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Class Note-4 

7. Wave equation and its solution for vibrational modes of a stretched 
string, rectangular and circular membranes. 

Differential equation of transverse wave in a string:  

Let a string is held under uniform tension 𝑇 with its equilibrium position along the 𝑋 axis of a 

Cartesian coordinate system. Let 𝑚 is the mass per unite length of the string and 𝑢(𝑥, 𝑡) is the 

instantaneous transverse displacement of the string at position 𝑥 and time 𝑡. Let for any value 

of 𝑥 and 𝑡, 𝑢(𝑥, 𝑡) is very small compared to the length of the string, so that the length of the 

string and the tension 𝑇 can be assumed to remain constant always.  

Fig. 3 shows the equilibrium and 

displaced position (AB and CD 

respectively) of a small portion of the 

string. The net force on the small 

section in a direction perpendicular to 

the equilibrium position of the wire is: 

∆𝐹 = 𝑇 sin 𝜃ଶ − 𝑇 sin 𝜃ଵ 

Since 𝑢(𝑥, 𝑡) is small, 𝜃ଵ and 𝜃ଶ can also 
be assumed to be small, and we can write: 

sin 𝜃ଵ ≈ tan 𝜃ଵ =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
 

sin 𝜃ଶ ≈ tan 𝜃ଶ =
𝜕𝑢(𝑥 + ∆𝑥, 𝑡)

𝜕𝑥
=

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
ቤ

௫ା∆௫

=
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
ቤ

௫

+
𝜕ଶ𝑢(𝑥, 𝑡)

𝜕𝑥ଶ
ቤ

௫

∆𝑥 + ⋯ 

=
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
+

𝜕ଶ𝑢(𝑥, 𝑡)

𝜕𝑥ଶ
∆𝑥 + ⋯ 

Then: 

∆𝐹 = 𝑇 ቆ
𝜕𝑢(𝑥 + ∆𝑥, 𝑡)

𝜕𝑥
−

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
ቇ = 𝑇 ቈ

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
+

𝜕ଶ𝑢(𝑥, 𝑡)

𝜕𝑥ଶ
∆𝑥 + ⋯ −

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
 ≈ 𝑇

𝜕ଶ𝑢(𝑥, 𝑡)

𝜕𝑥ଶ
∆𝑥 

Mass of the small section is 𝑚∆𝑥. Then from Newton’s law:  

𝑚∆𝑥
𝜕ଶ𝑢(𝑥, 𝑡)

𝜕𝑡ଶ
= 𝑇

𝜕ଶ𝑢(𝑥, 𝑡)

𝜕𝑥ଶ
∆𝑥      ⇒

𝜕ଶ𝑢(𝑥, 𝑡)

𝜕𝑥ଶ
=

𝑚

𝑇

𝜕ଶ𝑢(𝑥, 𝑡)

𝜕𝑡ଶ
 

⇒
𝜕ଶ𝑢(𝑥, 𝑡)

𝜕𝑥ଶ
=

1

𝑐ଶ

𝜕ଶ𝑢(𝑥, 𝑡)

𝜕𝑡ଶ
,   𝑤ℎ𝑒𝑟𝑒 𝑐 = ඥ𝑇 𝑚⁄ … … … (7.1) 

𝑥 

𝜃ଵ 

𝜃ଶ 

𝑥 + ∆𝑥 

𝑇 

𝑇 

∆𝑥 

∆𝑠 

O 

𝑢 

 

Fig 3 
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Equation (7.1) is the standard wave equation for transverse waves in a stretched string. You can verify 

that any function of the form 𝑓(𝑥 − 𝑐𝑡) is a solution for 𝑢(𝑥, 𝑡) and can represent a propagating wave 

in the string where 𝑐 is the velocity of the wave. However to obtain the solutions for the vibrations of 

stretched string, fastened between fixed supports, we shall solve equation (7.1) by the method of 

separation of variables. Let: 

𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) … … … (7.2) 

Where 𝑋(𝑥)  and   𝑇(𝑡) are respectively function of 𝑥 only and function of 𝑡 only. Substituting (7.2) in 

(7.1) and rearranging we get: 

𝑐ଶ

𝑋

𝑑ଶ𝑋(𝑥)

𝑑𝑥ଶ
=

1

𝑇

𝑑ଶ𝑇(𝑡)

𝑑𝑡ଶ
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = −𝜔ଶ (𝑠𝑎𝑦) … … … (7.3) 

We shall discuss about the negative sign of the constant (−𝜔ଶ) later. 

Equation (7.3) gives: 

𝑑ଶ𝑋(𝑥)

𝑑𝑥ଶ
+

𝜔ଶ

𝑐ଶ
𝑋(𝑥) = 0 … … … (7.4) 

With solution: 

𝑋(𝑥) = 𝐴 cos 𝑘𝑥 + 𝐵 sin 𝑘𝑥 ,    𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝜔 𝑐⁄  … … … (7.4𝐴) 

A, B are constants to be determined from boundary conditions. And: 

𝑑ଶ𝑇(𝑡)

𝑑𝑡ଶ
+ 𝜔ଶ𝑇(𝑡) = 0 … … … (7.5) 

With solution: 

𝑇(𝑡) = 𝐶 cos 𝜔𝑡 + 𝐷 sin 𝜔𝑡  … … … (7.5𝐴) 

C, D are constants to be determined from boundary conditions. Then from (7.2), (7.4A), (7.5A) we get: 

𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) = (𝐴 cos 𝑘𝑥 + 𝐵 sin 𝑘𝑥)(𝐶 cos 𝜔𝑡 + 𝐷 sin 𝜔𝑡) … … … (7.6) 

Note that the solution is oscillatory in 𝑥 and 𝑡, which is consistent with the vibration of a sting or 

transverse wave in a string. If the constant in equation (7.3) were positive, say 𝜔ଶ, then we should have 

obtain: 

𝑢(𝑥, 𝑡) = (𝑎 exp(𝑘𝑥) + 𝑏 exp(−𝑘𝑥))(𝑐 exp(𝜔𝑡) + 𝑑 exp(−𝜔𝑡)), 𝑎, 𝑏, 𝑐, 𝑑 𝑏𝑒𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠. 

And 𝑢(𝑥, 𝑡) would not be oscillatory but continuously increasing or decreasing with 𝑥 or 𝑡, which would 

not represent vibrations or waves. Therefore we have taken the constant in equation (7.3) to be negative. 
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Vibration of a stretched string fastened with two fixed supports: 

Now if the string is fastened at its two ends with two fixed supports separated by a distance 𝑙, then: 

𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0 … … … (7.7) 

Applying the boundary condition (7.7) to equation (7.6), we can write: 

𝑢(0, 𝑡) = 0 = 𝐴(𝐶 cos 𝜔𝑡 + 𝐷 sin 𝜔𝑡) 

Since (𝐶 cos 𝜔𝑡 + 𝐷 sin 𝜔𝑡) cannot be zero for all 𝑡, therefore we must have: 

𝐴 = 0 

Then (7.6) converts to:  

𝑢(𝑥, 𝑡) = 𝐵 sin(𝑘𝑥) (𝐶 cos 𝜔𝑡 + 𝐷 sin 𝜔𝑡) 

= sin(𝑘𝑥) (𝐶ᇱ cos 𝜔𝑡 + 𝐷ᇱ sin 𝜔𝑡), with 𝐶ᇱ, 𝐷ᇱ = 𝐶, 𝐷 multiplied by   

We also have: 

𝑢(𝑙, 𝑡) = 0 = sin(𝑘𝑙) (𝐶ᇱ cos 𝜔𝑡 + 𝐷ᇱ sin 𝜔𝑡) 

⇒ sin(𝑘𝑙) = 0 = sin 𝑛𝜋 , 𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,2 … … 

⇒ 𝑘 =
𝑛𝜋

𝑙
, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,2 … … 

We did not take 𝑛 = 0, since this gives 𝑘 = 0 and 𝑢(𝑥, 𝑡) becomes zero for all values of 𝑥 and 𝑡, which 

is not an acceptable solution. 

Therefore: 

𝜔 = 𝑘𝑐 =
𝑛𝜋𝑐

𝑙
,   𝑛 = 1,2 … … 

Also the constants 𝐶ᇱ and 𝐷ᇱ now can depend on 𝑛 and we should write them as 𝐶 and 𝐷.  

Then we get a solution for each value of 𝑛: 

𝑢(𝑥, 𝑡) = 𝐶 sin ቀ
𝑛𝜋𝑥

𝑙
ቁ cos ൬

𝑛𝜋𝑐𝑡

𝑙
൰ + 𝐷 sin ቀ

𝑛𝜋𝑥

𝑙
ቁ sin ൬

𝑛𝜋𝑐𝑡

𝑙
൰ ,       𝑛 = 1,2,3 . . . . . .   .   … … … (7.8) 

 And the general solution will be: 

𝑢(𝑥, 𝑡) =  𝐶 sin ቀ
𝑛𝜋𝑥

𝑙
ቁ cos ൬

𝑛𝜋𝑐𝑡

𝑙
൰ + 𝐷 sin ቀ

𝑛𝜋𝑥

𝑙
ቁ sin ൬

𝑛𝜋𝑐𝑡

𝑙
൰൨

ஶ

ୀଵ

      … … … (7.9) 

The constants 𝐶 and 𝐷 remains undetermined till now. They can be evaluated with the help of more 

boundary / initial conditions.   
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Transverse vibration of rectangular membrane: 

Consider a rectangular elastic membrane with its boundary fixed in a rigid frame. In rectangular 

Cartesian coordinates, the differential equation of the transverse vibration of the membrane can 

be written, in analogy of that of a vibrating string as: 

𝜕ଶ𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑥ଶ
+

𝜕ଶ𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑦ଶ
=

1

𝑐ଶ

𝜕ଶ𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡ଶ
… … … (7.10) 

Let 𝑢(𝑥, 𝑦, 𝑡) can be expressed as: 

𝑢(𝑥, 𝑦, 𝑡) = 𝑋(𝑥)𝑌(𝑦)𝑇(𝑡) … … … (7.11) 

Where 𝑋(𝑥), 𝑌(𝑦) and 𝑇(𝑡) are respectively the functions of 𝑥 only, 𝑦 only and 𝑡 only. 

Application of the method of separation of variables gives: 

𝑐ଶ

𝑋

𝑑ଶ𝑋(𝑥)

𝑑𝑥ଶ
+

𝑐ଶ

𝑌

𝑑ଶ𝑌(𝑦)

𝑑𝑦ଶ
=

1

𝑇

𝑑ଶ𝑇(𝑡)

𝑑𝑡ଶ
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = −𝜔ଶ (𝑠𝑎𝑦) 

⇒
𝑑ଶ𝑇(𝑡)

𝑑𝑡ଶ
+ 𝜔ଶ𝑇(𝑡) = 0 … … … (7.12) 

1

𝑋

𝑑ଶ𝑋(𝑥)

𝑑𝑥ଶ
= −

1

𝑌

𝑑ଶ𝑌(𝑦)

𝑑𝑦ଶ
−

𝜔ଶ

𝑐ଶ
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = −𝛼ଶ (𝑠𝑎𝑦) 

⇒
𝑑ଶ𝑋(𝑥)

𝑑𝑥ଶ
+ 𝛼ଶ𝑋(𝑥) = 0 … … … (7.13) 

𝑑ଶ𝑌(𝑦)

𝑑𝑦ଶ
+ ቆ

𝜔ଶ

𝑐ଶ
− 𝛼ଶቇ 𝑌(𝑦) = 0 

⇒
𝑑ଶ𝑌(𝑦)

𝑑𝑦ଶ
+ 𝛽ଶ𝑌(𝑦) = 0 … … … (7.14), 𝑤ℎ𝑒𝑟𝑒 𝛽ଶ =

𝜔ଶ

𝑐ଶ
− 𝛼ଶ 

Note that 𝜔ଶ, 𝛼ଶ and 𝛽ଶ should be positive in order to make 𝑇(𝑡),  𝑋(𝑥) and 𝑌(𝑦) oscillatory, which 

the required condition of a vibrating membrane with fixed boundary. Equation (7.12), (7.13) and (7.14) 

have solutions: 

𝑇(𝑡) = 𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡 

𝑋(𝑥) = 𝐶 cos 𝛼𝑥 + 𝐷 sin 𝛼𝑥  

𝑌(𝑦) = 𝐸 cos 𝛽𝑦 + 𝐹 sin 𝛽𝑦  

Where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 are constants to be determined from boundary conditions. The solution fro 

𝑢(𝑥, 𝑦, 𝑡) will be then given by: 

𝑢(𝑥, 𝑦, 𝑡) = (𝐶 cos 𝛼𝑥 + 𝐷 sin 𝛼𝑥)(𝐸 cos 𝛽𝑦 + 𝐹 sin 𝛽𝑦)(𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡) … … … (7.15) 
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If 𝑎 and 𝑏 are the sides of the rectangular membrane, then the boundary conditions in the present 

problem are: 

𝑢(𝑥, 𝑦, 𝑡) = 0 for 𝑥 = 0 𝑎𝑛𝑑 𝑎 … … … (7.16𝐴) 

𝑢(𝑥, 𝑦, 𝑡) = 0 for 𝑦 = 0 𝑎𝑛𝑑 𝑏 … … … (7.16𝐵) 

𝑢(𝑥, 𝑦, 𝑡) = 0 for 𝑥 = 0 gives: 

0 = 𝐶(𝐸 cos 𝛽𝑦 + 𝐹 sin 𝛽𝑦)(𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡) 

⇒ 𝐶 = 0 

𝑢(𝑥, 𝑦, 𝑡) = 0 for 𝑥 =  𝑎 gives: 

0 = 𝐷 sin 𝛼𝑎 (𝐸 cos 𝛽𝑦 + 𝐹 sin 𝛽𝑦)(𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡) 

⇒ sin 𝛼𝑎 = 0 = sin 𝑛𝜋 

⇒ 𝛼 =
𝑛𝜋

𝑎
, 𝑛 = 1,2,3 … … … 

Similarly (7.16𝐵) gives: 

𝐸 = 0  and  𝛽 =
𝑚𝜋

𝑏
, 𝑚 = 1,2,3 … … … 

Now: 

𝛽ଶ =
𝜔ଶ

𝑐ଶ
− 𝛼ଶ 

⇒ 𝜔ଶ = 𝑐ଶ(𝛽ଶ + 𝛼ଶ) = 𝜋ଶ𝑐ଶ ቆ
𝑛ଶ𝑥ଶ

𝑎ଶ
+

𝑚ଶ𝑦ଶ

𝑏ଶ ቇ 

Therefore we should write 𝜔 in place of 𝜔. i.e. 

𝜔
ଶ = 𝜋ଶ𝑐ଶ ቆ

𝑛ଶ𝑥ଶ

𝑎ଶ
+

𝑚ଶ𝑦ଶ

𝑏ଶ ቇ … … … (7.17) 

Also writing 𝐴 in place of 𝐹𝐷𝐴 and 𝐵 in place of 𝐹𝐷𝐵, (7.15) becomes: 

𝑢(𝑥, 𝑦, 𝑡) = sin
𝑛𝜋𝑥

𝑎
sin

𝑚𝜋𝑦

𝑏
(𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡) … … … (7.18) 

Then the general solution becomes: 

𝑢(𝑥, 𝑦, 𝑡) =   sin
𝑛𝜋𝑥

𝑎
sin

𝑚𝜋𝑦

𝑏
(𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡)

ஶ

ୀଵ

ஶ

ୀଵ

with 𝜔 = 𝜋ଶ𝑐ଶ ቆ
𝑛ଶ𝑥ଶ

𝑎ଶ
+

𝑚ଶ𝑦ଶ

𝑏ଶ ቇ
⎭
⎪
⎬

⎪
⎫

… … (7.19) 
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Transverse vibration of circular membrane (drum skin): 

For the transverse vibration of the circular membrane, using polar coordinates (𝑟, 𝜃), we can write the 

wave equation as:   

1

𝑟

𝜕

𝜕𝑟
ቆ𝑟

𝜕𝑢(𝑟, 𝜃, 𝑡)

𝜕𝑟
ቇ +

1

𝑟ଶ

𝜕ଶ𝑢(𝑟, 𝜃, 𝑡)

𝜕𝜃ଶ
=

1

𝑐ଶ

𝜕ଶ𝑢(𝑟, 𝜃, 𝑡)

𝜕𝑡ଶ
 

⇒
𝜕ଶ𝑢(𝑟, 𝜃, 𝑡)

𝜕𝑟ଶ
+

1

𝑟

𝜕𝑢(𝑟, 𝜃, 𝑡)

𝜕𝑟
+

1

𝑟ଶ

𝜕ଶ𝑢(𝑟, 𝜃, 𝑡)

𝜕𝜃ଶ
=

1

𝑐ଶ

𝜕ଶ𝑢(𝑟, 𝜃, 𝑡)

𝜕𝑡ଶ
… … … (7.20) 

Let 𝑢(𝑟, 𝜃, 𝑡) can be expressed as: 

𝑢(𝑟, 𝜃, 𝑡) = 𝑅 (𝑟)Θ(𝜃)𝑇(𝑡) … … … (7.21) 

Where 𝑅 (𝑟), Θ(𝜃) and 𝑇(𝑡) are respectively the functions of 𝑟 only, 𝜃 only and 𝑡 only. 

Application of the method of separation of variables gives: 

𝑐ଶ

𝑅

𝑑ଶ𝑅(𝑟)

𝑑𝑟ଶ +
𝑐ଶ

𝑟𝑅

𝑑𝑅(𝑟)

𝑑𝑟
+

𝑐ଶ

𝑟ଶΘ

𝑑ଶΘ(𝜃)

𝑑𝜃ଶ =
1

𝑇

𝑑ଶ𝑇(𝑡)

𝑑𝑡ଶ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = −𝜔ଶ (𝑠𝑎𝑦) 

⇒
𝑑ଶ𝑇(𝑡)

𝑑𝑡ଶ
+ 𝜔ଶ𝑇(𝑡) = 0 … … … (7.22) 

𝑟ଶ

𝑅

𝑑ଶ𝑅(𝑟)

𝑑𝑟ଶ
+

𝑟

𝑅

𝑑𝑅(𝑟)

𝑑𝑟
+

𝜔ଶ𝑟ଶ

𝑐ଶ
= −

1

Θ

𝑑ଶΘ(𝜃)

𝑑𝜃ଶ
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑚ଶ (𝑠𝑎𝑦) 

⇒
𝑑ଶΘ(𝜃)

𝑑𝜃ଶ
+ 𝑚ଶΘ(𝜃) = 0 … … … (7.23) 

𝑟ଶ
𝑑ଶ𝑅(𝑟)

𝑑𝑟ଶ
+ 𝑟

𝑑𝑅(𝑟)

𝑑𝑟
+ ቆ

𝜔ଶ

𝑐ଶ
𝑟ଶ − 𝑚ଶቇ 𝑅(𝑟) = 0 

⇒ 𝑟ଶ
𝑑ଶ𝑅(𝑟)

𝑑𝑟ଶ
+ 𝑟

𝑑𝑅(𝑟)

𝑑𝑟
+ (𝑘ଶ𝑟ଶ − 𝑚ଶ)𝑅(𝑟) = 0, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝜔 𝑐⁄  

Let 𝑘𝑟 = 𝜉. Then: 

𝑟
𝑑𝑅(𝑟)

𝑑𝑟
= 𝜉

𝑑𝑅(𝜉 𝑘⁄ )

𝑑𝜉
= 𝜉

𝑑𝑃(𝜉)

𝑑𝜉
;         𝑟ଶ

𝑑ଶ𝑅(𝑟)

𝑑𝑟ଶ
= 𝜉ଶ

𝑑ଶ𝑅(𝜉 𝑘⁄ )

𝑑𝜉ଶ
= 𝜉ଶ

𝑑ଶ𝑃(𝜉)

𝑑𝜉ଶ
 

Where 𝑃(𝜉) = 𝑅(𝜉 𝑘⁄ ). Therefore the radial equation becomes: 

𝜉ଶ
𝑑ଶ𝑃(𝜉)

𝑑𝜉ଶ
+ 𝜉

𝑑𝑃(𝜉)

𝑑𝜉
+ (𝜉ଶ − 𝑚ଶ)𝑃(𝜉) = 0 … … … (7.24) 

Equation (7.22) has solution: 

𝑇(𝑡) = 𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡 … … … (7.25) 

Equation (7.23) has solution: 

Θ(𝜃) = 𝐶 cos 𝑚𝜃 + 𝐷 sin 𝑚𝜃 … … … (7.26) 
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Note that 𝜔ଶand 𝑚ଶ must be positive for 𝑇(𝑡) and Θ(𝜃) to be oscillatory, a condition required by the 

physical situation. Moreover since increasing 𝜃 by 2𝜋 the same point is reached, therefore for the sake 

of single valued ness of the solution we must have Θ(𝜃) = Θ(𝜃 + 2𝜋). This requires 𝑚 to be positive 

or negative integers or zero. i.e. 𝑚 = 0, ±1, ±2, … … . 

Eqn. (7.24) is the well-known Bessel differential equation with solution. When 𝑚 an integer, 

its solution is given by:  

𝑃(𝜉) = 𝐸𝐽(𝜉) + 𝐹𝑁(𝜉) … … … (7.27) 

Where 𝐽(𝜉) is the Bessel function of first kind of order 𝑚. For integer 𝑚,   𝐽(𝜉) can be given 

by: 

𝐽(𝜉) = 
(−1)௦

𝑠! (𝑠 + 𝑚)!
൬

𝜉

2
൰

ଶ௦ାஶ

௦ୀ

… … … (7.28) 

And 𝑁(𝜉) is called the Bessel function of second kind or Neumann function and is given by: 

𝑁(𝜉) =
cos 𝑚𝜋 𝐽(𝜉) − 𝐽 (𝜉)

sin 𝑚𝜋
… … … (7.29) 

𝑁(𝜉) contains the function 𝐽ି(𝜉) = ∑
(ିଵ)ೞ

௦!(௦ି)!
ቀ

క

ଶ
ቁ

ଶ௦ି
ஶ
௦ୀ . Due to it, 𝑁(𝜉) becomes 

indeterminate for 𝜉 = 𝑘𝑟 = 0 or 𝑟 = 0. Thus at the centre of the circular membrane, the 

solution becomes indeterminate for 𝑁(𝜉), which is unacceptable. Therefore we must have for 

𝐹 = 0. Then equation (7.27) have the form: 

𝑅(𝑟) = 𝐸𝐽(𝑘𝑟) … … … (7.27) 

Then the solution can be given by: 

𝑢(𝑟, 𝜃, 𝑡) = (𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡)(𝐶 cos 𝑚𝜃 + 𝐷 sin 𝑚𝜃)𝐽𝑚
(𝑘𝑟) … … … (7.28) 

The solution can be written as: 

𝑢(𝑟, 𝜃, 𝑡) = 𝐴𝐶𝐽𝑚(𝑘𝑟) cos 𝑚𝜃 cos 𝜔𝑡 + 𝐵𝐶𝐽𝑚(𝑘𝑟) cos 𝑚𝜃 sin 𝜔𝑡 

+𝐴𝐷𝐽𝑚(𝑘𝑟) sin 𝑚𝜃 cos 𝜔𝑡 + 𝐵𝐷𝐽𝑚(𝑘𝑟) sin 𝑚𝜃 sin 𝜔𝑡  … … … (7.29) 

Each term in the R.H.S of the above equation is a possible solution of the wave equation for a circular 

membrane. Some of which may have to be discarded to satisfy the boundary conditions or initial 

conditions. These solutions can also be written as (see Math Methods … by Boas): 

𝑢(𝑟, 𝜃, 𝑡) = 𝐽𝑚
(𝑘𝑟) ቄ

cos 𝑚𝜃
sin 𝑚𝜃

ቅ ቄ
cos 𝜔𝑡
cos 𝜔𝑡

ቅ … … … (7.30) 

In case of drum skin, the circumference is fixed i.e.  𝑢(𝑟, 𝜃, 𝑡) = 0 for 𝑟 = 𝑎 (radius of the 

membrane).  
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Thus for a drum skin, we must have: 

𝐽(𝑘𝑎) = 0 

This condition fixes the values of 𝑘, since 𝐽(𝜉) becomes zero only for particular values of 𝜉 

or in other words 𝐽(𝑘𝑎) becomes zero only for particular values of 𝑘. We can write these 

values as 𝑘, where 𝑛 denotes the serial number of the zero of the Bessel function. Hence the 

possible frequencies can also be indexed as 𝜔 = 𝑘𝑐. Then we should write: 

𝑢(𝑟, 𝜃, 𝑡) = 𝐽𝑚
(𝑘𝑚𝑛𝑟) ቄ

cos 𝑚𝜃
sin 𝑚𝜃

ቅ ቄ
cos 𝜔𝑡
cos 𝜔𝑡ቅ … … … (7.30𝐴) 

 

The following part is optional 

First few modes of vibration of a circular membrane with the circumference at rest 

(vibration of a drum skin): 

The condition satisfied by a drum skin of radius 𝑎 is: 

𝑢(𝑟, 𝜃, 𝑡) = 0 for 𝑟 = 𝑎 

Which gives:  

𝐽(𝑘𝑎) = 0 

Now there are standard tables where the values of 𝜉 for which 𝐽(𝜉) are zero, i.e. tables for 

zeros of 𝐽(𝜉). With the help of such tables we can write: 

Sl. No. 
of zero 

(𝑛) 

Value of 𝑘𝑎 for the zeros of  𝐽(𝑘𝑎) for 𝑚 = 

0 1 2 3 

1 2.4048 3.8317 5.1356 6.3802 

2 5.5201 7.0156 8.4172 9.7610 

3 8.6537 10.1735 11.6198 13.0152 
 

Let us explore the lowest four values of 𝑘. From the above table we see that these are: 

𝑘ଵ =
2.4048

𝑎
 (for 𝑚 = 0), 𝑘ଵଵ =

3.8317

𝑎
 (for 𝑚 = 1),  

𝑘ଶଵ =
5.1356

𝑎
 (for 𝑚 = 2), 𝑘ଶ =

5.5201

𝑎
 (for 𝑚 = 0).  
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Therefore the lowest possible frequencies are: 

𝜔ଵ = 𝑘01𝑐 =
2.4048c

𝑎
 ,   𝜔ଵଵ =

3.8317c

𝑎
 ,    𝜔ଶଵ =   

5.1356c

𝑎
 , 𝜔ଶ =   

5.5201c

𝑎
  

Then the space parts (amplitudes) of first four modes of vibration are: 

𝜔ଵ =
2.4048c

𝑎
;  𝒖𝟎𝟏(𝒓, 𝜽)    =   𝑱𝟎 ൬𝟐. 𝟒𝟎𝟒𝟖

𝒓

𝒂
൰ = 0 for 𝑟 = 𝑎           

𝜔ଵଵ =  
3.8317c

𝑎
;  𝒖𝟏𝟏(𝒓, 𝜽) = ൞

𝑱𝟏 ൬𝟑. 𝟖𝟑𝟏𝟕
𝒓

𝒂
൰ 𝐜𝐨𝐬 𝜽  = 0 for 𝑟 = 𝑎 and or⁄  𝜃 =

𝜋

2
,
3𝜋

2
 

𝑱𝟏 ൬𝟑. 𝟖𝟑𝟏𝟕
𝒓

𝒂
൰ 𝐬𝐢𝐧 𝜽 = 0 for 𝑟 = 𝑎 and or⁄  𝜃 = 0, 𝜋

  

𝜔ଶଵ =  
5.1356c

𝑎
;  𝒖𝟐𝟏(𝒓, 𝜽) = ൞

𝑱𝟐 ൬𝟓. 𝟏𝟑𝟓𝟔
𝒓

𝒂
൰ 𝐜𝐨𝐬 𝟐𝜽 = 0 for 𝑟 = 𝑎 and or⁄  𝜃 =

𝜋

4
,
3𝜋

4

𝑱𝟐 ൬𝟓. 𝟏𝟑𝟓𝟔
𝒓

𝒂
൰ 𝐬𝐢𝐧 𝟐𝜽 = 0 for 𝑟 = 𝑎  and or⁄  𝜃 = 0,

𝜋

2

 

𝜔ଶ =  
5.5201c

𝑎
;  𝒖𝟎𝟐(𝒓, 𝜽)  =  𝑱𝟎 ൬𝟓. 𝟓𝟐𝟎𝟏

𝒓

𝒂
൰  = 0 for 𝑟 = 𝑎 𝑎𝑛𝑑 𝑟 =

2.4048

5.5201
 𝑎             

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4: Four lowest frequency vibrational modes of a drum skin. Dotted lines 

represent nodes where there is no vibration. Rim of the skin is always a node. 
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