 4r2exp(—2r)
Dyo(r) = |Rzo(7’)|27”2
113/? r __r
2,0 R =2(_) (1__) 2a
20 2ay 2a, ¢ ' _1(1_1)2 r2ex (—T’)
2\ 72 P
Dy (r) = |R21(7”)|27”2
2 01\ ry -
2,1 R21=—(—) (—)e 2a9 471 3 2 r
V3 \2a 2ao ——(—) (L) r2e @ = —r*exp(—r)
3 2a0 2a0 24
R3o D3o(r) = |R3o(7”)|27”2
3’021%12r 27\ - 412r2r222<2r)
=2(—) 1-2—+2(+— a =—|l-—+—2]|r -—
(3a0) 3a0+3(3a0) ¢ 27 3 27) " P73
Rs1 D31 (r) = |R31(T)|27”2
3.1 8 1 % 1r r\ T 32 ™2 , 2r
s E - T R
3v/2 \3ag 23ay/ \3q, 2187 6 3
8 /1 \3/r\* B _2r
D3, (r) = |R3,(r 2r2=—<—> (—) r2e 3a0
4 1:\3/2, p\2 _ 1 32(1) = [Rs2(1)] 25 \3q,) \3q, e
R
3v10 \3ag 3ag 8 2r
) (-)
98415) " 3
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Fig. 3.2A First few radial wave Fig. 3.2B Radial probability densities
functions of Hydrogen atom of Hydrogen atom for small n & [.
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Problems

P.3.1 Prove that the radial probability density for the hydrogen atom on 1s state is maximum at
r = the Bohr radius. [S. N. Ghoshal, 2" Ed. Chapter VII, Page-286].

Ans. Radial probability density of 1s state (n = 1,1 = 0):

1\3/2 _r|? 1\ 2
Dy = Do = |Ryol*r? = ‘2(—) e | r?= 4(—) rie
Qo Qo
For D, to be maximum:
d(D) _
dr
d(D1) 133 _ar p? o 133 r _2r
= =4<—) 2re % ———e % =4(—) (1——)2re % =0
dT agp agp agp agp
=>r= ap.

Hence the proof.

P.3.2 Calculate < r >, for the hydrogen atom on 1s state. [S. N. Ghoshal, 2" Ed. Chapter VII, Page-
286].

<r>= fl/)nlm*(r: 9' (P)rl/)nlm(r' 9' (P) dr

- f f Rt [Yom (6, @)1 7Rt ()i (6, 9)rdlr sin 6 dfdp

w21

R ()73 dr f f i (6, )1 sin 6 d6dep
6=0 =0

I
ol

= JIan(r)|2r3dr
=0

= JDnlrdr

r=0
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P.3.2

[Since Y}, (0, @) are normalised within & = 0 tom and ¢ = 0to 2,

2 .
f;:() f¢:0|Ylm(9: (P)lz sin @ dad(p = 1]

In 1s state (n = 1,1 = 0) of Hydrogen atom,

r N3 [ o
<r>= fDnlrdr=4(—> Jr3e adr
a
r=0 0
13a4m2r3_2_r 2r
-4(5) ) [ (&) e a()
ag 2 ag ag
0
4o 3,—-x
=— | x d
4f e x
0
= 2o
4
3
:an

therefore

Calculate the expectation values of potential energy and Kkinetic energy for the hydrogen atom

on 1s state is maximum. [S. N. Ghoshal, 2" Ed. Chapter VII, Page-286-287].

Ans.: Expectation values of potential energy:

<V>= flpnlm*(r! 9! (P)V(T)lpnlm(r: 9! QD) dr

e? . 1
= - 4-77,'60 J l/)nlm (T‘, 6: (p);lpnlm(r: 9: (P) dr

eZ

r 1
R 2r2_d
4me, fl nl(r)l r r
r=0

[ee)

__© JD Ly
T 4me, nt 3 O

r=0

In 1s state (n = 1,1 = 0) of hydrogen atom,

e? R
<V>=-— 4(—) fre aodr
4me,

2

€2 [1N\3 jag? [ (2r\ -2 2r
- —t(e) B | E)e=a(D)
0
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o

2
e
= — Jxe"‘dx

4mega,
0

e?

4‘7TEO ao.

Expectation values of Kinetic energy:

<T>= fl/}nlm*(r: 0, (P)Tl/)nlm(r' 0, (P) dr

h? .
= - ZJ’ lpnlm (T', 0, QD) [Vzlpnlm (T, 0, ‘P)] dt
In 1s state (n = 1,1 = 0) of hydrogen atom,

h? .
<T>= _ﬂf Y100 (r, 9.4)) [Vzlpmo(r: 0, ‘P)] dt

21

o] Vs
= f f l,1’100*(7”, 0,9) [Vzlpmo (r,0,9)] r2drsin 6 dOde
6=0 =0

(=}
(=}

r=

1\32 _r 1 1 /1\¥% _r
1/)100(7”'9:@)=R10(T)Y00(9,<P)=2(a_> e % :_<a_> e %
0

0 Vvan ‘/E
h21 1 © T 2T r o
<T>= R f f e 9 [Vze aO] r2dr sin 8 d8do
Qa,
# 0 r=06=0 ¢=0
co T 27
h*1 1 f f _r 62+26 =1 v24r sin 6 dod
. agy _  — ap
2UT ayd ¢ orz " ror)° rarsm 4
=0 0=0 ¢=0
o0 _ T 2T
1o onf(9* 20 r) L ff'eded
— ap JEN— —_—— ap
2umay? ¢ r2  ror e - ¢
r=0 - 0=0 =0

A?1 1 _rqs1 21\ _—
e (————)e “0] r2dr 4m

2#77:0.03 a02 ray
r=0
[ee]
h? 4 f s r?  2r p
= ——_———— 0 —_——— r
2.”(103 agp agp
=0
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h2 [ pe? \°
- 2u (4nh260>

__ e
T 32m2h2e,?
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Special Page

l(l+1)

Significance of the term

2 2
Let us rewrite the above equation as: 14 (rz dR—(r)) +[E-V(@)]R(r) — LG R(r)=0

2mr? dr ar 2m 12
Or  ER() =- L (28804 PIGD ke 4 v(r)R(r)
Or, ER()= —%riz;—r(rz D+ LD Ly )| R
Now %l(l;l) = l(;nlr):l = Zrl;lzrz, where L = m h is the quantum mechanical expression of orbital

angular momentum of the electron in which [ are called orbital angular momentum quantum number.

_ A2 1d [ 5d

Therefore ER(r) = Py m (r dr)

A _ ., _ R 1d( ,d L?
OLE=H=-——2 (r dr) o V() (A)
Now —h—zii(rz i) is the radial part of, =) V) =T = K.E.of the particle.

> 2mr2adr dr p ~ om p

A2 1.d( 5d). o . . . .

Thus — Tz ar (r E) is the kinetic energy of the electron for its motion in radial coordinate 7.

Hydrogen atom problem is a central force problem since the electron moves under the central Coulomb
potential of the nucleus.

"2 1 d AW . . . . .
Thus — ﬁriz; (r2 E) is the kinetic energy of the particle due to radial motion of the particle.

Now remember the central force problem of classical mechanics. The total energy of the particle moving
under central force is given by:

1 /. : 1, 1 L )2
E= Em(r2 +7202)+V(r) = Emr2 + Emr2 (mrz) + V()

[Remember, in central force problem of classical mechanics, § = erZ ]

OrE—

In writing the energy equation in the style (like Eqn. (B)) > 1s termed as ‘potential’ energy arising out

due to the angular momentum of the particle. This is also called the centrifugal potential since the
centrifugal force on the particle moving under central force can be derived from it.

(l

Comparing (A) and (B) we can say that the term 1n the radial equation of hydrogen atom problem is

related to the orbital angular momentum of the electron.
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