504 Part Five [Mmaniic Analysis

16.1 Second-Order Linear Differential Equations '
with Constant Coefficients and Constant Term

Fo pu.'d.?-_upn' reasons, let us first discuss the method of solution for the second arder cays
(m = 2} The relevant differential equianion 15 then the simple one

V) + ay'(0) + agy = b (16.2)

where a;, a3, and b are all constants If the term b is identically zero, we have a hogope.
heous equation, but if b is g nonzero constant, the equation s nomhomogeneous ) O
discussion will proceed on the nssumption that (16.2) |s nonhomogeneous; in solving the
nonhomogencous version ol (16.2), the solution of the homogeneous version will €merge
automatically as n by-product

In this connection, we recall o proposition introduced in Sec. 15.1 which is equally
applicable hered I v. is the complementary function, i.¢.. the general solution (containing
arbitrary constams) of the reduced cquation of (16.2) and if v, is the particular integral, e,
any particular solution (contaning no arbitrary constants) of the complege equation (16.2),
then (1) = y. 4 v, will be the general solution of the complete equation JAs was explained
previously, the v, component provides us with the equilibrivm value of the variable v in the
intertempaoral sense of the term, whereas the component reveals, for each point of time,
the deviation of the time path y(1) from the equilibrium,

The Particular Integral

For the case of constant coefficients and ct mstant term, the particular integral is relatively
ue of

casy to find{ Since the particular integral can be any solution of (16 2}, 1.e., any va
that satisfies this nonhomogeneous equation, we should always try the simplest possible
type: namely, v = a constant If v = a constant, it follows that

i =»")=0

50 that (16.2) in efTect becomes a:v = b, with the solution ¥ = b/as. Thus., the desired par-
ticular integral is

. |
b - |
Py = (case of a; # 0) (16.3)
id3 ¥
Since the process of finding the value of ¥p Involves the condition v/'(1) = 0. the rationale |

for considering that value as an intertemporal equilibrium becomes self-evident.

Find the particular integral of the equation
Fi+y(H-2v=-10

The relevant coefficients here are a; 2and b= -10 Therefore, the particular integral is
Vp = ]Ulf.?l.—ﬁ

xample 1

What if @3 = 0—so that the expression b /a; is not defined? In such

d situation, since the
constant solution for v, fails to work. WE must try some nonconstan| for

n ofsolution. Taking

the simplest possibility, we may Iry v = kt. Since a; = (). the differential cquation 15 now

YO +aytty=h




xample 2
1 el

ample 3
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but i y= ,f;,l_ Whl{:h

This determines the v, 'mplies y'(r) = k and y"/(f) = 0, this equation reduces to ayk = b.

alue of k as b/ay, thereby giving us the particular integral

h
Vp=—1 (case of gs = 0; gy # 0) (15.3’)

Inasmuch ¢ ' '
Lsmuch as y, is in this case 4 nonconstant function of time, we shall regard it as a mov-
INg equilibrium, - - g

Fir‘ld H'\E ¥p of the @

uat L Y = _ i
~10, Thus, h}r“ﬁq lon y"(t) + y'(t) = =10. Here, we have a2 =0, oy =1, and

A7), we can write

yp =—10t

I it happens thy T nl e . :
Y [’Ir'l“' ns that a, is also zero, then the solution form of y = kr will also break down,
-CAUSe * XN NFCEG] J . B i - ¢
ze ' = He cxpression br /a; will now be undefined. We ought, then, to try a solution of the
b B k%, With ay = ay = 0, the differential equation now reduces 1o the extremely
simple form

¥i)y=b
2 o NI S Koy A ¥ I - =
and if v = k2, which implies v'(1) = 2kt and »"(1) = 2k, the differential equation can be
written as 2k = b. Thus, we find & = b/2, and the particular integral is

B
Vp = =1 (case of @y = a; = 0) (16.3")

< F
-

The equilibrium represented by this particular integral 15 again a moving equilibrium.

Find the y, of the equation y"(t) =—10. Since the coefficients are oy =@ =0 and
b= —10, formula (16.3") is applicable. The desired answer is y, = —5t*.

’ i

{ The Complementary Function
The complementary function of (16.2) is defined to be the general solution of its reduced

“ (homogeneous) equation

i +ay ) +ay=0 (16.4)

This is why we stated that the solution of a homogeneous equation will always be a
by-product in the process of solving a complete equation. ‘ :

" Even though we have never tackled such an cqgaumf before, our experience with the
v function of the first-order differential equations can supply us with a use-
the solutions (15.3), (15.3%), (15.5), and (15.5°), it is clear that exponential
* figure very prominently in the complementary functions of

complementar

ful hint, From
gsions of the form Ae

expre onstant/costicients. The ' : :
first-order differential equations with constant coefficients, Then why not try a solution of
1rsl= i
tll form y = Ae”! in the second-order equation, too?

1 Y=

{ the trial solution ¥ = Ae"", we must also accept

|,-r If we adop
\ vi(1) = rde” and vity=ride"




Part Five

Dnaniic Amalysis

, : eione far e (1), and ¥ (1), the redy i |
ns the derivatives of v, On the busis of these expressions oy, :
differentinl equation (16.4) can be transformed into ;

3 (16.49

te"(r 4 ayr +a2) =0

As long as we choose those values of A and r that satisfy (16.47), “wm.ill.l‘t.“m;”:hlr I
should work. Since ¢’ can never be zero, we must either let A = 0 or s¢e 1o 1t that r sans.
fies the equation .

rrtar+ay=0 (19:47)
Since the value of the (arbitrary) constant A is to be definitized by I._J-SL‘ nillln: mitial mrul::
tions of the problem, however, we cannot simply set A = 0 at will. Therefore, it 1s essentig|
to look for values of  that sansfy (16.47). ;

Equation (16.4") is known as the chanacteristic equation (or awxiliary equation) of the
homogeneous cquation {16.4), or of the complete equation { 16.2). Because it s o quadratic
equation in r, it yields two roots (solutions), referred to in the present context as charucrer
istic moots, as follows:!

NS (16.5)

¥ 2

These two roots bear a simple but interesting relationship to each other, which can serve as
a convenient means of checking our caleulation: The sum of the two roots is always equal 1o
—ay, and their product is always equal to as, The proof of this statement is straightforward

=il + \ r.']- — s
rsr= - T ]

(16.6)
(—a;)> — f:l,z = 4“’.‘)
"r = - e LB e

4

The values of these two roots are the only values we may assign to r in the solution
i 2l e 5. , 1 o 1 :
y = Ae™. But this means that, in effect, there are nvo solutions which will work, namely

Py = Ay and Ya= dqye’™

where A; and > are two arbitrary constants, and riand rs are the

found from (16 ii)ﬁinuc we want only one general solution, how
one too many, Twd alternatives are now open to us: (1) pick eithe
(2) combine them in some fashion
T'he first alternative, though simpler, is unacceptable. There is only

stant in y, or s, but to qualify as a general solution of g ,wcw:d—m.mq- ;jiﬂ'» ential eauats
the EXPression must contain nve arbitrary constants, This requireme Is ”Lm-‘ 8 c-.|u-.||:_nn.
that, in proceeding from a function M) 1o its second derivativ :-nl stems from the fact
zgrrllslums during the two rounds of differentiation; therefore Wik
tlerential equation to the primitive funct: ; :
R u;; s T:h..- n:l::n::u_lr;;:tnnih:m.!u._m M), two
attve ol combining yy and "

characteristic roots
‘ever, there seems to he
T Y1 or y2 at random, or

one arbitrary con-

(£), we “loge™ wo
1o revert from g second-order
Lonstants should he reinstated,
3 +SOAS 10 include boh constants

ote that the quadratic equation (16.4") |
h ! % In the normal; ¥
In applying formuta (16.5) to find the characteristic ¢ T oomth

& coefficlent of the 2
. Eretermis.
make sure that the characteristic equation is indeed inthe

We must first

0OLs of a differentia| equation
Yormalized form, .




nple 4
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Apand 4, Ag;
(16.4 ). Lu'[ us I:]'i:_::: ':-'l.ll. We can -Sil'l'lpl}' take their sum, vy o4 ¥z, 85 the ggneml 5|}lutiﬂﬂ or
(V1 + ¥2) will alzo dnm-m"; that, if y; and M, respectively, satisfy (16.4), then the sum
cach of thege into (|6 i Fviand y; are indeed solutions of (16.4), then by substituting

*4), we must find that the following two equations hold: l

W) + a0+ aapy =0
viln) + apvat) + gz =0

By adding thece :
- ng these equations, however, we find that
LN Basy ’
[y (2) F120] A an (0 + yi0] + as(y +32) =0
T T Ty
- ,:._-“ 1) =l-'|.'J-f|.'| +¥3)

Thus, like y : _
‘.:'L'HL'F';!!J] t:yf:lll |::T'| lnil::_. ;1“'"1 M o e ML e A:{curd‘ingly. ttie
complete equati - omogeneous equation (16.4) or the complementary function of the
A - ~quation (16.2) can, in general, be written as y, = y + 1.
th:a; ::]F_:: .:;JTE}Jlhcxan_”n':'“““ of the characteristic-root formula (16.5) indicates, however,
, as the values of 7y and r» are concerned, three possible cases can arise, some of |
which may necessitate a modification of our result ¥. = vy + ¥5.

’/ Cas isti - 3 . :
S El I (distinct real roots) When aj = 4as, the square root in (16.5) is a real number,
nd the two roots ry and r» will take distinct real values, because the square root is added to

“@y for ry, but subtracted from —ay for r». In this case. we can indeed write
Ye=Vi+ya=de™ + dze™ (r1 #£r) {(16.7)

Because the two roots are distinct, the two exponential expressions must be linearly inde-
pendent (neither is a multiple of the other); consequently, 4, and A5 will always remain as
separate entities and provide us with two constants, as required. )

Solve the differential equation

YO+ y(t)—2y=-10
The particular integral of this equation has already been found to be y; = 5, in Example 1.
Let us find the complementary function, Since the coefficients of the equation are a; = 1
2, the characteristic roots are, by (16.5),

and a; -
_1+V/1+8 IEST =5 Mol
I’1.. r} E 2 = 2 i ' o
1 =—my; nra=—2=a) Since the roots are distinct real numbers,

(Check: ry + 2= - |
the complementary MISIPRBIGS Are' + Aze?'. Therefore, the general solution can be

written as
WO = Yet+¥p= Aret 4 Aze 28 (16.8)

order to definitize the constants Ay and Az, there is need now for two initial condi-
t these conditions be y(0) = 12 and y'(0) = —2. That is, when t = 0, y(t) and y'(t)
12 and —2. Setting t = 0 in (16.8), we find that

HD:|=A1 P .-‘1)-1—5

In
tions. Le
are, respectively,




Ivmaenic Amindvniy

==thata? = 4a5, the square

0 in the derivative, we fing ),

tting =
Differentiating (16.8) with respect to t and then setting a
filohm M =0

: 2 nd
pit = Ajet - 2438 L. =12 and y'(0)

0)
must selt V{
To satisfy the two initlal conditions, l{hf-"’elﬂre'u\:zquauonii
which results in the following pair of simultaneo
A+ Az = 7
Al = 2Ar= -2

] . e differential equation |
with solutions A, = 4 and A; = 3. Thus the definite solution of th .
(16.8")

) =4e' +3e%+5
i i ntiation. The first 5
As before, we can check the validity of this solution by differe

second derivatives of (1 6.8") are
2t
Y()=4e'—6e~? and y'(t)=4e"+12e
: ; ; i 6.8"), the re
When these are substituted into the given differential equation along “T:‘hj;r.[w 3 16.8 It Z
IS an identity —10 = —10. Thus the solution is correct. As you can easily Yi .
salisfies both of the initial conditians,

Case 2 (repeated real roots)  When the coefficients in the differential equation .1['(_'1\-[_
root in (16.5) will vanish, and the two characteristic roots take -

identical valye:

ated roots, or multiple (here, double) roots.

Such roots are known as repe
function as y,. = y, + V2, the sum will in this

[Fwe attempt to write the complementary
case collapse into a single expression

Ye=d1e" + dre™ = (4, + Az)e™ = Ao

leaving us with only one r:nnslnr:} This is not sufficient 1o lead us from g second-order
differential equation back to jts prinitive function, The only way out is to find another eli-
gible component term for the sum-q term which satisfies (16.4) and vet which is linearl
independent of the term Aye”, 5o as to preclude such “collapsing » )

An expression that will satisfy these requirements js Agte"™. Since the variable ¢ has
entered into it multiplicatively, this component tern i ﬂbvinusiy linearly inde l1nd,mml-
the Ase™ term; thus it will enable us to introduce another constant 1 -[31“ dpu\. : -'“
qualify as a solution of (16.4)? Ifwe try y = Ayte’ then by the prog ) 1 el
its first and second derivatives to be ‘ Frocictrule, we can find

Y)Y =(rt +1)A4e" and (1) = (r* + 2r) dye"

Substituting these expressions of y, p' and v
b sy J-' mio thl o
expression ¢ left side of (16.4), we get the

[(F +2r) + 0y (g T 1D +ax)aem
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Inasmuch g, j, the

: - pre
Viinishes "kmi::u"y imSt‘rlt context, we have ai

Agtert does indeed qualj e el
] : as i
ence, the complome. a solution,

=4a; and r = —a, /2, this Imm
o the right side of (16.4); this shows that

tary function of the dou

ble-root case can be written as

Yo = Adre" 4 Agte™ (16.9)
R ; -
ymple 5 Solve the differentja| equation

Here, the co Y (O +6y'(t) + 9y = 27

efficients are g,

According 1o fg =6 and g, = 9; since o? = 4a;, the roots will be repeated.
(16.9) thge rMula (16.5), we have r = —/2 = —3, Thus, In line with the result in
’ mmpfumentary function may b

e written as
Ve = Ase 3 4 Agte3

tinn_ of the given differential
olution for the particular int
the complete equation is

_ThE general solu
Trying a constant s

equation is now also readily obtainable.
general solution of

egral, we get y, = 3. It follows that the

O = yet yp = Ase ™ 4 Agte ¥ 43
The two arbitrary constants can again be defini
that the initial conditions are ¥(0)

tized with two initial conditions. Suppose
general solution, we should fingd w

=5 and y'(0) = -5. By setting t = 0 in the preceding
0) = 5; that is,

differentiating the
¥'(0) = —5. That is,
y'(t) = —3A3e73 — 34t 3 + Age ¥
Y(0)= -6+ A4 =-5

This yields A3 = 2. Next, by

general solution and then setting t = 0 and
also A3 = 2, we must have

and

This yields As; = 1. Thus we can finally write the definite solution of the given equation as

y() =23 4 te 3t 4 3
A

ir(‘ase 3 (complex roots) There remains a third possibility regarding the relative magni-
lide of

the coefficients a; and a;, namely, a; < 4a;. When thi_a eventuality occurs, formula
(16.5) will involve the square root of a negarive number, which cannot be handled before
we are properly introduced to the concepts of imaginary and complex numbers,j For the
time being, therefore, we shall be content with the mere cataloging of this casé¢“and shall
leave the full discussion of it to Secs. 16.2 and 16.3.

The three cases cited can be illustrated by the three curves in Fig. 16.1, each of which

.sents a different version of the quadratic function f(r) =r*+ a\r + a:. As we

. Pn":] {;rfmr when such a function is set equal to zero, the result is a quadratic equation

)+ ; amj' to solve the latter equation is merely to “find the zeros of the quadratic

A l_—- Graphically, this means that the roots of the equation are to be found on the
function. UL patian

horizontal axis, where f(r) = 0. ki - neaiony. . - i

70 - :on of the lowest curve in Fig. 16.1, 1s such that the curve intersects 1 1e hori-

Thfc p(‘]SI:I:-,'“- thus we can find two distinct roots ry and r;, both of which satisfy the

zontal axis (Wite,
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Examgie 4 by
Eritial LadITE e

The Qualitative-Graphic Approach

Ihe Meveral cases of nonlinear differ il equations Previously discussed (e
hial “quations, separable vanable equatjons and Bernoyllj eq ..I;'.--:: ) ha
quantitativeh Fhat is, we have in EVETY case sought ind found 4 lime patl
ciach value ol ¢, tells th specific varresponding valy, Ol the variahle o

AL times, we may not be able 1o hnd a quantitative < ution fr
cquation. Yet, in such CAsCs, 1t may nonetheless b possible to ascerna
properties of the time pith pPnmanly whether vif) con
differential cquation itself or by analyzing its graph. Even wher

avaulable, moreover. we may still employ the techni {UCs ol qua

Iative dspect ol the hime path is our pancipal or exclusiy 2l

The Phase Diagram
Ciiven a hirst-order differential Cquation in the gener
d
di

we can plot d

L'”}IL'I' IIIIL‘.’IF oar Ih:HIfHJL"'Il' in the variable i :

i

W f "y I|I -y ‘II.

d geometric representation, feasible whence ¢

s : presenting the function

phase diagram, and the graph representing tl L- s
; e [ ¢S no R |

» vanable
tion of this form—in which the time variabl




Frat-dbridee [iifleremtinnd Fiuaiiess

[[]

ir)

™ “;ﬁi:ln implics a stable equilibrium at v, 17 9(0) = y;, equilibrium
mpottant fenture of phase line & is that, even if y(0) # y, the
m line will guide  toward the level of y.. The time path y(f) cor-
1¥pe of phase line should therefore be of the form shown in Fig. 15.4b,
ent af he le market model.
S810N suggests that, in general, it is the slope of the phase line at its
: ﬂl holds the key to the dynamic stability of equilibrium or the con-
me path. A (finite) positive slope, such as at point ¥,, makes for dynamic
€38 0 (finite) megarive slope, such as at vy, implies dynamic stability.
“tlon can help us to draw qualitative inferences about given differential
st even plotting their phase lines. Take the linear differential equation in

dy
— 4 gy =h — = —av+h
d 2 il dr g

"._ﬂ] _ﬂ_'!h'iuusly have the (constant) slope —a, here assumed nonzero,
infler (without drawing the line) that

0 ) [ converges o

diverges from equilibrium

esult coincides perfectly with what the quantitative solution of this

% l":-l =gl h "
= [y{ﬂ‘j - E]e + = [from (15.5}]

from a nonequilibrium position, the convergence of y(r)
i s () as t — o0, This can happen if and only ifa > 0; if
oo, and y(1) cannot converge. Thus, our conclusion is one
-~ " me, whe ' | at quantitatively or qualitatively.

C, which, being a closed loop sitting across the hon-
fimction but shows instend a relarion between dy/dt and
t that emerges in this case is the possibility of a periodically
w that phase line C is drawn, we shall find y fluctuating
 a perpetual motion. In order to generate the periodic

differential equation (dy/dt)? = 1(3).




Ihis new format 1s an exact duplicate of ( 19.47), although it must b

A

N

i

(19.137)

iribet il i

vectors g and ¢ have altogether dilferent meanings i the two different contexts

suing development, we shall adbere 1o the Ju + M v formulanon given
l'o find the particular integrals, let us try constant solutions x(f) = x and vir)
which imply that x (1) (1) = 0. If these solutions hold, the vectors v and i will bece

0
L]
and v can be written as

L
' - and w =

Land (19.03) will reduce 1w My

i
y

=l M 'y

LY

Thus the solution o

(19.14)

L



| Part Fine

which yoy should compare with ( 19.5°). In numerical terms. our pri

follow Ng particular integrals

HEEH N R

. g the gl solutor
Next, let us look for the complementary functions. Using the tria
(19.11) and (19.12

ent prabl

), the vectors uoand @ |"-'l"'f|]\

{”r { [m ]
L i and 1 ¥ o
n

Substitution of these into the reduced equation

Ju <4 1-."I ()

vields the result

("], |

i ] 1-" L
L L]

or, after multiplying through by the scalar

You should compare this with (19.8"). S

Slnce our objectiv

mand # (so that our trial solutions will also be nontriv

rJ 4+ M {0 1

The analog of ( 19.9°). this last ¢quation—the charactenstic eguation of the
will yield the roots r; that we need Then, we can find the cor respon
trivial) values of m; and n,.

System
In our present example, the characteristic equation 1s

ird + M| = e ._T'*.‘\

withroots ry = —1. s =

—3. Substituting these into (19.15 ). We get

[ | .11J [Hu ] :

‘ = () (torr = —1)
[ " :

1 =1 s .

| | " =) (torr, = — 1)

[t follows that m; = =3 andmy; = —y,, which w

€ may also express as

m =34, and my; = A,
no=-—4, N = —4,

Now that r;, m;, and n, have all been found, the complementary functions can be wril
ten as the following linear combinations of exponential e :
-Tf — Eﬂht"" I- p
o Ene’ [distint real roots|

Xpressions:




“'”“;l'-- -'.L'I:"|\_||I'.' '-"|. L

"-hll'l:rl-‘-cr', if we are given the imtal conditions «of

stants can be found to be A | and A 2. These wil i detinnze th
solution

Once more we may observe that, since the ¢ expres shared by both tim
v(1) and vir}). the latter must either both converge or both diverge. The roots bemg 1 a

-3 in the present case, both time paths converge 1o their respective equilibria, nang

r=landy =15

Even though our example consists of a two-gquation system only,
extends to the general n-equation system. When n 18 large, quantitative solutions may
he difficult, but once the characteristic equation 1s found, a qualitative analysis will alway
be possible by resorting to the Routh theorem.

the method certainly

I

Further Comments on the Characteristic Equation

The term “characteristic equation” has now been encountered in three separate contexts: In
Sec. 1.3, we spoke of the characteristic equation of a matrix; in Secs, 16.1 and 18,1, the
term was applied to a single linear differential equation and difference equation; now,
in this section, we have just introduced the characteristic equation ol a system ol linear
difference or differential equations. Is there a connection between the three?!

There indeed is, and the connection 18 a close one. In the first place, given a single
equation and an equivalent equation system-—as exemplified by the equation (19.1) and
the system (19.1°), or the equation (19.3) and the system (19.3) their characteriste
cquations must be identical. For illustration, consider the difference equation (19.1),
V:+2 +ﬂlJ'r+l +a;y, = I':. \‘k hIW Gﬂlhl' Imud 10 write its characteristic equation by

: nlanting nstant co 15 iInto ¢ Jmlndmut. equation:

system to be in the form of

@ a .
a'] I;] . So the characteristic

FER:B B o 1



