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CORE COURSE---C 1T
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- Dr. Pradip Kumar Gain

Syllabus for Unit-1: Hyperbolic functions, higher order derivatives, Leibnitz rule
ax+

) .. b . b )
and its applications to problems of type e sinx, e COSX, (ax+b)nsmx,

n . . . .
(ax+b) cosx, concavity and inflection points, envelopes, asymptotes, curve
tracing in cartesian coordinates, tracing in polar coordinates of standard
curves, L’Hospital’s rule, applications in business, economics and life
sciences.

HIGHER ORDER DERIVATIVES
(SUCCESSIVE DIFFERENTIATION)

Let a function of X is given as follows and we are to differentiate that function.

y=f(x)=x%. Then % =3x”. This is called differential co-efficient of first order of the
X

function y = f(x) = x* with respect to X. It it is also denoted by di(y) or by D(y) or by
X

f’'(x) or by vy,. That is, y1=f'(x)=D(y)=%(y)=%=3x2 ................. (i). If we
differentiate the function in (i) once again with respect to X, we get

4 d2 d2 ..
y, = £"(x) = D?(y) :d?(y):de = BX crrrereeerene (ii).

Differential co-efficient given by (i) is known as first order differential co-efficient of the
given function y = f(x) = x°.

Differential co-efficient given by (ii) is known as second order differential co-efficient of the
given function y = f(x) = x°.

If we differentiate the function in (ii) once again with respect to X, we get the third order
differential co-efficient of the given function y = f (x) = x* and so on.

So, the higher order differential co-efficient of a function can be obtained and all the
differential co-efficients of order greater than 1 are known as higher order differential co-
efficients or higher order derivatives.



n'" ORDER DERIVATIVE OF SOME STANDARD FUNCTIONS

1) Y= Xn, where N is a positive integer.
Yi= nx"*
y, =n(n—-1)x"?
Y, =n(n—1)(n-2)x"*

--------- - and proceeding in a similar manner, we have

Yy, =n(n-H(n—-2)-------- {n i, (n 1- l)}xn—(n—l)
Y, = n(n —l)(n — 2) ........ {n _ (n _ 1)}Xn—n Thatis,

A :n(n_]_)(n_Z)........3.2.1.)(”‘” :n(n_]_)(n_Z) ........ 3.2.1

y, =nl

2) Y=(ax+ b)™ , where M is any number.
y, = ma(ax+hb)™*
y, =m(m-21a*(ax+b)™*
y; =m(m-1)(m-2)a’(ax+hb)™>

~~~~~~~~~ - and proceeding in a similar manner, we have

Y., =m(m-Dm-2)-------. {m-(n-1-1)}ax+b)™ >
Yo = m(m _1)(m o 2) """" {m - (n - 1)} a"- (ax + b)m_n . That is,
y,=m(m-1)(m—2)-------- (m-n+1)-a"-(ax+b)™",

y,=m(m-)(m-2)------- (m-n+1)-a" - (ax+b)™"




3) Y=E€
y, =ae”
y2 — azeax
y3 — aSeax
--------- - and proceeding in a similar manner, we have
yn—1 an 1eax

n~ax
yn =a e . That s,

1 1

@ Y= e o YT

Let us consider the first one, i.e.,

y=—"—=(x+a)"

X+a
Y, =(D(x+a)”
Y, = (-1)(=2)(x +a) "
e and proceeding in a similar manner, we have

Yo = (D)oo (=M (x+2) " Thatis,

y =(-D)"1-2-3-.---. n(x+a) "




1

Similarly, if we consider the second one, i.e., = X —a then we get
_ (=D"n!
yn _ (X . a) (n+1)

5) Y= |Og(X+ a), or y= Iog(x—a)

Let us consider the first one, i.e.,

y =10g(X+a), then

Y1 = =(x+a)”

X+a
Y, =(-D(x+a)”
Ys = (D(-2)(x +a)”
Yo = (D(=2)(-3)(x+a)™
o and proceeding in a similar manner, we have
Yo =(DE)ES) - {-=(n—-D}(x+a)". thatis,

y =(=1)"1-2-3----(n-D)(x+a) "

_ ()" (n-D)!
- (x+a)"

Yn

Similarly, if we consider the second one, i.e., y = |09(X - a) then we get
(D) (n-1)!
(x—a)"

Yn

6 Y=sin(@ax+b), o y=cos@x+h)

Let us consider the first one, i.e.,

y =sin(ax+Db)  then



y, =acos@x+Dhb) = asin(% + (ax + b))

y,=a’ CO{%-F (ax+b)j =a’ sin[%+[%+ax+ bD

= a’ sin(z'T”+ ax + bj

~~~~~~~~ - and proceeding in a similar manner, we have
. (n-mw
y,=a" sm(T +ax+ bj _

That s,

no (N
y,=a S|n(7+ax+bj

Similarly, if we consider the second one, i.e., y — COS(aX + b) then we get

. nz
y,=4a co{7+ax+b)

1
x> —a

7y Y=

2

yo L 1 B 1{ 11 }
x*—a® (x+a)(x—a) 2a|x—-a x+a

1 1 1 1 1 1 1 1
Za[x—a} 2a[x+a} 2a  2a \Where x—a " T xia

—N"nl —N"nl!
1, _ L1y _1 (h'n 1 (Dn

Therefore, Yn = 5 = -
erefore, °n - 2a " 2a " 2a(x—-a)™ 2a(x+a)™

yn:(—1)“n!{ 1 1 }

2a | (x-a)" (x+a)™?




1

(8) y:x2+a2

oL _ 1 11 1
X* +a’ (x+ia)(x—ia) 2ia| x—ia x+ia

- tu-ty
2|a X+1a 2|a 21a

where U _X—' and V =

1 1 1 (-D"n 1 (-D"n!
Ly ty o G 1 D
2ia 2ia 2ia (x—ia)™  2ia (x +ia)™

-1)"n! 1 1
Thatis, Yn = ( ) |: - - n :|

Therefore, Yn =

2ia | (x—ia)™  (x+ia)™P
1 n+ n+
Y, = ( 2|)a [(X ia) "™ —(x+ia)™ 1)] Llet X=rC0OSO and
a=rsing.

~N"n!
Then Yn _{ 21) n'[(rcosﬁ—irsinﬁ)‘(”“) —(FCOS«9+irsin9)‘(”+1)]
ia

2(, ar)(”+1) [(cos6—ising) ™ — (cos6 +ising) "]

_ % [{cos(n + 1)@ +isin(n +1)8} - {cos(n + 1)@ —isin(n +1)8}]

[ applying D’ Moiver’s theorem, that is, (Cos@ £isind)" =cosnf+isinnd]

Z(Iar)(n 7 [cos(n+1)6 +isin(n+1)0 —cos(n +1)0 +isin(n+1)6]

_EYn [2| sin(n+1)6]

~ 2iar™
_(-D)"nt -D"n! :
= o ><sm(n+1)9— NG xsin(n+1)¢ (-a=rsing)

aj| ——
sin@



(-D"n!
= an+2

xsint™™ @ x sin(N+1)0  1pat is,

_ 0T DML @sin(n +1)0

n n+2

a

A2
EXAMPLE (1): Find Y, when Y =SIN" X,

Solution: Y = sin® x = E_ECOSZX.
2 2

1., Nz o Nz
Therefore, Yn = ) 2 CO{? + ZX) =2" 00{7 + ZXJ [ using function no (6)]

EXAMPLE (2): Find Y, when Y =COS2XCOSX .

Solution : Y = COS2XCOSX = %x 2C0S2XCOSX = % {cos(2x + X) + Cc0os(2Xx — x)}
1 1 1 1
—{c0s3x +cosx}==xC0s3x + = xCcosx = =U + =V
2 2 2 2

Where U =C0S3X and V =COSX .

1 1. 1 . 1 . Nz
Then yn:2U —V :— 3 CO{_+3XJ+E 1 00{7+Xj

1
Thatis, Yn = cos(— + 3Xj E {— + xj'

EXAMPLE (3): Find Y, when Y = —x 1
X

Solution : Given function is y_ﬁzl"'ﬁzl"'U Where U= Y_1"
(-D)"n!

o =00 =0 = 1y s ncion oo

Therefore,



X2

X —
2

EXAMPLE (4): Find Y, when Y =

=

X 1 1
Solution : Given functionis Y = = X+1+——=x+1+U Where U = ——.

Xx—-1 Xx-1 x-1
. -D"n!

Y, :()—I—O-l—Un =Un —m[if N > 1] [ using function no (4)]

Therefore,

n

X
X —
2

EXAMPLE (6): Find Y, when Y =

[

X n-1 n-2 n—(n-1) 1
Solution : Given functionis Y = =X "+X RaRTITITE + X +1+
Xx—-1 x-1
1

Xx—-1

(-D"n!
Therefore, yn:0+0+ ....... +O+O+Un:Un:m[ifn>1][using

= X" X" X" D 114U where Y =

function no (4)]

EXAMPLE (7): Find Y, when Y = 2 —16

yo_ L _ 1 _;{ 11 }
Solution: 7 y2_16  (x+4)(x—4) 8| x—4 x+4
1 1] 1 1, 1 1 1
= = |- ——|=2Uu-2V U=— gV =——
S[X—J 8[x+4} 8 g Where x—4 2 X+ 4

y =iy Lty 1 D 1 (Dol
Therefore, Yn 8 n 8 n 8(X_4)(n+1) 8(X+4)(n+1)

(-D)"n! 11
yn o 8 (X _4)(n+1) (X + 4)(n+1)

[ using function no (7)]

1
X2 +16"

EXAMPLE (8): Find Y, when Y

Solution : Use function no (8).



-1

QD | X

EXAMPLE (9): Find Y, when Y = lan

y—tan‘15 V= —2 _—a L \_au
Solution : 3 Therefore, Y1 XZ N az X2 N 8.2 . Where
1
U=—F3
X" +a -
“D"*(n=-1! . .. :
Therefore, Yn = au,, =ax 1) n—§+2 ) sin"™Y gsin(n—-1+1)6

a

[ using function no (8)].

_1\n1 —_1\I
Thatis, Yn =( D aﬁ” D'sin”@sin(n@)

In order to find the n™ derivative of product of two or more than two
functions we need the following theorem which is known as LEIBNITZ'S
THEOREM

LEIBNITZ’S THEOREM :
THEOREM(Leibnitz’s) : If U and V be two functions of X, both derivable at least upto I

times, then the n'" derivative of their product, that is, (UV) n is given by

(UV), =UVA+N Uy Vs +Ne Uy Vo 1 UV, + e+ N UV,

where the suffixes denote the order of differentiation.

2 ax
EXAMPLE (10): Find Y, when Y = X €

Solution : Given functionis Y = Xzeax .

et U= and V =X’ Then
U, =ae* and V, =2X
U,=a’" and V,=2

U3 = a3eax and V3 — O

- and proceeding in a similar manner, we have



U =a"e* and Vn =0 . Now by Leibnitz’s theorem, we have

y=xe*=UV),=UV+n U _V,+n. U _V,+n. U .V, +...

.................... 4+ nc UV,

=a"e®x* +n,a"e™-2x+n, a"’e™-2+n;. a"e™ -0+

.................... +ng e -0

_ n(n-1) .
= a"e®x* + 2nxa" e +%a“ .2
=a"e®x’ + 2nxa"'e™ + n(n—1)a"*e™
2 -
EXAMPLE (11): Find Y, when Y = X SINX,
2 -
Solution : Given function is y = X" SINn X.
et U =sinx and V = X’ . Then
U1=cosx=sin(%+xj and V, =2X

T . T
U, :co{g+xj:sm(2-5+x] and V, =2

U, =co{2-%+x):sin(3%+xj and V5 =0

- and proceeding in a similar manner, we have

U, =cos{(n—3)%+xj=sin((n—2)-%+xj and V., =0

U, =co{(n—2)-%+xj =sin((n—1)-%+xj and V., =0



U, =cos((n—1)§+x):sin(n-%+xJ and V,=0

Now by Leibnitz’s theorem, we have

y=x*sinx=(UV), =UV+n.U_V,+n. U _V,+n. UV, +...
.................... 4+ ne UV,

= sin(n -%+ xsz +Ne, sin((n—l -%+ xj-2x+

= sin(%{+ xsz + nsin((n _21)7[ + x)-2x+

n(nzu_l)sm((n _22)”+XJ-2+0+ .................... +0

= sin(n—” + xsz + 2nxsin((n —Uz xj +n(n —1)sin((n LA xj-
2 2 2

2
EXAMPLE (12): Find Y, when Y = X~ 109X

2 -
Solution : Given functionis Y — X SIN X,

et U= |09X and V = X? . Then
1
Ul :;:X_l and Vl :2X
U2 = (—1))(_2 and V2 — 2
U3 = (_1)(_2))(_3 and V3 = O

--------- - and proceeding in a similar manner, we have

U, =D {(n=-3Ix " ang V,, =0
U, =) {=(n-2 " ana V, ;=0



U, =(DE2) - A-M-D)"  ang V, =0

Now by Leibnitz’s theorem, we have

y=x*logx=(UV), =UV+n.U_V,+n. U NV, +n U NV, +..
.................... 4+ ne UV,

= (-D(=2) - {-(n-DI"%* +n (-D(-2)---{-(n—2)Ix "M 2x+
e, (~D(2) - {- (=" H 240 (1)(-2) - {-(n - I I0+.
............. +n; logx-0
_(ED)T -t S (DT (-2)t

Xn—Z Xn—2

n-3
n(n-1) (1) (2_3)2+O+ .................... +0
2! X"

(=)™ n! [ 11 1 }

x"2 |n (n-1) (n-2)

EXAMPLE (13): Find Y, when Y =€ 100X

2 ~ax
Solution : Given function is y =X€ .
let U=¢€" ang V = |09X. Then
1 4

Ulzex and V1:;:X

U2 = ex and V2 = (—1)X_2
Us,=¢€" and V;=(-D(-2)x7

- and proceeding in a similar manner, we have

U, ,=€ and V. ,=(D2)--- {~(n—3)x 2
U,=€" and V., =(D(2) - {-(n=2)x "
U,=¢"  ana V,=(D(2)-{-(-Dk"

n



Now by Leibnitz’s theorem, we have

y=e'logx=(UV),=UV +n UV, +n. U NV, +n. U V;+...
.................... 4N UV,

=e*logx+n.e*- X" +n.e* - (-1)x7 +ng " (-D(-2)X " +.ooen.

C,
.................... A+ng e (=D)(=2) - {=(n=D}"
ne* n(n—l)iJr n(in-1)(n-2) ) e”

eX
=e*logx+ O o i ([ A
J X 2l x? 3l x® D™ (n-=1) X"
_ _ _ “N"n_1MI
_ o Iogx+ﬂ—n(n 21)+n(n 1)(3n 2)+...+( 1) En 1!
X 2X 3X X
b -
EXAMPLE (14): Find Y, when Y =€° SINX
Solution :
et U= eax+b and V =SINX. Then

U, =ae™® g V. =cosx =sin(% + xj
U,=a% " . Vo= co{%+ xj = sin(z-%+ xj
U,=a%%"" ,a V= co{Z-%+ xj = sin(3-%+ xj
. and proceeding in a similar manner, we have
U, = a" e and V., = co{(n -3)- % + xj = sin((n —-2)- % + xj
U, =a""*" ;g V., = co{(n ~-2)- % + x] = sin((n ~1) -%+ xj

U,=a"*" 4 Vi =CO{(n—l -%+ x):sin(n-%qux)

Now by Leibnitz’s theorem, we have



y=e**sinx=(UV),=UV +n. U _V,+n U V,+n. U .V, +..
.................... +nc UV,

. _ . T _ . T
=a"e*”sinx+nga"e™” sm(z + xj +ng,a" e sm(z S xj +

n

. T
.................... A+ N % sm(n-5+ x)

. _ (7 n(n-1) . (27
:aneax+b Slnx+na” 1eax+bS|n(E+Xj+%an Zeax+bS|n(7+Xj+

(nrx
.................... 4 ¥ sm(7 + xj

ax+b
EXAMPLE (15): Find Y, when Y =€~ COSX,
Solution :
et U= e +P and V =COSX. Then

U, =ae*® g Vi=-sinx= cos{% + xj
U,=a%"" aa Vo= —sin(% + xj = co{z : % + xj
U,=a%%"" ,a V= —sin(Z-%+ x) = cos(S-%+ xj
. and proceeding in a similar manner, we have
U, ,= a2 and Vi, = —sin((n -3) -%+ xj = co{(n -2)- % + xj
U, =a""*" ;g V., = —sin((n -2)- % + xj = cos((n ~1) -%+ x)

Un = a"e™"® and Vo= _Sin((n -1) '%‘*’ Xj = CO{n '%+ Xj

Now by Leibnitz’s theorem, we have



y=e""cosx=UV), =UV +n.U_V,+n. UV, +n. U .V, +...

.................... +ne UV,

_ T - T
— aneax+b COSX + nc:lan 1eax+b CO{E"‘ X)-l— nczan Zeax+b CO{Z'E-F Xj"‘

VA
.................... 4N, P cos(n S xj

_ T n(in-1) . 27
= a"e®® cosx+na" e’ cos(E + xj Pt > ) qr-2get co{? + x] +

nr
.................... +e¥b 00{7 + xj

EXAMPLE (16): Find Y, when Y = (@X+D)"sinXx

Solution :

et U= (aX+b)n and V =SInX. Then

U1 = an(ax+b)”‘1 and V, :cosx:sin(g+ xj
U, =a?n(n—1)@x+b)"? and V, :co{%ﬂlzsir{z.?x}

U, =a’n(n-)(n—-2)(@ax+b)"*and V, = co{2§+ xj :sin(3.§+ xj

- and proceeding in a similar manner, we have

Un—2 = an—zn(n _1) e '{n - (n _3)}(3-)("‘ b)2 and
T . T

V.., = cos((n —3)-E+ xj = sm((n —2)-E+ x)

Un—l - an_ln(n _l) e '{n - (n - 2)}(ax+ b)l and

V., = cos((n—Z) -%+ x) :sin((n—l)-%+ xj



U,=a"n(n-2)---{n—(n-1)} and

V, =cos((n—1)-%+xj :sin(n-%+xj

Now by Leibnitz’s theorem, we have

y=(ax+b)"sinx=UV),=U\V +n. UV, +n. U .V, +n. U, NV, +...
.................... 4+ ne UV,

— |
=a"nlsinx + na“ln!(ax+b)1sin(%+ xj+¥a”2 %(ax+ b)zsin(2%+ xj+

.................... +n (ax+b)" sin(n-%+ xj

EXAMPLE (17): Find Y, when Y = (8X+ b)" cosx .

Solution :

et U =(ax+ b)n and V =CO0SX. Then

U, =an(ax+b)"™  and Vlz—sinx=cos(%+xJ
U, =a?n(n-1)(ax+b)"? and vzz_singﬂjzco{g.%ﬂj

U, = a®n(n—1)(n—2)(ax+b)"*ana V, = —sin[2%+ xj _ 00{3-%+ xj

- and proceeding in a similar manner, we have

Un—2 = an_zn(n_l) "'{n_(n_3)}(ax+b)2 and
V., :—sin((n—3)§+xj:co{(n—2)§+xj
Un—l = an_ln(n_l) ---{n—(n—2)}(ax+b)1 and
V., :—sin((n—2)§+ xj:co{(n—l)-%+ XJ
Un :ann(n_l)"'{n_(n_l)} and

V, :—sin((n—l)-%+ xj = cos(n -%+ xj



Now by Leibnitz’s theorem, we have

y=(ax+b)"cosx=(UV), =UV +n UV, +n U .V, +n. U, V;+...

.................... 4+ ne UV,

_ I
=a"nlcosx+na""n!(ax+b)’ co{% + x) + %a“ %(ax+ b)? cos(2%+ xj +

.................... .+ (ax+b)" co{n-%+ xj

APPLICATIONS OF LIEBNITZ’S THEOREM

EXAMPLE (18): If Y = tan "X then show that
(1+ Xz)yn+2 + 2(n +1)Xyn+1 + n(n +l) yn = O

-1
Solution : Given functionis Y = tan " X . Then differentiating both sides with respect

1

X Y, = .
to X, we get 1+ %2

2
Therefore, y1(1‘|‘ X ): 1. Differentiating both sides

2
once again, we get (l+ X )y2 +2XY;, = 0. Then applying Leibnitz’s theorem, we
get

(yn+2(1+xz)+ nclyn+l°2X+nC2yn '2+nC3yn—l°O+O+O+"'+O)+
2y X +Ng Yy -1+0+0+-----+0)=0.

n(n—-1)
2! y

= yn+2(1+ x2)+ 2nxy, ., + L 242Xy, +2ny, =0

= Vi (1+ x2)+ 2(n+xy,, +n(n+1)y, =0

(1+ NG )yn+2 +2(n+1)xy ,+n(n+1)y =0




. 1. ¥
EXAMPLE (19): If Y = (Sln X) , then show that
(1_ X2 )yn+2 - (2” +1)Xyn+l o nzyn =0

|
Solution : Given functionis Y = (Sm X)2 . Then differentiating both sides with respect
2(sin‘l x)
— 2 e
to X, we get Y1 = . Therefore, Y V1-X° = Z(Sm X). Squarin
8 /1_ x2 1 q 8
2 2 R R 4 2 2
both sides, we get Y; (1— X )= 4(S|n X) =4Y . Thatis, Y; (]_— X ): 4y
2 2
Differentiating both sides once again, we get 2y1y2 (1_ X )_ 2Xy1 = 4y1. That is,
2
Y, (1_ X )_ XY;—2=0. Then applying Leibnitz’s theorem, we get
2
(yn+2 (1— X )+ Ne, Yo - (=2X) +Nc, Y, - (=2) + N Yy -0+---+ o)_
(yn+1x+nclyn-1+0+0+ ----- +0)—O:O

n(n-1
= Yni2 (1_ Xz)_ 2nxyn+1 o % Yo~ (2) — Y X—ny, = 0

— (1_ X2 )yn+2 _ (2n +1)Xyn+l _ nzyn =0
(1_ XZ )yn+2 - (2n +1)Xyn+1 o nzyn =0

- - -1
EXAMPLE (20): If Y = sm(msm X),then show that

2 2 2
(1_X )yn+2 _(2n+1)xyn+1+(m —n )yn =0
Solution: Given functionis Y = s n(mSin_l X). Then differentiating both sides

m
f Differentiating both sides
1 . X2 g

_ 1),
with respect to X, we get Y1 = cos(m sin X)

once again, we get
— 2X

241 X2

—mi/1-x2 sin(ms,in*1 x)- —mcos(msin*1 x)

m
V1-x?

V2 = 1-x?




= y,1-x*)=-m’ sin(msin‘l x)+ xcos(msin‘1 x)-

1-x°
= ¥,(1-Xx*) =-m"y +xy,
= ¥,(1—X?) =Xy, + MY =0 Then applying Leibnit’s theorem, we get
(Voos (=X )+ N Yot (<200 411 Y, - (<2) + 1 Yy -0+ +0)—
(yn+1x+nclyn-1+0+0+ ----- +O)+m2yn:0

n(n-1)
2!

- yn+2 (1_ XZ)_ 2n)(yn+1 o yn ) (2) - yn+1X T nyn + mzyn =0

— (1_ X2 )yn+2 T (2n +1)Xyn+1 + (m2 o nz)yn =0

(1_ X2 )yn+2 o (2” +1)Xyn+1 + (rn2 o nz)yn =0

T
EXAMPLE (21): If Y = COS(mSIH X),then show that

(1_ X2 )yn+2 o (2n +1)Xyn+1 + (m2 o nz)yn =0

Solution : Left for exercise. ( Hints — same as example 20 ).

exampLe (22): 1f Y = acos(10gx)+bsin(logx), then show that
Xzyn+2 + (2n +1)Xyn+l + (n2 +1) yn — O

Solution : Given functionis Y = aCOS(|Og X)"‘ bSin(|Og X). Then

differentiating both sides with respect to X, we get
_ —asin(logx)+bcos(logx)
X
T acos(logx)—bsin(logx)
X
y =
2 XZ

= y,x* = —(acos(logx)+bsin(logx))—(—asin(logx)+bcos(logx))
= ¥,X" ==y =Xy,

2
= Y,X“+ XY, + Y =0. Then applying Leibnitz’s theorem, we get

1 . Differentiating both sides once again, we get

+asin(logx)—bcos(logx)




(yn+2x2 + nclyn+1 $2X+ nC2 Yn- 2+ nc3 Yo O+-- '+O)+
(yn+1X+ rlClyn 1+ nC2 yn_l 0+-- ‘+O)—|— yn
n(n-1)

— (Xzyn+2 + 2nXyn+1 + Yn- zj + (Xyn+1 + nyn)+ Yn

— Xzyn+2 + (2n +1)Xyn+1 + (n2 +1) yn - O

Xzyn+2 + (2n +1)Xyn+l + (n2 +1) yn — O

_ emsin’1 X
EXAMPLE (23): If y — , then show that

(1_ X2 )yn+2 o (2” +1)Xyn+1 o (m2 + nz)yn =0

Solution : Left for exercise.

1 1

m m_
exaMpLe 22): 1f Y™ FY ™ = 2X  then show that

(X2 _1)yn+2 + (2n +1)Xyn+l + (n2 o mz)yn =0
1 _1
Solution : Given that ym + y m = 2X.

O R N
m m = m m my m _— 2 _ 2
Now[y -y j —[y +Yy j —4ymy M =(2X)"—4=4x"-4

1 1
- T [\, 2
Therefore, ym - y M =32x" -1
ER : (2 4
. 2
ym+y M =2x (given). Addingweget Y™ = XZT VX" =1 Hence

1 1y 1 2x

—logy =log\x+vx* -1 :>——1:—><[14_r }
m ( ) my x+4x*-1 24/x* -1
1y, 1 X[\/xz—lixJ_ 1

- — = =
my x++x*-1 x? -1 Vx?t -1




oY
m’y*  (x*-=1)

= y2(x*-1)-m’y* =0

Thatis, Y (X° —1) —mM?y® =0 Differentiating both sides with respect to we get

2y, Y, (X* =1) + 2xy; —2m?yy, =0

=V, (X* =)+ Xy, ~M’Y =0 Then applying Leibnitz’s theorem, we get

(yn+2 (x2 —1)+ Ne, Yo - (2X) +0c, Y, - (2) + N Yy -0+ + 0)—
(yn+1X+nC1yn 14ng Y, -04+0+---- +O)— m’y =

n(n _1) Yn- 2+ Yo X+ nyn o mzyn

=Y., (x2 —1)+ 2nxy., +

— (1_ Xz)yn+2 + (zn +1)Xyn+l + (n2 o mz)yn =0
(1_ X2 )yn+2 + (2n +1)Xyn+1 + (n2 o mz)yn =0

n
cos YL |=log X
EXAMPLE (25): If b =109 N ' then prove that

X2 yn+2 + (2n +1)Xyn+l + 2n2yn — 0

Sy X\ X
Solution: Given that CO° 1(6) = Iog(ﬁj So, y= b{co{n Iog(ﬁjj}

Then differentiating both sides with respectto X , we get

xn 01 _bnsm(nlogmj

Y, = —bsin(n Iog(— XNX—X—=
n X n X
_ bnxco{n IOQ(XD X N x n X 1 +bn sin[n |Og(XD
n X n n
=Y, = X2
—bn? cos(n Iog(XD + bnsin(n Iog(XD
n n
=Y, = 2

X



—n’y —X
=Y, = ?(2 2

2 2
= Y,X“+ XY, +N°Y =0 Then applying Leibnitz’s theorem, we get
2
(yn+2X +Ng Yo - 2X+Nc Y, 240N Y,y °0+°°-+0)—|—
2
(yn+1x+ nclyn 1+ nclyn_l 0+-- '+0)+ n yn =0

— X2 yn+2 + (2” +1)Xyn+l + 2n2yn - O

X2 yn+2 + (Zn +1)Xyn+1 + 2n2yn — O

. n,,n
EXAMPLE (26): If X+ Y =1, prove that the n™ derivative of X Y s

n 2 . .n-1 2. ..n-2.2 2. .n-3,3 ny,n
n!{y —(ncl) y x+(ncz) Yy X —(ncs) YUOXT e +(-1)"x }

Solution : The n®" derivative of XY is Dn{Xnyn}Z Dn{xn(l— X)n}.
letU =x" and V=Yy"=(1-x)" ( X+Yy =1). Then

U, =nx""

U, =n(n-1)x"*

U, =n(n-1)(n-2)x"°

--------- - and proceeding in a similar manner, we have

U _,=n(n-1)(n-=2)------ n-(n-2-1)jx""2 = %!xz

U, =n(n-DNn—-2)- {n-(n-1-1)x" " =nix

U =n(n-DH(N-2)-------- n-(n-1)jx™". That is
U, = nn-H(n-2)--------3-2-1- X" = n(n-H)(n-2)-------- 3.2.1=nl
Similarly,

V= (-Dn(-x)""



V, =(-1)°n(n-1)(1-x)"?
V, = (-1)*n(n—1)(n—2)(L—x)™*

------- - and proceeding in a similar manner, we have

V., =) n(n-1)(N—-2) - {n-(n-1-1)j@—x)~>

Vn = (_1)n n(n —1)(n — 2) ........ {n - (n _ 1)}(1_ X)n—n -

Thatis V,, =(—l)”n(n—1)(n_2) ........ 3.2,1_(1_X)n—n
=(-D"n(n-D(n-2)-------- 3.2.1=(=1)"n!

Therefore, the n" derivative of X" yn is
D"{x"y" = D"{X"(1—x)"}=D"{UV}.
=U nV + nClU n_1V1 + nCZU n_2V2 dreeeees + UVn (by Liebnitz’s theorem)

(L= )"+ g nbx (<D= 0" g, T x (<D n(r - DL )"

=n{a-x)" — (ng FA-x)""x+ (0 PA-X)"2X2 = 4(=1)™x"
= n!{yn - (nCl )2 y X + (ncz )2 y"2x? — (ncs )2 VARG +(—1)”x”}

log X
EXAMPLE (27): Show that the n™ derivative of T is
-1"n!
( ) n |ogx_1_1_l_1_ ............. l
Xn+1 2 3 4 n

Solution : Left as an exercise for students.



. _ (n=1!

n
EXAMPLE (28): If Y =X 100X, then prove that I n w s

olution: Y, = D" (y) = D"(x"*logx) = D"*(D(x"* logx))
n-1

Xx j =(n —1)D”‘1(x”‘2 log x)+ D”‘l(x”‘z)

= D“((n ~Dx" logx +

=(n-1) D”‘l(x“‘2 log x)+ 0 ( D”‘l(x”‘z)z O)
=(n —1)D”‘2(D(x”‘2 log x))

n-2
—(n —1)D”2£(n —2)x"? logx + 2 J
X

= (n—1)(n—2)D"?(x"*logx )+ D" (x"*)
= (N—1)(n—2)D"?(x"*logx)+0 (- D™2(x*)=0)
= (n—1)(n—2)D"?(x"logx)

=(n-DY(n-2)------ .. .. (n —(n _1))D”—(n—1) (Xn—(n—1+1) log X)
:(n_]_)(n_Z) ......... 1. D(|ng)
:(n_]_)(n_Z) ......... 1.1
X
_(n-1)!
- X

EXAMPLE (29): If P, = D" (X" 109 X) , then prove that P, =n-P,_; +(n—1)!

Hence show that ' n

P =nl |ogx+1+1+l+l+ ............ _|_£
2 3 4

Solution: Given P, = Dn(Xn logx) = D™ {D(Xn log X)}

_ Dnl{xn l +nx"t log X)} = Dn_l(Xn_l) +n- Dn_1<Xn_1- log X)
X



Therefore, P, =(N—=DHn-P _, or, P, =Nn-P, _, +(N—1)! (first part proved)

Next from first part, we have P, =N-P _, + (n=1! Dividing both sides by N! we get,
P, S P, N (n=1)! P P. 1

n

Nl nm ol (n=)! n-
Replacing successively, N by n _1, n-— 2, n-— 3, """" ,3, 2
P P, 1
n-)! (n-2)! n-1
P P, 1
(n-2)! (n-3)! n-2

we get

tan~t x

2
EXAMPLE (30): IfY =€ =8, + X+ a,X +--eee- A X e then prove
a 1 na‘n

that @,,, =———— and hence show that

n+2

tan™' x
e R



tan—Lx _ tanix
Solution: Given Y =€ .Then Y1 =€ .1+ 2
(1+ XZ)etan‘lx ) 1 ' _etan‘lx . 2% I,
Then Y2 = 1+X2 =2 (1_22)()
(1+ x2) (1+ x2)
tan 1y

or, L+2)-y, = (1-2x)- (—) — (1-2%)-y,

or, (1+x ) Yo = (L=2X) Yy e (1)
Now from the given reation we have
y=e® *=a +ax+ax’+ax +---+ax"+a x"+a_,x"?
Or,
=a, +2a,X+3a,x* +---+na X" +(n+Da_,x" +(n+2)a, X"
Or,
Yy, =a, +2a, +6a,x+---+n(n—-La x" > +n(n+a ,x"* +(n+Y(n+2)a X"
Putting the values of Y; & Y, in (1), we get
(L+x*)(a, +2a, +6a,x+---+n(n—1)a x" > + n(n +Da, X" +(n+D)(n+2)a, X" -
=([1-2x)(a, +2a,x+3a,x* +---+na X" +(n+Da ,x" +(n+2a, x""--)

Comparing the co-efficients of X" from both sides of the above relation, we get

(n+1)(n+2)a, ., +n(n-a, =(n+Da,., —2na,
a . an+1 B nan ; 4
Or, 2 = . ( first t proved ).......ccceueeneennens 2
r, “n+ n4+2 ( first part proved ) (2)
. ] _ atantx 2 n
Next from the given relation Y =€ =ad; + X+ A, X" + e +a, X" A
-1
we get (Y), =e™ ° =a,.50 &, =1.
) y, = tan'x 1
Again, 1 1+ X2

Therefore, (yl)o =1

Also from the relation

=a, +2a,X+3a,x* +---+na X" +(n+1a

we have (Y;)o =&, so, a =1

Now putting N = 01,23,....... in the relation (2), we get

X"+(n+2a_ X" -

n+1 n+2



1

T S K K T
2 2’ 1+2 3 6’
1 1 -7
a3—2a2__6_ .5_?_ l
4 — 4 - 4 - 4 - 24,andsoon.
Hence from the given reation we have
e™ X =a +ax+axi+ax +--+ax"+a X"t +a X"

1 2 1 3 7 4
=1+1-X+§.X —EX _ﬂx Tt (proved)



CONCAVITY AND INFLECTION POINTS

I
P T P
K oA
oA
Fig-1 Fig-2

DEFINITION ( Concavity & Convexity of a curve with respect to a point ) : Let PT be the
tangent to a curve at P . Then the curve at P is said to be concave or convex with

respect to a point A not lying on ﬁ, according as a small portion of the curve in the
immediate neighbourhood of P ( on both sides of P ) lies entirely on the same side of PT
as A or on opposite sides of PT with respect to the point A .

Figure (1) shows that the curve at P is concave with respect to the point A . Whereas

Figure (2) shows that the curve at P is convex with respect to the point A .

Fig-3

Figure (3) shows that the curve at P is convex with respect to the point A and concave
with respect to the points B and C . The curve at R is convex with respect to the point B

and concave with respect to the points C and A.



Fig-4

DEFINITION ( Concavity & Convexity of a curve with respect to a line ) : A curve at a point
P on it is convex or concave with respect to a given line according as it is convex or

concave with respect to the foot of the perpendicular from the point P to the given line.

Figure (4) shows that the curve at P is convex with respect to the line SR and is convex

with respect to the line TK .

POINT OF INFLEXION

. .

A

DEFINITION ( Point of inflexion ) : If at any point P on a curve the tangent crosses the
curve, then with respect to any point A not lying on the tangent line the curve, on one
side of P is convex and on the other side of P it is concave. Such a point P on the curve is
defined to be a point of inflexion. Point of inflexion is also known as point of
contrary flexure.



TEST OF CONVEXITY AND CONCAVITY

2

y
if Y dX2 >0 at P, the curve is convex to the X —axis. That is, the curve is convex to

the foot of the ordinate of the point P.

2

d
If y—y<0

dX2 at P, the curve is concave to the X —axis. That is, the curve is concave
to the foot of the ordinate of the point P.

dy

NOTE : At a point where the tangent is parallel to the Yy —axis, & is infinite. At such a

point, instead of considering with respect to the X —axis, we investigate convexity or
concavity of the curve with respect to the y —axis.

d X 0

If dy 2 ~ Y atP, the curve is convex to the y —axis.
d*x 0

i X dyz <VUat P, the curve is concave to the Yy —axis.

TEST OF POINT OF INFLEXION

The condition that the point P is a point of inflexion on the curve Y = f (X) is that, at P,
d’y d’y
=0 and | 3 #0 .
dx® dx’
dy

NOTE : If & is infinite then the condition that the point P is a point of inflexion on the

curve Y = f(X) is that, atP,
d?x d ®x

=0 # 0
dy and | 3 dy .



IN GENERALIZED FORM :
A curve Y= f(X) be such that f”(X) = f"’(X) S RERRRERS = fn_l(X) =0 and
f"(X) # 0 for X = C theniif

(1) if N is odd, the curve has a point of inflexionat X = C .
(2) if N is even, then

(i) if fr (X) >0 the curve is concave upwards ( that is, convex downwards ).

(i) if fr (X) < 0 the curve is concave downwards ( that is, convex upwards ).

PROBLEMS

EXAMPLE-1 : Examine the convexity and concavity to the axis of the curve Y = sinx,

Find the points of inflexion(if any).

. y y .
SOLUTION : Given curveis Y =SINX. Then - =CO0SX gnd —— =-—SINX,
dx dx

dzy___

. 2
Hence y dX2 =-sIn“x<0 for all values of X except those which make

sinx = 0, ie., for X = k7Z', where k is an integer.

Thus the curve is concave to the X — aXIiSat every point except at points where it crosses
d’y d’y

the X — aXIS., At these points, ie., at X = k7Z, —dX2 =0 and dX3 =—CO0sSX # O.

Hence the points where the curve intersects the X — axis are the points of inflexion.

EXAMPLE-2 : Prove that the curve Y =100 X s convex with respect to X — axis if
0 < X <1 and concave with respect to X —axis if X >1.

dy 1 d’y 1
SOLUTION : Given curve is Y = |0gX. Then & = ; and dx? = _F . We

know that logx<0 if O<x<1l and l0gX>0 if X>1. Therefore,

d’y  logx d’y  logx
dx? X2 dx? X2
given curve is convex with respect to X — axis if 0< X <1 and concave with respect

to X—axisif X>1.

>0 0<Xx<1 and Y <0 i x>1. so, the



EXAMPLE-3 : Prove that the curve Y = e is convex to the X — aXiSat every point.
OR

Show that the curve Y = e” is at every point convex to the foot of the ordinate of the
point.
OR

X
Show that the curve Y =€ is everywhere concave upward.

dy _ d’y _ .
SOLUTION : Given curve is Y = e". Then & =€ and dx2 =€ . Therefore,

d’y o d’y
y A’ =€ Clearly, ¥ A’ >0 for all values of X.

Hence the given curve Y = €" is convex to the X — axiSat every point.

3
EXAMPLE-4 : Show that the curve Y = X has a point of inflexion at the origin.
dy 2 d?y

dx 0 d®
d 3 d d 2 d 3
d—le =6#0 Therefore, at origin d_i - Y, ngl =0 put d—xz/ #0 . At origin an

3
SOLUTION : Given curve is Y =X . Then

odd differential co-efficient is non-zero. Hence (0,0) is the point of inflexion of the given

curve.

4
EXAMPLE-5 : Show that the curve Y = X is concave upward at the origin.

d d? d3
SOLUTION : Given curveis Y = x° . Then Y =4x° y =12x° , y 24X

dx * o dx? dx®
d* d d? d’ d*
and d—XZ/:24¢O.SO,atorigin d_izo' ng/ :O, d—X‘z’/:O' d—x}llioa“d >0

. Therefore, at origin all the differential co-efficients upto order 3 are zero and the even

4
differential co-efficient of order 4 is non-zero and > 0. Hence the givencurve Y =X is

concave upward at the origin.



EXAMPLE-6: Find the ranges of the values of X for which
4 3 2
y =X" —10x" +36X"° +5X + 3 is concave upward or downward. Fin also its points

of inflexion, if any.

SOLUTION : Given curveis Y = x* —10x® + 36X +5x + 3.

ﬂ:4x3—30x2 +72X+5

dx
d’y =12x* —60x+72=12(Xx* =5x+6) =12(x — 2)(x - 3)
dx? B B
‘y ‘y
For —00< X<2 and 3< X <00 W>Oandfor 2<Xx<3 ng <O,ie., #0.
Hence the curve is concave upward for all Xe (—00,2) O (3, OO) and concave
downward forall X € (2,3).
d? d?
SECOND PART : We have —2/ =12x* — 60X + 725, —g =24x-60
dx dx
d? d?
At X=2, d—xg =0 and d—xg/ =-12+0 . So at the points whose abscissa are 2 and

3, odd differential co-efficients are non-zero. Hence the points of inflexions are (2,93)

and (31153) .

5 3
EXAMPLE-7 : Show that the curve Y =3X  —40X” +3X — 20is concave upwards in

—2<X<0 and 2<X<Obut concave downwards in —00<X<—2and
O<X<2andat X=-2 , X= 0, X = 2 there are points of inflexion.

5 3
SOLUTION : Given curveis Y =3X  —40x” +3x—20
2

% =15x* —120x°* + 3, % = 60x" ~240x = 6OX(X2 —4). Therefore,
X

dZy d2y
W=60X(X+2))(X—2).Thenfor ~2<x<0 and 2<X<00, " >0

2
y
and for —0< X<—2and O0<X<2, dX2 <0 . Hence the given curve is concave
upwards in — 2<X<0 and 2< X <00 and concave downwards in — 00 < X < —2

and O< X< 2.



d%y ; d’y 2
—2 =60x°>—-240x ..—2 =180x°—-240
Now dX2 . dX3 .

d? d?
At X=—2, d—XZ'=0 bt .-.d—xg'=720—240¢0
d? d?
at X=0 dle =0 but y —-240=0
d’y d’y
At X=2, dX2 =0 but "°W=720_240¢0. Thus the given curve has

points of inflexion at X = -2 , X= O, X=2.

— -x° —+
EXAMPLE-8 : Show that the curve y =€ has points of inflexion at X== \/E .

2
—X
SOLUTION : Given curveis Y =€

2

dy _ _2xe™® d_z/ — 2" +4x%e ¥ =2 (2x2 —1)_ That

Therefore,

dx *dx
. ‘;—)2(2’ 267 (262 —1)=2¢ (V2x +1)v2x-1) .

ay _ _Axe™™ (2x2 —1)+ 8xe™ =12xe™* —8x% X =4xe™ (3 — ZXZ),

1
So, at XZJ—“ﬁ,
d%y 1 L

2
uzo but =+4x—xe 2(3-2) =

dX2 e dX \/E /_ . Hence the given

curve has points of inflexion at X==% \/E .



2.,2 2(,2 2
EXAMPLE-9 : Show that origin is a point of inflexion of the curve " Y™ = X (a —X )
2.,2 2(,52 2 [,2 2
SOLUTION : Given curveis @'Y =X (a —X ) Thatis, AY = Xva — X" . Then

va? — x* (-4x) + (a® — 2x?) X

2 2 2 2 2
aﬂ:a —x"-x" _a’-2x :>ad2y: [a2 —x2
dx /az —_x2 a? —x2 dx2 (az _ X2)

d?y (a®—x*)(-4x)+a’x—2x°

—a——= 3
dx (a® - x?)?
N adzy _2x° -3xa’
dX2 (a2 _XZ):; .
3 1
ddy (a® —x*)2(6x* —3a?%) +Z’(2x3 —3xa%*)(a® — x%)2 - 2x
a =
Also dx® (az _X2)3
1
&y (@- x?)2{(a% — x?)(6x* —3a%) + 6" —9x%a’ |
dXS (a2 _X2)3
~a d’y 6x’a®-3a‘-6x"+3x%a’ +6x* —9x’a’
dx 5
" (a - x?)?

d’y —3a’ d’y d’y -3
a3 = ~0 = =Y _"%40
dx3 5 . Clearly, at X "X but dx® a2

(a* —x*)?

Hence at X = 0 , the curve has its point of inflexion.

5
EXAMPLE-10 : Find if there is any point of inflexion of the curve y -3= 6(X - 2) .

dy
SOLUTION : Given curve is y -3 = 6(X - 2)5 . Then & = 30(X o 2)4 ,

d?y 3 d’y 2 d'y

—2 =120(x -2 —-=360(x-2 =720(x—2
5 2 3 4
d—¥=720¢o. dy_o d¥_o 9y _o dy_g

X=2 = =
dx At rdx 2 dx® 2 dxd 7 dx® and



5
9Y 72040

dx . So, all the differential co-effcients upto order 4 are zero but the gt

order (odd) differential co-effcient is non-zero. Hence X = 2, i.e., the point (2,3) is the

point of inflexion of the given curve.

TASK:

2
EXAMPLE-11: Show that the curve (1+ X )y — (1_ X) has three points of inflexion
and that they lie on a straight line.



ENVELOPE

A Y
DEFINITION (FAMILY OF CURVES) :
Let us consider the equation XCOS« + ysina=p .
This equation represents a straight line. By giving different p
values to & , we shall obtain the equations of different

»
»

straight lines having one characteristic feature common to
them. The common feature is - each line is at same distance P from the origin. On
account of this common property these straight lines are said to form a family, called,
“family of straight lines”. Here ¢, which is constant for one line but different for
different lines, and whose different values give the different members of the family, called
the “parameter” of the family. The position of any straight line member varies with & .

2 2 2
Similarly, let us consider the equation (X - 05) + Y~ =T" . This equation represents a

family of circles.

7 R
AN

For the moment fixed, if we hold I and allow « to take a series of values, then we have

a series of circles of equal radii I . In this case & is the parameter and I is fixed .

Again if we hold @ and allow I' to take a series of values, then we have a system of
circles with common centre (0(,0) .In this case ' is the parameter and & is fixed .

In both the cases we get families of circles.

A system of geometric figures (straight lines or curves) formed in this way is called a
family of curves

In the above cases, we find a family of one-parameter curve,
Similarly, a family of two or more than two-parameters curves can be described.

The equation of one-parameter family of curves cab be expressed as f(X, y,a) =0
where O is parameter.

The equation of two-parameters family of curves cab be expressed as f (X, Yy, &, ,B) =0
where & and £ are parameters.

DEFINITION (ENVELOPE) : If each of the members of the family of curves f (X, Y, 0!) =0

touches a fixed curve E , then that fixed curve E is called the envelope of the given
family of curves.



DEFINITION (SINGULAR POINT) : A point P(a,b) s said to be a singular point of a curve

f (X, Y, 05) = 0( X is fixed ) if it satisfies, the equation of the given curve and other two
of of

equations — =0 and — =0,
a OX oy
DEFINITION (ORDINARY POINT) : A point P(a,b) is said to be an ordinary point of a curve

of of

f(X, y,a) = 0if at least one of the quantities — and —is not equal to zero at

OX oy
(a,b).
DEFINITION (CHARACTERISTIC POINTS) : Characteristic points are the ordinary points of a

of

family of curves f (X,¥,a) =0 atwhich T(X,y,a) =0 and % =0,

MATHEMATICAL DEFINITION OF ENVELOPE : The locus of the characteristic points of a
family of curves f (X, Y, 05) = Ojs called the envelope of that family.

NOTE : (1) Characteristic points may not exist. For example, the family of concentric

. 2 2 2 . e .
circles X + Y~ =", there is no characteristic point and hence there is no

envelope.

(O y.a) =0 ang =0 .
(2) If Y, @) =V and Py both holds for a point where ox and
of

= O, then the point is a singular point and therefore, not a characteristic point

oy

METHOD OF FINDING THE EQUATION OF AN ENVELOPE WHEN IT

EXISTS.

CASE OF SINGLE PARAMETER :
If there exists an envelope, its equation may be obtained by either of the following
process.

of
(1) Eliminating & from f(X, y,Ol) = 0and % =0, we obtain the equation of the
envelope.

of
(2) Solving for X and Y in terms of  fro the equations f (X, Y,a) =0and % =0,

we get the parametric representation of the envelope.
(3) 1f T(X,Y,&) =0 can be expressed as



f(x,y,a)= A y)a’ +B(X, y)a +C(X,Y) and if two values of & are equal

then the equation of the envelope is given by B> —4AC =0

CASE OF TWO PARAMETERS :
For a fixed point (X, Y) of the envelope, we have from the equations f (X, Y, o, 8) =0

............ (i) and @(a,f)=0.......(ii) by differentiation gf—a S,fg gi 0 and

sz 22 35 0. Eliminating £ from the above two relations we get

o soof

oa o¢ = o8 D wrovesesns (iii). Then eliminating & and ﬂfrom equations (i), (ii), (iii),
oa / op

we obtain the equation of the envelope.

PROBLEMS

PROBLEM OF SINGLE PARAMETER

EXAMPLE 1 : Find the equation of the envelope of the family of straight lines

y=mx+ va’m? +b? . Where M isthe parameter.

SOLUTION : Given family of straight linesis Y = MX+ a’m’ +b’ . Then
(y —mx)* =a’m’® +b?
or, m?(x* —a?)—2xym+y? —b? =0 (= (X, Y, M) = 0) oo, (i).

of s 2 of
Differentiating with respect to M, we get m =2m(x" —a”) = 2Xy. Let 6_m =0. That

Xy
is, 2m(X2 - az) —2XY . (ii). From (ii) we get M = ———— . Putting the value of
w2 _ g2

Xzyz 2x2y2 X2 y2
(x? —az) - (x2-a?) FYE=0, ?er_Z:l'

+y—:1_

b2

M in equation (i), we get

SJJN‘ X,

Hence the require d envelope is



EXAMPLE 2 : Find the equation of the envelope of the family of straight lines
XCOSa + YSiNa =4, where & is the parameter.

SOLUTION : Given family of straight lines is
XCOSa + Yysina = 4{z f(x,y,a)= 0}‘ ............... (i). Differentiating

] of
with respect to &, we get —— =—XSIN@+YCOSx. et — =0. That is,
oa om

—xsina+ycosa=0.... (ii). Squaring (i) and (ii) , we get
X% cos® a + y?sin® a + 2xysina cosa =16 and
x*sin® a + y® cos® & — 2xysinacosa =0, Adding these two
. . Lo . 2 2 _-16
equations, i.e., eliminating & , we get the required envelope as X +Yy =
PROBLEM OF TWO OR MORE THAN TWO PARAMETERS :
EXAMPLE 3 : Find the equation of the envelope of the family of straight lines

Xy
ot b =1, where the parameters & and D are connected by the relation 2 +b =K.

a
Xy
SOLUTION : Given family of straight lines is g + E =1 (i)
Given relationis a+D =K ........... (ii)
X y
From (ii) we have b=k-a. Putting the value of b in (i) we get g"‘m—lz 0

....... (iii) Here we see that the given family of straight lines becomes a family of straight

lines of single parameter 4 i.e., (f (X, Y, a) = 0). Differentiating both sides of (iii) with

of X y X ya
respect to d we get 5 = —g + m =0= g = W ..(iv). Putting this
a
value in (iii) we get (K za)z + K Xa =1=(k-a)= \/y\/E From (iv)
X ya
g = W —a= \/;\/E . Putting the values of (K —@) and @ in (jii) we get

\/;X\/E + \/Vy\/E —1=0 o \/;+\/§ Z\/E. Hence the required envelope is
Yx+Jy = k.



ALTERNATIVE METHOD(TWO PARAMETERS METHOD)

Xy

Given family of straight lines is g + E =1 (i)

Given relationis a+b=K ... (ii) Differentiating both

x 'y db
sides of (i) with respect to d assuming b as function of @ , we get — ? - b_2 : a =
......... (iii) . Similarly, differentiating both sides of (ii) with respect to d assuming b as
db db

function of d , we get 1+ E =0 weesnenennnees(iV). Eliminating afrom (iii) and (iv) we get

B N S S N
a2 b2 or a K—_a K or \/;_i_\/y Therefore,
k/x Ky

b=k_a:k_\/;+\/§:\/§+\/y.Nowputtingthevaluesofa and Din (i)

=1

X + Yy
we get k\/; k\/y
Ix+y xedfy
or \/; + \/y = \/E Hence the required envelope is

Ix+4ly =k.

EXAMPLE 4 : Find the equation of the envelope of the family of straight lines
~ o 1 . 2
g + E =1, where the parameters d and b are connected by the relation ab=k~,

X Yy
SOLUTION : Given family of straight lines is g ==L, (i)

b

2
Given relation is ab =K ... (ii) Differentiating both

sides of (i) & (ii) with respect to A assuming b as function of & , we get

X db db db
-~ blz "da =0.... (iii) and D+ aa =0 (iv). Eliminating da from (iii)

x y (b X _y x _y S
and(iv)weget_?_b_gx(_gj_oorgzgor?:Fora_k\/;.From



k2 k2 y
(ii)b:_orb: orb:k / Putting the val f a D in (i
3 X - Putting the values o & Din (i) we

X Yy .
get k\/;—i_k\/y_l or J7y+J7y=k or 4Xy=C2. Hence the required
Yy X

2
envelope is 4Xy =C°.

EXAMPLE 5 : Find the equation of the envelope of the family of straight lines
Xy
g + E = 1, where the parameters d and D are connected by the relation

a"+b" =k",

Xy
SOLUTION : Given family of straight lines is g + B =1 (i)

Given relation is a +Db" =K" . (ii) Differentiating

both sides of (i) & (ii) with respect to A assuming D as function of a , we get

X y db 4 .1 db db
———=—=0_.. ii)and NA" +nb""—=0_..... iv). Eliminating ——
a’ b? da (i) da (iv) € da
1 1
from (iii) and (iv) weget =2 2 X| T a1 |T 0 or 1 = L. or =
a- b b a b a b
n nn n n N L
Xn+1 B yn+l B Xn+l + yn+l B Xn+1 + yn+1 an _ k Xn+1
or e N ; = ; or n n or
a b a + b k Xn+1 + yn+l
1 h 1
an+1 n m k n+1
a= 1 bn — k y b = y I )
N " \o and n nor N " \o Putting
Xm + ym Xn+1 + yn+1 Xm " ym
X
1 + y1 =1
the values of & and D in (i) we get kx L kym
1 1

n N \n o N \n
Xn+l+yn+1 Xn+1+yn+1
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n+l nil | _ | n+l n+l nil | _ | n+l
Or X7ty =k . Hence the required envelope is Xty =k

EXAMPLE 6 : Find the equation of the envelope of the family of curves

2 2
Xy
—2"‘—2:1, where the parameters A and b are connected by the relation
a“ b
a+b=Kk.
x2 yz
SOLUTION : Given family of straight lines is ? + b_2 =1 (i)
Given relationis a+b=K........... (ii) Differentiating both
sides of (i) & (ii) with respect to @ assuming b as function of & , we get
2x2 2y® db db db
————=—=0_. i) and 1+—=0____.. iv). Eliminating —_ from
a® Db’ da (i) da () & da
2 2
2x*  2y? (1) =0 x> y? X3 y3
iii)and (iv)weget ——%5 —— 3 "4 =V o, =73 or, — =
( ) ( ) g 3 b3 a3 b3 b
: 22 2 2 2 : 2
x3 Y3 x34y®  x34ys3 g kx b ky?
or, —_ = = = or, -2 2 and - 2 2 .
a b a+b Kk 3 3 3 3
X2 +Yy X°+Yy
2 2
X
a b ——++ y 2 =1
Putting the values of d and D in (i) we get 3 3
g () g k2X3 k2y3




22 2N\ 20 2 2 2 2\ (2 2
3| y3 3 3| y3 3| _ |2 3 3 3 3 | _ 2
or, X[ X3 +y3 | +y3 X3 +y3 ) =k o | X3+yd || xX3+y? =Kk
2 2\3 2 2 2
3 3| _ 2 3 3| _ |3
or, X*+y =k or, X*+y =k Hence the required envelope is

2 2 2
X3 +y? =k3_

EXAMPLE 7 : Find the equation of the envelope of the family of curves

2 2
Xy
?+b_2:1' where the parameters d and D are connected by the relation
2 2
a“ b
[E
NG yz
SOLUTION : Given family of straight lines is ? + b_z =1, (i)
a’ b’
Given relation is E +F:1 .................. (ii) Differentiating
both sides of (i) & (ii) with respect to A assuming D as function of @ , we get
2x>  2y? db 2a  2b db db
—— 5 —=0_.. (ii)and 5 +———=0_... (iv). Eliminating ——
a b® da I m* da da
X2 yz ( a m? . %22 yzmz
from (iii) and (iv) we get ———F3 T3 """ )= or, = or,
(iii) (iv) g S BE a’ b4
Xy Xy
a? p? a? a? 1 4 _ 212 4 _ 22 2 _ 2 _
_ = = :—:1 Or’a —XI , b — m or,a —iXI,b —i m
a®> b* a* b* 1 y y
Fom e
2 2 X + Y =1
Putting the values of d and b* in (i) we get Fx| + ym — =. Hence the required
X
envelope is i—il:]_-
| m



EXAMPLE 8 : Find the equation of the envelope of the family of curves

2 2
Xy
a— +— b2 = 1, where the parameters d and D are connected by the relation ab=c
%2 yz
SOLUTION : Given family of straight lines is a— + b_z =1, (i)
Given relation is ab= C% o (ii) Differentiating both
sides of (i) & (ii) with respect to A assuming b as function of @ , we get
2x>  2y? db 0 b+adb db
—T 3 T3 "S;_ V... iii) and - T V. iv). Eliminatin from
a3 b3 da. ( ) ( ) g d
52 N yz . 52 yz X2 yzaz
iii)and (iv)weget ——F3 T 5 = or, —, =75, or, ;=
(iii) (iv)weg 2 bla 22 b o
A c Jx - \f
or, o . Putting this value of @ in (ii) we get . Putting the values of
Jy ~x
2 2
X + =1 2 2
a and D in (i) we get . c2x . or, XY+ XY =C" or, 2XY =C" . Hence
y

the required envelopeis 2XY =C

EXAMPLE 9 : Find the equation of the envelope of the family of curves

2 2
Xy
? + b_z = 1, where the parameters d and b are connected by the relation
Ja++b =+,

x2 yz
SOLUTION : Given family of straight lines is ? + b_2 =1 (i)

Given  relation s \/a + \/B = \/E .................. (i)

db x> y? \/B x? y?
— from (jii) and (iv)weget ——5 + 3 X——==0 or =
da a® b Ja " a’Ja b*b




) () 5o
a2 b2 ) T2 1 E §
or, \/a = \/B :\a/'a_i_?/g:\/g. or,azz\/EX2 andb2=\/6y2

or, A= C°X> and b=c y . Putting the values of d and D in (i) we get

X’ y? 22\ 2

> 8 T 821 x5+y5 =5

£ ° 98 or, . Hence the required envelope is
C5X5 C5y5

2 2 2

X5 +y5 :C5

EXAMPLE 10 : Find the equation of the envelope of the family of curves

52 yz
—2"‘—2:1, where the parameters A and b are connected by the relation
a~ b

a"+b™ =c",
X2 yz
SOLUTION : Given family of straight lines is ; + b_z =1, (i)
Given relationis & +b" =C" . (ii) Differentiating

both sides of (i) & (ii) with respect to A assuming D as function of a , we get

2x?  2y? db m ma db
3 b—)g ' da =0... (iii) and Ma f+mb™ a =V e (iv). Eliminating
db X2 y2 am_l X2 y2
da from (iii) and (iv) we get —¥+b—3XW =0 or, T = o2

a’ b>) 27 p2 1
_ b =— . or am+2 — CmXZ and bm+2 — Cmy2

— 2
or, a= Cm+2Xm+2 and b =cm ym+ . Putting the values of d and b in (i) we

X2 y2 2m 2m 2m

:1 m+2 m+2 [ — A~m+2
2m 4 2m 4 or, X +Y =C

C m+2 X m+2 C m+2 y m+2

get . Hence the required

2m 2m 2m

. m-+2 m+2 — ~m+2
envelopeis X" < +Yy™e =Ccme




SOME PROBLEMS WHERE ENVELOPE OF A FAMILY OF CURVE OF TWO
PARAMETERS IS GIVEN AND WE ARE TO FIND THE RELATION BETWEEN THE
PARAMETERS

X
EXAMPLE 11 : The envelope of the family of straight lines g + E = 1, where & and D

are parameters, is given by \/; + \N = \/E . Find the relation between & and D .

X Yy
SOLUTION : Given family of straight lines is g + E =1 (i)
Envelope of the given family of straight lines is \/;+ y =\/E .................. (ii)

Differentiating both sides of (i) & (ii) with respect to X, we get
1 N 1 dy 1 1 dy dy

2 b & =0 . (i) and m + m ) & =0 s (iv). Eliminating & from
Jy b
(iii) and (iv) we get _X g . Let \F = /Aa and \N = ﬂ,b, Then from (ii) we get
Jk A’a® A°b°
Aa+ b=k or ﬂ:(a+b)' From (i) — + b =1lo, A(a+b)=1

or, (a 4 b)z (a + b) =1 or A+ b=k . Hence the relation between the parameters

aandbisa+b=Kk.

X Yy
EXAMPLE 12 : The envelope of the family of straight lines g + E = 1, where & and D

2 2 2

are parameters, is given by X3 + y3 =C?3 . Find the relation between & and D .

X Yy
SOLUTION : Given family of straight lines is g + E =1 e (i)



Envelope of the given family of straight lines s X3 + y3 =C3 o, (i)
1 1 dy
Differentiating both sides of (i) & (ii) with respect to X, we get g+g'&:0
1 1
Loy gy dy
............. (iii) and EX 3 +§y 3 & =0 (i), EIiminating& from (iii) and (iv) we
1
y: b 1 1
get 1 g Let X3 = 4a and y3 =AD. Thenfrom (ii) we get
X3
2 2
?a® + 1°b% =c? or, V5 (a2 +b2) =C3...(v) Again from (i), we get
3.3 33
A2 AD 1 o B 4D7) 1., cub ing (v
a b or, A\d TD )=1_.. (vi). Cubing (v) & squaring (vi) and then

dividi t 26( : 2)3 __C2 a2 +b2 = C2 H th lation bet
viaing, we ge or, . Aence the relation between
g g A° (&2 +b2)2 1

2 2 2
the parameters @ and b is @° + D =C



ASYMPTOTES

A straight line is said to be a rectilinear asymptote of an infinite branch of a curve if as
a point P of the curve tends to infinity along the infinite branch, the perpendicular
distance of the point P from that straight line tends to zero.

Rl

r

NOTE :- (i) Asymptotes may be parallel either to X —aXiS or to Y—axis.
Asymptotes parallel to X —axliS are called horizontal asymptotes and asymptotes

parallel to Y —aXiS are called vertical asymptotes otherwise they will be called

oblique asymptotes.

(ii) For a curve lying wholly in a finite region, asymptotes cannot obviously exist. A circle
or an ellipse has no asymptote.

But it does not necessarily mean that a curve having an infinite branch must have
asymptote. Asymptote may or may not exist. For example, parabola is a curve extending
to infinity but it has no asymptote.

RULES OF FINDING ASYMPTOTES OF AN ALGEBRAIC CURVE

An algebraic curve of the n'" degree can have at most N asymptotes.

(1) RULES OF FINDING HORIZONTAL/VERTICAL ASYMPTOTES OF AN ALGEBRAIC CURVE

Asymptotes parallel to X — axis exist only when the co-efficient of the highest power of
X is zero and in this case equating the co-efficient of the next highest available power of
X is to zero, we get the equation of horizontal asymptote. Similarly, Asymptotes parallel



to Y — @XiSexist only when the co-efficient of the highest power of Y is zero and in this
case equating the co-efficient of the next highest available power of Y is to zero, we get

the equation of vertical asymptote.
(2) RULES OF FINDING OBLIQUE ASYMPTOTES OF AN ALGEBRAIC CURVE

The most general form of the equation of an algebraic curve of the n™ degree can be

written as
(@ X" +a, X"ty +a,x"?y? +----+a y") + (0, X" +b X"y + b, X" Py 4o b Yy +
(Coxn_2 +(:1Xn_3y-|-(:2)(”_4y2 +....+Cny”_2)+ ................ =
Or,
2 n 2 n-1
x"(a, +all+a2y—2+----+an y—)+x”‘1(b0 +bll+b2y—+----+b Y 4
n 2 n n-1
X X X X X
2 n-2
Xn_z(C0+Cll+Czy—2+""+Cn yn_2)+ ................ =0
X X X
Or,

Xn¢n (%j + Xn_l¢n—l(¥j + X”—2¢n_2 (%J e =0

Oblique asymptotes are givenby Y = MX + C, where M s any of the real roots of
the equation &, (M) =0 and for each valueof M, C is given by

’
¢ (m)+¢,,(m) =0t ¢ (m) =0

If for any value of M, ¢r: (M) =0 then values of C are given by

C2 " C !
§¢n (m) + 3 (M) +6d,_,(M) =0 and so on.

PROBLEMS ON RECTILINEAR ASYMPTOTES

EXAMPLE 1: Find the asymptotes of the curve
2x% —x*y —2xy® +y® —4x* +8xy—4x+1=0.

SOLUTION : This is an algebraic curve of degree 3. So, it can have atmost 3 asymptotes.
As the co-efficient of the highest power of X is 2(# 0), the given curve has no horizontal

asymptote. Similarly, as the co-efficient of the highest power of Y is 1(= 0), the given

curve has no vertical asymptote. So, all the asymptotes (if exist) are oblique.
The equation of the given curve can be written as



g, (m)=—2-—m—-2m? +m® | ¢/(m)=—1—4m+3m? ?(m)=—4m+6m
#,(m)=—4+8m #;(m)=8 (m)=0
#,(m)=—4 #(m)=0 /(m)=0

Oblique asymptotes are given by Y =IMX + C, where M is any of the real roots of the

equation ¢3 (m) =0 and for each valueof M, C is given by C¢3: (m) + ¢3_1(m) =0

Therefore, ¢,(M)=-2-m—-2m?+m>. Let ¢,(m)=0,ie., —2-m—-2m*+m* =0
o, m=1, -1, 2.

Form=1, CPH(M)+¢,(M)=0 o, c(—1—4m+3m2)+(—4+8m)=0
or, C(~1—4x1+3x1%)+(~4+8x1)=0or, c=2.

m=1Cc=2
For m=—1, CA(M)+¢,(M)=0 or, c(~1—4m+3m?)+(~4+8m)=0
or, (-1-4x—1+3x (-1)?)+(-4+8x—1)=0or, c=2.
m=-1,Cc=2
For m=2, CA(M)+4,(M)=0 or c(~1—4m+3m?)+(~4+8m)=0
or, (~1-4x2+3x2?)+(~4+8x2)=00r, ¢ =—4.

m=2,c=-4

Hence the required asymptotes are

y=X+2, Yy=—X+2, y=2x—-4

EXAMPLE 2 : Find the asymptotes of the curve X — 2x2y + xy2 + X% — Xy+2=0,

SOLUTION : This is an algebraic curve of degree 3. So, it can have atmost 3 asymptotes.
As the co-efficient of the highest power of X is 1(= 0), the given curve has no horizontal

asymptote. The co-efficient of the highest power of Y is 0. The co-efficient of next

highest available power of Y is X. Hence the equation of the only vertical asymptote is



X =0. so, the remaining two asymptotes are oblique. The equation of the given curve
can be written as

2
x3(1—21+y—2]+x2(1—¥j+2=0_
X X X

Or, X3¢3(%} + X2¢2 (%j +2=0

¢, (m)=m?—2m+1 #;(m)=2m-2 #!(m)=2
#,(m)=1-m #3(m)=—1 7(m)=0
#,(m)=0 #(m)=0 /(m)=0

Oblique asymptotes are givenby Y =IMX+ C, where M is any of the real roots of the

equation ¢, (m) =0 and for each value of M, C is given by C¢3: (m) + ¢3_1(m) =0

Therefore, ¢3(m)= m® —2m+1, Let ¢3(m)=0,i.e., m?-2m+1=0or, m=1, 1.
For m=1, #{(m)=2m-2=2x1-2=0

To obtain C let us consider the following relation.

¢’ , c
o ;(m) + i¢3—1(m) +¢, ,(m) =0

Or, %(2)"‘%(_1)“‘0:0, or CZ_CZO, or c;(C_:I-):Oor, c=0

c=1,

The two pair of values are

’

m=1,c=0

and

m=1c=1

So, the oblique asymptotes are y=X , y=X+ 1.
Hence the required asymptotes are

x=0,Y=X,Yy=X+1,

EXAMPLE 3 : Find the asymptotes of the curve x2y2 - x2y - xy2 +X+y+1=0.

SOLUTION : This is an algebraic curve of degree 4. So, it can have atmost 4 asymptotes.



The co-efficient of the highest power of X is 0. The co-efficient of next highest available
power of X is y2 — VY. Let y2 —y=0, y=0, Yy=1. Hence equations of
horizontal asymptotes are Y = 0,y=1.

The co-efficient of the highest power of Y is 0. The co-efficient of next highest available
power of Y is x> — X . Let x> —x=0 . X=0, X=1. Hence equations of vertical

asymptotes are X = O, x=1.
Hence the equations of required asymptotes are

y=0,y=1,x=0,x=1

ALTERNATIVE METHOD OF FINDING OBLIQUE ASYMPTOTES

(1) If the equation of the given curve is expressed as (y - mlx) Fn_l + Pn_l =0

’

where

Fn—l contains the terms of degree (n - 1) and P _1 contains the terms of degree not

higher than (N —1) then the equation of the asymptote parallel to Y —M X = Ois

Umlzm_

X‘—)oo X

1 =0

given by where |

|X|>00
n-1

(2) If the equation of the given curve is expressed as,
2
(y—mx)"F_, +(y—mXx)F,_, +Q,, =Owhere F,_, & P,_; contain the
terms of Degree (N—2) and Qn_2 contains the terms of degree not higher than

(n - 2) then the equation of the asymptotes parallel to Y — M X = Oare given by

Oz LimYom,

X‘—)oo X

(y-mx)*+(y- mx)lePnz

where
»F_, b= F, |

Now let us try to find asymptotes of the curve given in example-(1) &
example-(2) using the alternative method described above.



EXAMPLE 4 : Find the asymptotes of the curve
2x% —x?y —2xy® +y® —4x® +8xy—4x+1=0.

SOLUTION : This is an algebraic curve of degree 3. So, it can have atmost 3 asymptotes.
As the co-efficient of the highest power of X is 2(= 0), the given curve has no horizontal

asymptote. Similarly, as the co-efficient of the highest power of Y is 1(= 0), the given

curve has no vertical asymptote. So, all the asymptotes (if exist) are oblique.

ALTERNATIVE METHOD ( for oblique asymptotes ): The given equation can be written as

(X* —y?)(2x—y) —4x* +8xy—4x+1=0
or, (Y+X)(y=X)(y—2X) +(8xy —4x*) + (1-4x) =0

Therefore, asymptote parallel to Y + X = 0 is given by

L' Pn—2 _ O 2
y+X+Lim—= where P, =(8xy—4x°)+(1—4x)

‘X‘—)oo
n-2

Y
F. ., =(y—X)(Y—2X). also Lim==-1 yence asymptote

X‘—)oo X

. (8xy —4x?) + (1—4x)
—0i Y+X+LIm =0
parallel to y +x=0 Is y ‘x‘—)oo (y — X)(y — 2X)

()l

y + X+ Lim =0
r

T Tl

. (8x(-1)-4)+(0-0) ( . X__)
or, y+x+{ig C1-1C1-2) =0 |- Lim 1

or, y+X—2:O_

Again, asymptote parallel to Y — X = 0 is given by

L' Pn—2 _ O 2
y+X+Lim = where P, = (8xy—4x") + (1-4x)

‘X‘—)oo
n-2

Y
Fn—z = (y - X)(y - 2X) . Also Lim == 1. Hence asymptote

X‘—)oo X

_(8xy—4x*)+(1-4x)
—x =0 Y—X+Lim =0
parallel to Y — X 0 I y | X|—>00 (y + X)(y — 2X)

and

and



_ X
S
X X

or y—x+L|m(8x(1)_4)+(0_0)=0 ( Liml=1j
' Mo (L+1)1-2) x> X
or, y—X—ZZO_

Similarly, asymptote parallel to Y —2X = 0 is given by

y—2x+ Lim is: =0

e where Pn_2 = (8xy — 4X2) + (1— 4X) and
n-2
.Y
Fn—Z = (y + x)(y - X) . Also I;'_[Q; =2 . Hence asymptote

. (8xy —4x%) + (1 - 4x
parallel to Y —2X =0 is y_2X+I>TI—>To( }EY"'X))(yEX) ):O

2
) y —2X+ Lim X X %_o

® fap

- . (8x(2)-4)+(0-0) ( : 1_)
or, ¥ 2X+|;Lr2 2+1)2-1) =0 |~ Lim==2

or, y—2X+4:O_

o

X0 X

Therefore, oblique asymptotes are Y +X—2=0,y—=X—-2=0and Y—2X+4=0

Hence the required asymptotes are

y=X+2, y=—X+2, y=2x-4

EXAMPLE 5 : Find the asymptotes of the curve X° —2X°Y+Xy* +Xx* —xy+2=0,

SOLUTION : This is an algebraic curve of degree 3. So, it can have atmost 3 asymptotes.
As the co-efficient of the highest power of X is 1(= 0), the given curve has no horizontal

asymptote. The co-efficient of the highest power of Y is 0. The co-efficient of next

highest available power of Y is X. Hence the equation of the only vertical asymptote is

x=0. So, the remaining two asymptotes are oblique.



ALTERNATIVE METHOD ( for oblique asymptotes ): The given equation can be written as
X(y—X)> =x(y-x)+2=0

Equation of the given curve is expressed as,

(y- X)2 Fo, +(Y—X)P, +Q; , =Owhere F,, =X & P;, =—Xcontain the
terms of Degree (3 - 2) and Q3,2 contains the terms of degree not higher than (3 - 2)

, then the equation of the asymptotes parallelto Y — X = O are given by

(y=x)>+(y—x)- L|m 32+L|mQ32=O

where F;, , =X, P, , =—X and

[ x> [X|—>e0
3-2 3-2
. y _
Qo =2. Also, III—U«]); _1' That is, the equation of the asymptotes parallel to
X 2
y—X=0are (Y- X)* +(y—X)- le—+ Lim—=0
X [Xo= X

or, (Yy=X)>=(y—x)+0=0
or, (Y—X){(y—x)-1}=
o, Y=X=0, (y-x)-1=0

Therefore, oblique asymptotesare Y — X =0 and Y —X =1,

Hence the required asymptotes are

x=0, Yy—-x=0, y—x=1

ASYMPTOTES BY INSPECTION

If the equation of a curve be of the form F, +F,, =0 where F, is a polynomial of

degree N and F, , is a polynomial of degree not higher than (n - 2) and if F, can be
broken up into N distinct linear factors then all the asymptotes of the curve are given by

F =0.

EXAMPLE 6 : Find the asymptotes of the curve
(X—y+2)(2x—-3y+4)(4Xx-5y+6)+5x—6y+7=0,
SOLUTION : This is an algebraic curve of degree 3. So, it can have atmost 3 asymptotes.

As the co-efficient of the highest power of X is not equal to 0, the given curve has no
horizontal asymptote. Similarly, as the co-efficient of the highest power of Y is not



equal to 0, the given curve has no vertical asymptote. So, all the asymptotes (if exist) are
oblique.

The equation of the given curve can be written as F; + F; , =0. Hence by the method of
inspection asymptotes are given by F3 =0,

That is, (X —-Yy+ 2) (2X -3y + 4) (4X -5y + 6) = 0. Therefore required asymptotes

are

(x—-y+2)=0,(2x—3y+4)=0,(4x-5y+6)=0

THEOREM : Any asymptote of an algebraic curve of n™ degree intersects the curve at
(n — 2) points.

COROLLARY : The 1 asymptotes of an algebraic curve of n'™" degree intersects the curve
at n(n - 2) points.

IMPORTANT NOTE

We know that if the equation of a curve be of the form F, +F, , =0 where F, is a
polynomial of degree N and F, , is a polynomial of degree not higher than (n - 2) and
if F, can be broken up into N distinct linear factors then all the asymptotes of the curve
aregivenby F, =0.

Now equation of the given curve is F, +F, , =0.......... ... (1) and equation of all the
asymptotes of the curveare F, =0............ (2). so points of intersection of the curve and
the asymptotes will satisfy both the equations (1) & (2). Again as F, =0, points of

intersection of the curve and the asymptotes will satisfy the equation F, , =0. Hence all

the points of intersection of the given curve and the asymptotes will lie on the curve

anz =0 .

EXAMPLE 7 : Show that the four asymptotes of the curve
(X? = y*)(y*> —4x%) +6x° =5x%y —3xy* + 2y° — x* +3xy —1 =0 intersect

2 2
the curve in eight points which lie on the circle X~ +Y“ =1

SOLUTION : This is an algebraic curve of degree 4 . So, it can have atmost 4 asymptotes.
As the co-efficient of the highest power of X is not equal to 0, the given curve has no
horizontal asymptote. Similarly, as the co-efficient of the highest power of Y is not



equal to 0, the given curve has no vertical asymptote. So, all the asymptotes (if exist) are
oblique.
Now the equation of given curve can be written as

(X —Y)(X+ Y)(y = 2X)(y + 2x) + 6x° =5x°y —3xy* + 2y° —x* +3xy—-1=0

So, the equation of the asymptote parallel to (x—y)=0is

X—Yy+ Lim e _ g

| X[
4-1

3 2 2 3 2
o x—y+Lim6X 5X°y —3Xy” +2y° — X" +3xy l:
’ |X|>e0 (X+ Y)(y —2x)(y + 2x)
F =X+ y)(y-2X)(y+2x), P, , =6x>—5x*y —3xy’ +2y® —x* +3xy 1.

Also, Lim X = 1.

x\—>oo)(
? | 1 1
A A
X X X X X X X ~0

where

or, X 7Y LIm YoV oY

' A+ -2)(*+2)
X X X

o, X—Yy+0=0

Or,

X—y=0

The equation of the asymptote parallel to (x+Yy)=0is

X+ Y+ LimL:O

|X[—>00
4-1

3 B2y 2 32 .
OrX_y+Lim6x SXYy —3Xy 4+ 2y — X +3xy 1:OWhere
’ X (X=Yy)(y —2x)(y + 2x)
Fo = (X=y)(Y=2X)(y+2X), P, , =6x>—5x?y —=3xy® +2y°® — x* +3xy—1.
LimY=-1

X‘—)oo X

Also, |



2 3
A A
X X X X X) X X ~0

- -2 +2)
X X X

X+ Y+ Lim

or, o0

o, X+y—-1=0 ( &LT%Z_ j
Or,
X+y-1=0

The equation of the asymptote parallel to (y—2x)=0s

y—2x+Um£l¥:0

‘X‘—)oo
4-1

3 Ey2y w2 32 B

OrY—2X+um6X 5X7y —3xy" +2y" —x"+3xy-1
’ [xjoee (X=y)(X+y)(y+2X)

F, = (X=y)(X+Y)(y+2x), P,, =6x>—5x’y —3xy* +2y°> — x* +3xy—1. Also,

where

LimL=2
[Xj>e X '
i 1 11
. X X X X X) X X
Orx+y+L|m y Yy =0
' 1-)A+ ) +2)
X X" X
cimY
o, Y—2X+0=0 (-me—Zj
Or,
y—2x=0

The equation of the asymptote parallel to (y + 2X) =0is

y+2w+Um£L¥:0

|X|—>o0
4-1



6x° —5x°y —3xy* +2y° —x* +3xy—-1

— Y where

or. Y+2X+Lim
’ [Xie0 (x=y)(x+y)(y —2Xx)

F, = (X=y)(X+Y)(y—2x), P,, =6x>—5x*y —3xy* + 2y — x* +3xy—1. Also,

2 3
A
X X X X X) X X ~0

a-Ha+ -2
X X X

LimX=—2.

x| X

Y +2X+ Lim
r,

‘X‘—)oo

o)

Or, y+2X—1:O ('.' &L@%:—Zj
Or,
y+2x—-1=0

Therefore, equations of all the four asymptotes(oblique) are

X-y=0 | x+y-1=0
y—-2x=0 | y-2x-1=0
The joint equation of the asymptotes of the given curve is
(x—y)Xx+y—-1Ny—2x)y+2x-1)=0

or, (X* = y?)(y* —4x%) +6x> =5x°y —3xy* +2y° —2x* +3xy—y* =0

= F, (say)
Now the equation of the given curve can be written

{(x2 —yA)(y® —4x?) +6x> —5x%y —3xy® +2y® — 2x® + 3xy — y2}+(x2 +y? —1)= 0
or, F,+F,=0 [=F,+F,_, =0

Where F4 represents the joint equation of four asymptotes of the given curve. Also four
asymptotes cut the given curve in 4(4 - 2) =8 (eight) points. Hence the eight points of
intersection of the given curve and the asymptotes must lie on F2 =0 , i.e., on

x> +y? =1,



EXAMPLE 8 : Show that the eight points of intersection of the curve

X' —5x°y? +4y* +x* —y* +X+y+1=0 and its asymptotes lie on a rectangular
hyperbola.

SOLUTION : This is an algebraic curve of degree 4 . So, it can have atmost 4 asymptotes.
As the co-efficient of the highest power of X is not equal to 0, the given curve has no
horizontal asymptote. Similarly, as the co-efficient of the highest power of Y is not

equal to 0, the given curve has no vertical asymptote. So, all the asymptotes (if exist) are
oblique.
Now the equation of given curve can be written as

X' —4x2y? =X’y +4y* + x> —y? + X+ y+1=0
or, xz(x2 —4y2)— yz(x2 —4y2)+ X°—y? +Xx+y+1=0
or, (x2 —4y2Xx2 —y2)+x2 —y?+X+y+1=0

or, (X=y) X+ y)x+2y)x—2y)+ x> -y’ +x+y+1=0
Therefore, the equation of the given curve is expressed as F4 + F4_2 =0. Hence by the
method of inspection joint equation of the asymptotes of the given curve is F4 =0. i.e.,,
(x—y)x+y)x+2y)x—2y)=0.
Thatis, X' —4x°y? —=x’y* +4y* =0

=F,

. . ! 2,,2 4 2 2 _

The equation of given is X" =Xy +4y" + X" -y +X+y+1=0

or, (x“ —4x%y? —x*y? +4y“)+(x2 —yi X+ y+1)=0

Or, F4 + F4_2 =0. Where F4 represents the joint equation
of four asymptotes of the given curve. Also four asymptotes cut the given curve in

4(4 - 2) =8 (eight) points. Hence the eight points of intersection of the given curve and

2 2
the asymptotes must lie on F, = 0,ie., on (X -y +X+Yy +1)= 0.

1) 1)
i.e., on(y_zj _(X_Ej =:l-which is a

rectangular hyperbola.



ASYMPTOTES IN POLAR CO-ORDINATE IN SYSTEM

Let the equation of the given curve be I' = f(0). Let us change F to U . Then the given

du
curve becomes U= F(Q). Let us find E: F'(H), If > then U—>0 &
, du
0 — a (say). Let us find F (0!) , that is @ at @ = . Then the required asymptote is
i 1
rsin(@ - a)=——.
F'(a)

EXAMPLE 9 : Find the asymptotes of the polar curve I' = @ fan 0.

1 1 cotd
SOLUTION : Let U=-— . Then the given curve becomes U = = = F(Q)_
r atané a
du , —cosec’d
Then E =F'(0) :T. If ' > then U—>0 & cotéd — 0. Therefore,
. —cosec’(2n+1) ~
0> @+ 7 (= asay), =123 s, F'(@) = - 2

) 1
Therefore, the required asymptotes are r Sm(g - 05) = = r(a)

or, Fsin(@—(2n+1) %) = —asin®(2n +1)% ——a

or, —rsin(2n +1)%—6?) =-a
or, £rcosfd=a

or, Fcos@==a.

EXAMPLE 10 : Find the asymptotes of the polarcurve I sin(n@)=a",



U= l . sin(n@)
SOLUTION : Let = — r- Then the given curve becomes U = 3" = F(Q) (say).

_ n du ncos(né)
Then Nlogu =logsin(nd) —nloga. Dpifferentiating, we get a'@:—sin(ne) .

1
or, j_; =ucot(ng) = w cot(né) ( u" = Sln(?g))

a
1,
or, j_;: F’(é’)—Sln a(ne)-COS(nﬁ). If I —>o then U—>0 & sin(nd) — 0.
k
Therefore, NG — k1 ,ie., 0 — T{ =« say}, K=123,------- .
(s ikm
, S 1KIT)(n
so, F'(a) :T‘C ON®) . Therefore, the required asymptotes are
. 1 : k 1

rsin(é —a) = rsin(@ — = =<1

( ) F(a)’ or, ( 0 ) Fla) If N>1 then oS,
1 , cos(nd)
—-1<0 then F'(@)= 1 =%, In that case asymptotes are
n a(sin(kz))n

r,

rsin(@—k—”)zizo or, sin(@—k—ﬂ)zo or, H:k—7Z 0
n 00 n n

nd =kr

1 1
i =>1 je., ——1>0 F'(e)=0 is, =,y %°
. Again If N <1 then N , i.e., N then ( ) . That is, = (Ol)

and in that case no asymptote will exist.

EXAMPLE 11 : Find the asymptotes of the polar curve I = 2asinfdtan 4.

u=£ . U= cotd _F (o)
SOLUTION : Let re Then the given curve becomes 2asing (say).
du , -1
Then —=F'(0) = —— . If > then U—>0 & cotd —>0. Therefore,
do 2asing

-1 -1 -1

2asin(2n +1)72T 28-(x]) x2a

0~ (@n+1)7 { = a say), Then F (@)=



Then

. T _
rsm(@—(Zn +1) Ej =

the

required

) 1
asymptotes are rsin(@-a) = F(a) or,
1 +2a
_1 _1
+2a

. T
or, =T sm((Zn +1)E - 9) =—(+2a) o, +rcosf=12a or, rcosd=2a.

The required asymptotes are

rcosd =2a

EXAMPLE 12 : Find the asymptotes of the polar curve (2F —3)Sin@ =5,

SOLUTION : Let

1
u==

_ _2sin@ F(0)
re Then the given curve becomes 5+ 3sind (say).
- du _ F'(0) = (5+3sing)2cosd -2sin@x3cosd  10cosé F T o
" do (5+3sin)> (5+3sin@)”
then U—>0 & SIN@—>0. Therefore, & >Nxr { = a say }, Then
10cosn 10cosn 2
Fla)=——"T> "= .
(5+3sinnx) 25 5
rsin(@ —a) = 1
Then the required asymptotes are = '(0!) or,
i 1 5
rsin@—-nr)=—7==+—
-5
: 5 i 3) i 3)
or, —Isin(nz—0)= £ or, rsing=+= o rsind= > The required
asymptotes are
. 5
rsingd =—

a
asing

I =

+b

EXAMPLE 13 : Show that there is an infinite series of parallel asymptotes to the curve



1 gsin@

et U= i u=————=F(0
SOLUTION : Let re Then the given curve becomes a+bOsing ( ) (say).
du , (a+b@dsind)(sind + Hcosh) —Osind(bsind + b cosh)
Then —— =F'(0) = - 2
do (a+b@dsinb)
du _a(sinf+60coso)

W e
o 4o = F = hasing)?

If r—>o then U—>0 & SING —0. Therefore, @ —> N { = a say }. Then
a(sinnz+nzcosnr) nx

F'(a): (a+bn7zsinn7z)2 =+ 3 Then the required asymptotes are
_ 1 : 1 a
— ) = rsinl@ —nrz)= =
rsin(@-a) = Fa) or, ( ) N7 inz or,
. a . a .
—rsin(nz -6)= or, ((D-trsing=—— rsm6?=—ﬂ. Giving

tnrxr unll 1 /4
different values of N, we get an infinite series of parallel asymptotes.



INDETERMINATE FORMS

f(x) Lim f(x)

. _X—>a

Lim
We know that -7~ g(x) |;I_)T g(x)

. That is, limiting value of the quotient of two
functions f (X) and g(x) is , in general, quotient of their individual limits Lim f (X) and

X—a
Limg(x). But if both the limits LiM f (X) and Limg(X) are equal to zero then this
X—a X—a X—a

i . . NPT 0
rule is no longer applicable because in that case the limit will be of the form 6

f(X) Lim f (x) 0

X—a _ R . . .
=—| which is clearly, meaningless. For example, if we

s g(x) Limg(x) 0

sinx Limsinx sinx

. e e le = x>0 = — le
consider the limit >0 X Lim x 0 So, this limit X takes the
x—0
0 sin X
indeterminate form 6 . But we know that I;'_)rp X :1. In this article we shall
o0
consider the cases where given limit takes the indeterminate forms like 6 , g, 0x 0,

00 — 00, We w shall consider also the cases where given limit takes the indeterminate

0 0
forms like O , 00, 100, 1~

L’ HOSPITAL’S RULE

L Hospital’s Theorem : If two functions f (X) and ¢ (X) as also their derivatives f '(X)
and g’(x) are continuous at X =4a and if Lim f (X) =0=Lim g(x) then
X—a X—a

Lim ) _ g 100

a g(x) 2 g'(x) provided leg '(x) =0,

Generalization : If |;|_>T fI(X) = I—im g’(x) =0 then

Lim ) _ i D00 _ iy f"( )
=200 g0 e g9

provided le 9"(X) # 0 and so on.



0
LIMITS WHICH TAKE 0 form

. sinXx
EX-1: Evaluate the limit Lim .
x—0 X

. sinx ';LTS'nX 0 (0
SOLUTION : Given limitis =M = == 6form .

x>0 X Lim x 0
x—0
. sinx
Therefore, given limit — I;'_)rg] T
B COSX
=L [ Applying L’ Hospital’s Rule]

x"—a"
EX-2: Evaluate the limit Lim
X—a X — a
n n  Lim(x"-a"
o LimX_a =Ha( )=9 9form
SOLUTION : Given limitis X —a Lim(x — a) 0
X—a
x"—a"
Therefore, given limit — Lim
X—a X—a
= Lim X"
o 1 [ Applying L’ Hospital’s Rule]
— nan—l
. X—SINXCcoSX
EX-3: Evaluate the limit |;I_)I’(T]] X3
Lim X—SINXCOSX _ Lim(x—sinxcosx) g
SOLUTION : Given limit is 50 X3 Lim X3 0 -
Xx—0
0
So, the given limitis of ~ form.
0
X —SiNn X COSX

Therefore, given limit = Lim 3
x—0 X



1+5sin% x —cos? x 0

=X|:>I0m 3X2 [ Applying L’ Hospital’s Rule we see again it is of 6 form ]
. 2SINXCOSX + 2C0SXSIin X
= LIm
x—0 OX
4sin X COSX 0
=X|:)I0m X [ Applying L’ Hospital’s Rule we see again it is of 6 form ]

. 4(cos” x —sin® x)
m

= Li
x—0
= Lim—
x=>0 0
_2
3
L e* e sinlog(L+ x)
TAsK: (i) SIM———-— (ii) .
-0 X —SINnX x-0 log(L+ sin x)
o0
LIMITS WHICH TAKE - form
Lim tan 5x
EX-4: Evaluate the limit X_% tan x
Lim tan 5x
tan5x x>, L © (o
SOLUTION : Given limit is ng tanx _ Limtanx oo (g formj,
2 Hg
L tan 5x
Therefore, given limit — X_I)r,E tan x
. cotx
= LIm 0

X_)% cot5x [Now it is of 6 form]

— cosec?x

=Lim —5co0sec?5x [ Applying L’ Hospital’s Rule]

T
X—>—
2




-5 5
Iog(1+ 1)
Lim—— %/
EX-5: Evaluate the limit ,_,( 1 .
X
Iog(1+ 1) Lim IOg(l-i-lj
|_' X B x—0 X _ o0 o0
SOLUTION : Given limitis ! = 1 o (— form)_
- Lim = ©
X x=0 X
1
Iog(1+ )
Therefore, given limit ~ ;o 1
X
)
1 2
1+ — X
=Lim X
x—0 1
)
= Lim——
x>0 1+ X
logx° "

(ii) l;LT e_x[ N being positive ]

TASK: (i) gp—logcotzx

LIMITS WHICH TAKE Ox oo form

- 2 2
EX-6: Evaluate the limit I;I_)TX |OgX .

SOLUTION : Given limit is I;LT x?logx? = Lim x* x Limlogx®> =0x o0,

x—0 x—0

(Oxco  form)



I 2 2
Now the given limit can be written as _xI:>|om X |Og X

2 Limlogx®
:Limlogx — X0 (ff j
X—0 1 ) 1 orm
) (e
X x—=0\ X
- 2 2
Therefore, given limit :XI:)IOm X |Og X
. logx?
= LIm 09 (oo j
x—0 1 — form
il o0
12><2X
= Lim%X ——
X—0 -2
)
= Lim(-x)
=0

. . 2
EX-7: Evaluate the limit Lim X Iog(sm X).
x—0
SOLUTION : Given limitis LimM X Iog(sin2 x): Lim x x Lim Iog(sin2 x): Oxo0.
x—0 Xx—0 x—0
(Oxo  form)

: .2
Now the given limit can be written as %I_)I’gl X |09(Sln X)
in2 Limlo (sinzx
= Lim M _ x50 9 )
x—0 1 ] 1
- Lim| —
X x—0 | X
: - 2
Therefore, given limit = |;|_>T X |0g(Sln X)

_Lim Iog(sin2 x) (OO

¥0 (1j — formj
X

od formj

o0

o0



. X 251N X COS X

_ LimSInZXx

x—0 1
X

=-2Limx*cotX (Oxoo  form)

x—0
2
. X 0
= _X%la”n m [Now it is of 6 form]
. 2X
= _XZJE'm sec? x [APPplying L' Hospital’s Rule]
=0

. , :
TAsk: (i) Limsinxlogx (i) |X_Lrpse05xcos7x
2

LIMITS WHICH TAKE 9© — 90 form

EX-8: Evaluate the limit IX_IT(SeCX —tan X)

SOLUTION : Given limitis = Llry(secx —tan x) = Limsecx — Lim tan x

A v
X—>= X—>= X—>—
2 2 2

(co—c0  form)

Therefore, given limit — LiT(SeCX —tan X) (00 —oo  fo rm)

X—>=
2

i 1 sin x
=Lim| — - ——
L7 COSX COSX

. (1—sinx
= Lim| ———=

x
N

0

j [Now it is of 6 form]

[ —COSX
=Lim . [ Applying L’ Hospital’s Rule]



i 1 1 i 4 1
TAsK: (i) =M 2 sin’x @ =M 4 x_2

LIMITS WHICH TAKE 0° «° 1° 1™ forms

- 2X
EX-9: Evaluate the limit le X
Xx—0

SOLUTION : Given limitis — &Lrp X (0° form)

et T(X)=X**. Then log f (X)=2xlogXx
or, Lim(log f (x)) = Lim(2xlogx)
o, Iog(l;LT f(x))= Lim2xlogx

. Lim2xlogx
or, LIMm f(x) =&

X—0

. 2% IX_irgleogx
That is, given limit — Limx™ =e
x—0

Now let us consider the limit |;I_)TCT)] 2X Iog X which clearly takes the form Oxo0.

log x

Therefore, I;LT 2xlogx = le‘lgn 1) (% formj
X
1
=2Lim —2%
x—0 1
-+
= 2Lign(—x)
=0
. Lim2xlogx
= Limx* =e*>° =e’ =1

Hence from (1), the given limit 0



- cot? x
EX-10: Evaluate the limit I;'_)T(COSX)

. cot? x
SOLUTION : Given limitis = LIM(COSX) (1°° form)
Xx—0

cot? x

et f(X)=(cosx) Then l0g f (X) = cot® xlogcosx

or, Lirp(log f(x))= Lir(r)1(cot2 xlogcosx)
or, |og(l;Lrp f(x)): I;Lrp(cot2 xlogcosx)

. Lim(cot2 x log cos x)
or, LIM f(Xx) =

Xx—0

Lim(cot2 x logcos x)

cot® x _ g0

= Lir(r)1(cosx)

That is, given limit

: 2
Now let us consider the limit %LT(CO'[ X Iog COS X) which clearly takes the

form Oxo0 .
- . logcosx (0
le(cot2 xlo cosx)= Lim 0
Therefore, -1 g A T x . form
—sinx
_Lim COS X o
x>0 (2 tan x x sec? X) [ Applying L’ Hospital’s Rule]
1. .
=—=Limcos® x
x—0
1
2
Lim(cot2 x log cos x)
—1li cot?x __ '
Hence from (1), the given limit I;I_)ry (COSX) =€



1

iy lox
EX-11: Evaluate the limit I;I_[PX "
1
SOLUTION : Given limitis LI X7 (1 form)
L 1
Let f(X)=X. Then log f (x) = ﬂlogx
or. Lim(log f (x))= Lim iIogx
K] x>1{1—X
., 10 (le f(x))— Lim LIo X
g x—1 ol 1—X g

le(llong
Lim f (x) ="\
EN] '
11 Lir{{lxlogx)
_ X X—>. —
That is, given limit — le X = (1)

1
Now let us consider the limit I;IT(]_ X Iog X | which clearly takes the form Oxo0.

1 log x 0
Lim| ——IlogXx Lim =
Therefore, - (1 » g j x—>1(1_ ) (0 formj

1

: X
= Lim @ [ Applying L’ Hospital’s Rule]

x—1

=1

= Limx>* =™

Hence from (1), the given limit PN

1 le(llxlog xj 1 1
€

Lim 1+i

EX-12: Evaluate the limit X500 X2

SOLUTION : Given limit is I;Lrl] 1+? (1“0 form)



1Y 1
Let f(X)=(1+?j . Then Iogf(x):xlog(1+—)

X2

or, Lim(log f (x))= Lim| xlog 1+

X—00 X 2

Or, |Og(|;_l)ll1 f(X))= Lim X|0g 1+i2

X—»00 X

+ umto=e3)

’

X—>00
1 X Lim(xlog(l+lzn
_ - a _ X—>0 X
That is, given limit _XI_:!)Om 1+ X2 = i (1)

) 1
Now let us consider the limit I;LT(XIOQ(]'—'_F which clearly takes the form

Oxoo.

Iog(1+ 12)
: 1 _ X
le(x Iog(1+ —D = Lim

Therefore, x—« 2

(9 fo rmj
X X—>00 1 0
X

X500 (_ 1) [ Applying L’ Hospital’s Rule]
2




1
X

. (sinX
- Lim ——
EX-13: Evaluate the limit ,_ ., X

1
i sinx )
SOLUTION : Given limit is XLT X (1°° form)

1
sinx \x 1 sin X
w100 e 100100~ L1og %)

7 x>0 x—=0 X X

or, Lim(log f (x))= umlmg(sinx)

(sin xj
log —
. : X

or, Iog(I;Lry f(x))z Lim———=

x—0 X

[sinx

logl ——
X

. Lim
o LIMf(X)=e *

7 x>0

N——

X

Iog(sm xj
X 0

which clearly takes the form —

= Lim

Xx—0

— e x—0 X
That is, given limit

(sin ij Lim X

Now let us consider the limit I;Im

sin X
log ——
. X 0
Therefore, Lim———= — form
x—0 X 0
1 XCOSX —Sin X
p X 7
SIN X X
— Lim~—2% . .
50 1 [ Applying L’ Hospital’s Rule]

= Lim .
x—0 Xsin X

XCOSX —Sin X 0
(6 formj



COSX — XSINn X —COSX

== Lim . ’ . ’
" SIN X + X COS X [ Applying L’ Hospital’s Rule]
) — XSsinx 0
= Lim— — form
x>0 SIN X + X COS X 0
Lim —Sin X — XCOSX
= . Applying ' H ital’s Rul
x>0 COSX + COSX — XSINn X [ Applying ospital’s Rule]
0
2
=0
1
; SIN X x 0
o =Lim—— | =e" =1
Hence from (1), the given limit , — X
1 1
. (tanx . [ sInX ¥
) x—0 X (i) x>0 X
asinx —sin 2x
EX-14: If Lim 3 is finite, find the value of A and hence find the limit.
x—0 fan” x

asinx—sin2x (0
SOLUTION : Given limitis LIM 2 — form |,
x—0 tan” x 0
_ Lim asinx—sin2x (0 form
Therefore, given limit e tan3 X 0

B aCOSX —2C0S2X

= Lim Applying L’ Hospital’s Rule
50 3tan? xsec? x  LAPPIVing pital’s Rule]

As the given limit is finite and the denominator 3tan? xsec’ x > 0 as X—0, the
numerator ACOSX—2C0S2Xmusttendto 0 as X —> 0.
Thatis, acos0—2co0s2-0=0.

Or, & = 2 [First part solved ].



Putting A = 2 , the above
2C0OSX —2C0S2X (0

0 formj [.-acos0—2c0s2-0=0]

. (2cosx —2c0s2x)cos* x
= le( ) (9 form)

.. LI
limit becomes —0 3tan2 XSECZ X

x>0 3sin? x

_Lim (—2cos’ xsinx + 4sin2xcos* x +8cos2x cos® xsin x)

x—0 6sin X cosx
[ Applying L’ Hospital’s Rule]

_Lim (-5c0s’ xsin2x + 4sin 2x cos* x + 2cos” xsin 4x)
x>0 6sin X cosx
(15c0s” xsin xsin2x —10cos® xcos2x + 2cos2x cos® x

_Lim —16c0s° sin xsin2x — 4 cosxsin xsin4x +8c0s® X c0s4x)

x—0 6C0S2X
[ Applying L’ Hospital’s Rule]

_—-10+8+8

6
=1 [Second part solved ].

m X(1+acosx)—bsinx

EX-15: If LI 3 =1 then find the valuesof @ & D .
x—0 X
X(1+acosx)—bsinx (0
SOLUTION : Given limitis LIM 3 — form
x—0 X 0

_ Lim (L+acosx—axsinx) —bcosx

x—0 3X2
[ Applying L’ Hospital’s Rule]

As the value of the given limit is 1 ( that is, finite) and the denominator 3x* =0 as
X — 0, the numerator (L+aC0SX —axsinX) —bCOSXmusttendto 0 as X — 0.

Thatis, (L+acosO0—ax0xsin0)—bcos0=0,

or, d— g [P (]_)
: (1+acosx—axsinx)—bcosx(0 j

. o= Lim — form
Therefore, the given limit <50 3X2 0



= Lim
x—0 oX

[ Applying L’ Hospital’s Rule]
_ Lim (-2acosx —acosx+axsinx) +bcosx
x50 3)

(—asinx—asinx —axcosx) + bsin x (0 j
6form

[ Applying L’ Hospital’s Rule]
As per given condition the value of the given limitis 1. Therefore,

(—2acosO0—acosO+ax0xsin0)+bcos0 1

ae* —bcosx+ce™”

EX-15 : Determine the values of a,b & Cso that XSinx — 2as

X—0.

ae* —bcosx+ce™”

SOLUTION : Given that : —2 as X—>0.
Xsin x

. ae*—bcosx+ce™”*
Thatis, LIM : =2,
X0 Xsin X

ae* —bcosx+ce™*

Now Lim ; is finite and the denominator XSINX —>0 as
x—0 XSIn X

X —> 0 the numerator a&* —bCOSX+Ce™™ musttendto 0 as X —>0. Thatis,
ae’ —bcos0+ce®=0 or, ad-— b+c=0---reeenn @ . So, in that case, the

above limit = Lim -
x—>0 XSIn X

[ Applying L’ Hospital’s Rule]
. ae’ +bsinx—ce™*
= Lim -
x—0 SIN X+ XCOSX
Since the above limit is finite and the denominator SIN X+ XCOSX —>0 as X >0

ae* —bcosx+ce™ (0 ) N
(5 form) [ ae’ —bcosx+ce =0}

the numerator a€* +bSIiNX—Ce™ musttendto 0 as X —0. That is,



ae’ +bsin0-ce®=0 or, a—C= Q-evvevennens (2) . So, in that case, the above

limit = Lim

ae* +bsinx—ce™* (0
x>0 SN X4+ XCOSX

6f0rm) [ ae* +bsinx—ce ™ =0]

. ae* +bcosx+ce”™
= Lim :
x>0 COSX + COSX — XSIn X
[ Applying L’ Hospital’s Rule]
~ae’ +bcosO+ce”
cos0+cos0-0sin0

_a+b+c
C1+1-0
_a+b+c
= T
a+b+c
According to given condition 5 =2
Or,a+b+C=4 ............ (3)

solving (1), (2)& (3),weget a=1,b=2,c=1
a=1b=2,c=1




