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Chapter 2

|._agra.nge’s Sohition of a
Linear Partial Differential
Equation Pq + Qg =R

M

" Relevant Information on

1. Pp+Qq =R (P, Q, R are function of ai, Y, z) is
a typical linear partial differential equation of first
order.

2. Lagrange's solution of Pp + Qg = R using

' ' o o dz _dy _ dz
| Lagrange's Auxiliary equations: & = =%

3. Integral surfaces: Orthogonal surfaces.

2.1 The General Solution of a Linear
Equation |

We refer to Chapter 1, Art. 1.3: Given an arbitrary furctional

relation. '

We can deduce a linear p-d-€- of first order in the form

Qe R (2.1.2)
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Scanned by CamScanner



ction to Differential Equations
458 ] An Introdu |

then we call (2.1.1), the general
trary function, the genera]
per solution of (2.1.2) that

If (2.1.1) is deduced from (2.1.2), _
solution .of (2.1.2). Since ¢ is an arb
solution (2.2.1) is more general than anot
merely contains two arbitrary constants. -

As for ezample, let z = f(z? —y?), where fis arbitrary. Then

p= %z‘ o }'(mr“) - y*)2z, q= g% = f'(z* - y2)(f2y)
which leads to py + gz =0, a linear p.d.e.
We shall call z = f(z? — y?) the general solution of py +qz = 0.
See that we could write |
2 = a(@® —y?) +b@?—1?)" (a,b are arbitrary constants)
or, z = dsin(m‘zl— y®) +b (a,b are arbitrary constants)

as the solution of py + gz = 0. But_‘certainiy z = f(z?> —1y?) is a
more general solution; all these solutions with arbitrary constants are
included in 2z = f(z? — y?). :

2.2 An Equation that is Equi\‘lalent‘ to
Pp+Qq=R
.. A general type of a linear p.d.e. in p and q is

Pp+Qq =R, | | (2.2.1)
" where PQ,R are functions of z,y, 2.

Suppose that u(z,y, z) = c satisfies (2.2.1).
Differentiation with respect to z and y gives

" z = _8i. ‘ 6:1]
a-ta¢ = 0 dind Ou
Substituting these values of p and ¢ in (2.2.1) we obtain
Ou du - 9
pt L HOu u o
gt 9% t R =0 (2.2.2)

Therefore, if u = ¢ be an-int : '
(2.2.2). _ ibegral of (2.2.1), then u = ¢ also satisfies
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cOnversely, if u=¢cbeap
of (22:1)- integral of (22.2), i

» 1t 18 also an integral
Dividing (2.2.2) by and e : '
N .
reduces t0 Pp+ Qq=R. o2 108 the values of p ang g, (2.2.2)

we ﬁnd equati
So quation (2.2.2) jg equivalent to equation (2.2.1)

2.3 Lagrange S Method of S
ol
Pp+ Qq — ving

Lagrange’s Rule: ‘Statement: The

partz’al differential equation general solution of the linear

) Pp+Qi=R, (2.3.1)
~ where P, Q,R»are functions of z,y, z, is given by
| | ¢(u,v) =0, (2.3.2)
where @ is an arbitrary function and
U(.’L‘,y,Z) = "cl e : : )

A R } | (2.3.3)

are two zndependent solutzons of the Auziliary Equatwns

' dx - dy dz -

=% (2.34)

- This is known as Lagrange’s solution of the linear equation. -

Proof. Given d(u,v) = 0

- We consider z as dependent variable, and z and y as independent

. variables so that

leferentlatmg (u, v) = 0 with respect t0 Z, We get

: 0z
96 [ou Ou 0z acb[ Lo ]-_o
du [ax 9z 0Oz, 0 |0z 6; 0z

ou
op vl BB gy
du _ _5_33_,__@_@1’- _a_g;____a_z_ (P =5’) '

- 9z * 5z Ba: dc " oz
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460 | "An Introduction to Differential Equations

Similarly, differentiating é(u,v) = 0 with respect to y, we get

¢ ov ov

u__ oy "0 - @)
@ _' @. + g'li ay
Ov dy 192

Eliminating ¢, we obtain, -

61) av BU (91)
T+ 07

Oz + paz D '59 0z

- Ou Ou —. Ou + ou

Oz + Paz dy 192

(8u ou\ [ Ov + ov\ (_B_u_ +p6 ) (611 q(’?v)
dy qaz oz " P5z) T \oz dz ) \ Oy 0z
or, Pp+Qq¢ = R,

h ' .
TR ‘ Ou Ov Ou v )

O

I
Q
N
Q
8
o5
8
Q
N

Thus ¢(u,v) = 0 is the general solution (mtegral) of Pp+Qq=R.

We now proceed to obtain u and v for substitution in ¢(u v) =0.

Consider u(z,y,2) = ¢ and v(z,y,2) = cp where c1 and ¢, are
arbitrary constants. Taking differentials we get

du = 0 and dv =0

ou . i = 0 and W e+ L4 CE—
—&c—d:c—f-@dy‘*’azfiz B By YT 52

Solving for dz, dy, dz,

dz dy B dz
Judv  Oudv Oudv  Odudv Oudv’

du Qv Oudv Oudv  Juov
oy oz 9z0y 0z8z 0xdz Ozdy Oyox

Uéing the values of P, @, R as given above, we may write

dz _dy _ dz
P Q R
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Thus we find that ¢ = 1,V = ¢y form
U — as

_ - olution 1z [ o
Hence % = C1, U = ¢ determine v, anq 4 ¢, hution'of 4 = g=2.
0 r substitution in ¢ u,v) =
This is what we wished to prove
Note 2.3.1 Equations d—,;”- — dy _ 4 -
Q = R are known as Lagrange’s

Auziliary (or Subsidiary) equations.

“Working Rule

~ Solution of Pp + Qq = R (Lagrange’s Method)

1. Put the given linear equation in the form

Pp+Qq=R.

2. Write down Lagrange’s Auxiliary Equations
dw - dy _dz
P Q@ R
3. Taking two of th'e‘ratios at a time, and by using method of solving .
ordinary differential equations, obtain
ﬁ(x, Y, Z) =C1, ' v(a:, y,Z) = 100

. e cd dy _ dz
as two 1nde_pendent solutions of & = —QE =%.

4. The general solution of Pp+Qq = 'R can be written as ¢(u,v) =0
or in the form v = f(v) or v = F(u).

ving Pp+Qq = R, the most important

InL ’s Method of sol :
T JARTANEE’s V7E from Lagrange’s Auxiliary Equations

part is to obtain u = ¢1, ¥V = €2
dr _ dy _ dz
P Q =. 73"

We ask our readers to rem

/ - -
Solved Problems: (Type I - Type IV)

ember four types of problerms:

"

Type |

—— i .2
> Example 2.3.1 Solve: L2p+ 324 =V

Solution; Lagrangé’s Auxiliary Equations are

dr dy dz]

d dz _ o _ =<

Y2z xz Y
xT
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462 | _ An Introduction to Differential Equations-

From the first two ratios we see that the variable 2z cancels
out and we are left with

s gy or, z2dz —y’dy =0.

Vijz : =z

Integrating, we get

-y =c. [fu=al

Taking the first and last ratio we see that y? cancels out and

we obtain

d—x‘:fii or, zdr—z2dz=0.
zfz 1

Integrating we get

g2 -2 =c; [cf v = ca]

.. The required general solution of the given equation is

Cd(u,v) =0

ie., d(x® —y3,22 -2 =0

where ¢ is any arbitrary function of its arguments.
» Example 2.3.2 Solve: ap+aq = 2.

Solution: Lagrange’s Auxiliary Equations are

dz _dy dz (cf dr _dy dz
" P Q R,

a a z

First two ratios at once ‘give U= —y=c.
Again, Second and Third Ratios give v =y — alogz = c;.

- The required general solution is

é(u, v) = 0, ie., ¢z —y,y— alogz) =0.

» Example 2.3.3 Solve: y°p — zyq = z(z — 2y).
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Solution: Lagrange’s Auxiliary Equations are
d_:z: _ Gy | S dz
e
First two ratios give
de _dy » '
” = = l1.e., IL'diL‘-i-yd’( :O:}ugmz-}-yz:cl.
Last two ratios give
dy _ _dz
-y z-2y’
o dz +l _q ord. diff. eqn. Linear Form
e, = Z= i flay 2
vy oy with LF. = eJ v = ¢!98V =y

Multiplying by the LF. y and integrating we gét
2y = y2 +cp, ie., u=2zy- y2 = Cs.
.. The required general solution is ¢(u,v) =0

d(z? +y2,zy —y?) =0, ¢ being arbitrary.

.

A

Try Yourself (Ezamples for Practice)
Solve the following linear equations by using Lagrange’s
Auxiliary Equations (Lagrange’s Method)

1. 2p+3¢=1. - 2. p+g=sinz.
" rzp+yzq = 2yY. 4. ptanz + gtany = tan 2.
5. zp+z=0. 6. yzp + zxq = TY.
7. zzp + yzq +22=0. 8. a:zp.—}-_ y2q = 22,
9. zp+yq= 2. :

Answers

1. ¢(z—22,y—32) =0. 2. d(z—y,z+cos

z) =0. 3. ¢(z*—zy, &) = 0.
sin » i 2 . . 2_ 2 a - . = .
L= g(dne). B2 S ¢(y). 6. ¢(z"—y"z° —2%) =0

To(t-1141) =0 8.¢(%"5’%'%=O)‘9“’5(%’%):0‘

x
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464 | An Introduction to Differential Equations

Type Il
dy _ dz ' -

Suppose that one integral of djf- = 'Qﬂ = R cat.n be obtained easily

by taking suitably chosen two ratios (as used in Type I Problems)

" and suppose that another integral cannot be obtained by this same
method.

Then one integral known to us is used to
the Solved Examples given below).
al the constant of integration of the first integral

find another integral (see

In the second integr
should be removed. -

» Example 2.3.4 Solve: p+3q = 52 + tan(y — 37).

Solution: The Lagrange’s Auxiliary Equations are

do _dy 4
1 3  5z+tan(y—3z)

First see that one integral can be easily obtained from the first two
ratios, namely ‘—ili = %ﬂ. Thus y — 3z = ¢; (first integral). The second
integral cannot be obtained in this manner. However, we take first
ratio and the last ratio and obtain

dz dz dz

T = 5 T tan(y = 3) = tanc (using the known integral)

Writing
5dz

5dr = ————
9z + tanc;

and integrating we obtain

5x — log(bz + tan c1) = arbitrary constant ¢y (say).

- The ;equired general solutidn is
5z — log[5z + tan(y — 3z)] = ¢(y — 3z),

where ¢ is arbitrary.

» Example 2.3.5 Solve: .zyp + y2q = zyz — 222,
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solution: Lagrange’s Aux111ary Equatio
10ns are

WY zyz_op

Taking the first two ratio;

i t108 : .
hence, on integration s =c. (cancelling y), we get & = %ﬂ and
From second and third ratiog

d_?/ _ dz
Y2 zyz — 272

= dz o

d
- _32l _ dz
y 1Y%z — 2c%y2
= Cldy —_— .d—z
(z — 2¢1)
= Y — log(z == 261) = Co

(-%)

= z-loglz—— | =c.

N y :

. The required geheral solution is

2z %
g-( Y ) ¢ )
¢ being an arbitrary function.

» Example 2.3.6 Solve: zzp +yzq =7TY-

SOlution:f' The Lagrange subsidiary equations are

do _dy _ 4%

Tz Yz ZY

| e o b dz _ dy -
Taking the first two ratios (concelling z), we get ¢ = 7' and this
gives, on integration ‘

|8
I
)
R

logz — lqu =logc1 OT

Dif Eqn-30
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466 | An Introduction to Differential Equationg

The second and third ratios are

dy _ dz
Yz Ty
or, Ed—y-:-(-ii
z %

or, zdy=zdz 4 |
or, ¢y dy=zdz (using the known integral z = c1y)
Hence, on integration we get
2 2
) z=
Z_ = — + constant
g T2

or, Ty — 22 =co.

. The required general solution is ¢(u,v) =0,

or, ¢.<§,xy - zz) =0, ¢ being arbitrary.

» Example 2.3.7 Solve: py +qz = zyz(z? — y?).

Solution: Lagrange’s subsidiary equations are
dr dy . dz

) "z wR@ - )

From first two fractions we obtain z2 — y? = ¢1.

The last two fractions give
| dy _ dz
r  zyz?(2? —y?)
dy _ dz (o 22

:> S

! 1 yz2q
1 dz
C1 2

On integration,

y2 1 ( 1) |
— = — | —— ] + constant
2 C1 z

2 e
or, Cly2 = —; + constant

2
or, (xz - y2)y2 + ; = Cs.
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Hence the required genera] solution is -
2 _ 2y, 2 , 2
(z Y y* + Pl Pz — y2), ¢ is arbitrary.
. Try Yourself (Ezamples for Practice)
Solve by Lagrange’s Method
12 +ay)pe —qy) =a*. 2. p-g= =

- 3. p—2q = 3z2sin(y + 2z). 4. (22 —y? — 22)p + 2zyq = 2z2.

5. 2(p—q) = 22+ (z +y)2.

“Answers

A .
1 ot — 2t —2zy2?) =0. 2.2 (2 +y)logz = ¢(z +y). 3. z"sn
(yfz(:?—z = p(y+2z). 4. ZTHEE = ¢ (2). 5. M [+ (o)) = d(z+).

Type 11 | |
We may required to write (using a well-known Rule of Ratio _and
Proportion) |

Lagrange’s Subsidiary Equations as

de dy dz Pidz + Qidy + Radz

—_— e T

=0 R PP+QQ+HER '

| hosen carefully. If PIP +Q1Q +
Multipliers P, @1, R should be ¢ i .
RiR Egptf;n wlrifilPi dz +Q1dy + Ridz = 0 Now, on integration of
Pldm:-é dy + Ridz = 0 we may obtain an integral ui(z,y,2) = 1.
1 ‘ L ' : ; - .
With tlhe help of another set of suitably chosen multipliers we may
obtain another integral w2 (%Y z) =C2-

. i ible by use of suitable multipliers
i 1v one integral is poss!
andst%?i?}?;isiztlgra] may be obtained by methods of Type I and Type

II.
Tlhéﬂ the required general solution 18 Wr‘li?ten as
"¢(U1,U2) =0

Where ¢ is an arbitrary function:
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468 | An Introduction to Differential Equations

* — E_—_g_' . — ﬂ'_—_b-wy
» Example 2.3.8 Solve: boeyzp+ 5 2TIT e

i - idiar uations are
Solution: The Lagrange’s subsidiary eq

dz dy  _ ,%z__
- = ——_—_—r" - [a—
Ee | () ()
ada bdy _ ¢4z 0
or, b —c)yz - (- a)zx (a—b)zy |

Multiply both Numerator and Denominator of first ratio by g
second ratio by y and third ratio by z.

Then each ratio of (1)

azdr +bydy +czdz _ azdr + by dy + cz dz.
" zyz(b—c+c—a+a—Db) 0

Hence we may write

azdzr +bydy + czdz = 0.

On integration we obtain

az? + by? + cz? = constant c¢; (say). (2)

Take another set of multipliers ax (first ratio), by (second ratio)
and cz (third ratio). Then each ratio of (1) becomes

a’z dz + b%y dy + ¢z dz _a’z dz + b2y dy + c*z dz

= zyz[a(b — c) + b(c — a) + c(a — b)] 0
Hence a’z dr + b%y dy + ¢z dz = 0. Now integrating we get
a’z® + b’y® + ¢*2* = constant ¢, (say). | (3)

From (2) and (3) we write the general solution of the given
equation as Ly

d(az?® + by® + c2?, a2 +’ b2y + ?22) =0

)

where ¢ is an arbitrary function.

» Example 2.3.9 Solve: (mz — ny)p+ (nx — l2)q = ly — ma.
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solution: The Lagrange’s subsidiar - _ ,
* given equation are Yrednatons COIreSpond,lng to the
. g :'i_ . dz
MZ=ny nx-lz ly—ms (1)

Using Inultipliel‘s z for the first ratio, y for the second and z for
the third we write each ratio of (1)

_ Tdr+ydy+ 2z dz T dr+ydy+zdz
(mz—ny):c+(nw—lz)y+(ly—ma:)z i 0 '

Hence we can write & dz +y dy + z dz = 0. On integration we get

2 + y2 + 2% = constant c1 (say). : 2)

Next we choose [, m, n as multipliers of first, second and third ratios
of (1). Then each ratio of (1) becomes

lde + mdy + ndz - _ ldz + mdy + ndz
I(mz —ny) + m(nz — 12) + n(ly — mz) 0

Hence
ldz + mdy +ndz =0,
= Iz + my + nz = constant ¢z (say). (3)
The required general solution from (2) and (3) is
o(z® +y°. + 22,1z + my + nz) =0,
¢ being an arbitrary function. |
' ' = 2 2

» Example 2.3.10 Solve: z(y’ — 22)(p — y(2% + 2°)g = 2(z” +¥°)-

‘Solution: The Lagrange’s Auxiliary Equations corresponding to the
given equations are .
*dx .___ _____d_y,_——— = ———z-diT (1)
o e e MR R

Using z, y, z as multipliers for. first, second and third ratio of (1),

e
€ write | Gz . 2
each ratio of (1) = 72(y2 — 22) — (27 + %) + 2(22 + 12
¢ dr+ydy+zdz
rar tyWTZ -
= 0
0. whence z° + y+22=c. (2)

tdr+ydy+zdz =
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Using 5 —%, —1 as multipliers of ratios of (1) we again find eac),
ratio of (1) becomes

1d::: - ldy - —dz
@2 = 2%) + (22 +2?) — (2° +97)
ldr - ldy — 1dz |

0

idz — -:;dy — %dz =0 which yields on integration,
T

logz — logy — log z = log ¢z, or, _y—z = Ca. (3)

. The required general solution [from (2) and (3)] is
¢(x2+y2+‘z2,3) =0
where ¢ is an arbitrary function.
» Example 2.3.11 Solve: z(y* + z)p — y(z* +2)q = z(z? — y?).

Solution: The Lagrange’s subsidiary equations corresponding to the
given equation are
dz dy | dz

Py Ry oy e P M

Choosing' x,v, —1as multipliers of ratios of (1)

rdr+ydy—dz
22 (y2 + 2) — y2 (22 + 2) — 2(22 — y?)
zdr+ydy—dz

0 :

each ratio of (1) =

Hence = dz +y dy — dz = 0 which, on integration, gives

2 + 9% -2z =¢,. : (2)
Again, choosing % = 5,% as multipliers of ratios of (1) we obtain,
each.ratio of (1) becomes
dz/z +dy/y +dz/z da:/:z;-i—dy/y-{—dz/z
y2+z—(:z:2+z)+:v2—y 0
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Hence S + v E=0or logmyz = logc, |
i.e‘., TYz = ¢y, | (3)
.. From (2) and (3) the required general solution is
o2ty - 22,1y2) =,
¢ being an arbitrary function.
- » Example 2.3.12 Solve: (y? + 22)p — TYq = —23. [L.A.S. 1990]

Solution: The Lagrange’s aux1ha1y equations corresponding to the
given equation are

dx dy dz
Yt w2 ‘ (1)

Using multipliers' of the ratios of (1) as z, y, z respectively, we
obtain ' o
rzdr+ydy+zdz
z(y? + 22) — zy? — z2°
zdrx+ydy+zdz
0

each ratio of (1) =

rdr+ydy+zdz=0 which gives, on integration

2 +y’ + 2 =a. | (2)

: Again; from last two ratios of (1) we get

d dz
dy _ dz oF dy _ 2z
\ —zy 2 z

On integration this gives

logy__logz‘ C = IOgCQ_
'_l_/_ = C2. (3)
or, 2

. The required general solution [from (2) and (3)] is -
2 Y\ =
¢($2+y2+z’z) 0_

Where ¢ is an arbitrary function.
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C

Try Yourseif (Ed:amples for Practice)
Solve by Lagrange’s Method of Solution

2(z+y)p+2(z—y)g =2 +y°

2

z(y? - 22)p +y(2 —%)g = (2 —¥°)-
z(y — 2)p+y(z — 2)g = 2(z — y)-

(y — ze)p+ (¢ +y2)g = 2° +y*.

(z + 22)p+ (4zzx — y)q = 22* + .

z?(y — z)p + yQ(z - a:)q.= 2%(z —v).

(22 — 23/2;' —y)p+ (zy + 22)q = zy — 22.
2(zp — yg) = y* —z*.

(y3z — 2z%)p + (2y* — 3y)g = 9z(ﬁv3 —13).
(3z + y’—\z)p+ (z+y—2)qg=2(z-y).
z(z? + 3y*)p — y(3z® +y%)g = 22(y* — 2?).

[Delhi B.Sc. Hons. 2000]
[Here Lagrange’s subsidiary equations are

de - dy _ dz
z(z? +3y%)  —y(3z2+y?)  2z(y2 —3?)
- Multipliers 1, %, -1 |
1 7. 1 1 ’
sdz + Sdy — 2dz B Ldr + %dy — ;dz'
z? + 3y2 — 322 — y2 — 2(y? — x2) 0

| e T e m
o Ldz + dy+ dz =0 will give 2 = ¢,

Now take the first two ratios m(z?ﬁ:@?j = — (3:g+y2)
dy y(3z? + 32 ,
— = = Equation)
or, -~ (2 F 3y7) (Homogeneous Equ
2
_ ¥ [3-+ (2) ]
— -
s {13 (y)
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ut ¥ =vx. Then y 4 ,dv
T 3+0?
dv :
or, Q?E = —p [3-*-\’02 +1l = 4(1+ vz)v
1+ 302 T 1432
or, 4d£ 1 + 3'1)2 ‘
T v(l + v?) =0
or, 4d‘m + l _2L d
= v Ty = 0
On integration, 4log z + log v +log(1 + v2) = constant

« e s |
or, z"v(1+v?) = constant

2
4Y 1
or, z - (1 + J—2> = constant
T T

or, zy(z®+ y®) = constant
or, c1z(z® +y?) = constant
or, z2(z*+1y%) =cy (say).

. The required solution is

¢ (z(:v2 + %), :_cg) =0, ¢ being arbitrary.]

i2. (y—z2)p+ (2 — x)q. =z —¥-

13. (y + zz)p — (2 +y2)4+ y? — 22 =0.
[Choose multipliers (i) z,y and —z and (i) y,z and 1]

14. y’p+2°q = z2y’2’.

Answers

3y = 0; 2. $(a" +Y' F 2 ayz) =0; 8. ¢z +u +
—_— , . 2 - a = .
’ = z) = 0, 5. ¢($y -2, ) ‘z) 201
_zz_zyz’xz.'{-yz—i-f) =0; 8. p(z"+y '+

= 0; 10. ¢‘(z—3y—21%%) = 0;

2 — 0
12. ¢(z? +y* — 27y +2) 0;

1. (g2 — 2 — 22,20y — 2
P(z®—y” — 2 Y ey
z,zyz) = 0; 4. ¢(z" — Y .
6'¢(myz,%+%+%)=~0;7'¢(y
T
2,oy) =0; 9. ¢ (wyzl/a, ff + F) .
11. ¢(w+y+z,my+'y26+ zzo) - =
13. ¢ (o8 — y%,0° +y° +3) =¥
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Type IV ‘
As in Type III, with one set of multipliers P;, @1, Ry we write
dr _dy dz Pidz+ Qidy+ Ridz

P Q R PP+QQ+RR

Now, if we see Pydx + Q,dy + R.dz is an exact differential of the
denominator P, P + Q;Q + Ry R, then

P dz + Q1dy + Ridz
PP+ Q:1Q+ R R

d d dz )
may be combined with a suitable ratio of & = “ = — and this

P Q R

will give one integral.
Choose another set of multipliers, say P, Qa, R,, then

Pydx + Q2dy + Radz

each ratio = PP+ 0,04 IR

Suppose that the numerator is again an exact differential of
PP + Q2Q + RoR. The two ratios :

Pidx + Q1dy + R1dz an P2d:1; + Q2dy + Rodz
P1P+Q1Q+R1R P2P+Q2Q+R2R

are then combined to give-a second integral.

See the Worked Examples given below:

» Example 2.3.13 \Solve: (y + z)p +'(z + x)q = (;1; + y) [I.A.S. 1997
Solution: The Lagrange’s auxiliary equations correspondmg to the
given equation are .

dz _dy _dz )
y+z z+z z+y ‘ (1)

Choose multipliers 1,—1,0 for the first, second and third ratio
of (1). Then, each ratio of (1)

- dz — dy _ d:v-—dy;_ d(:p;y)
T y+z—z-—zx y—2z ——(:I:—y)'

[See that multipliers are so chosen that the numerator dz — dy is
an exact differential, namely d(z — y)]
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Again, choosing multipljer- 3s 1,1,1, each ratio of (1)
10 O
dz + d
‘2& ldiz+y+2)
(@ +y+ z) ~ 9 m
Lastly choose 0,1, ~1 as multipliers, then each ratio of (1)
= W-d: _dy-2
Ptr—(z+y)  —(y—z)
So we may write
_dz-y) _ 1d(:1:+y+z) _d(y—2) @)
("B_y) 2 rT+y+z y—2z ’

First two ratio of (2) give, on integration

. 1
—loglz —y) = 3 log(z + y + 2) + constant

ie., 2log(z — y) + log(z + y + z) = constant
or, (z-y)’(z+y+z)=c.

Taking first and last ratio of (2), and integrating we easily obtain

m—y=c2
y—z

. The required general solution is

1C R

Where ¢5 is an arbitrary function.

> Example 2.3.14 Solve: y*(z —¥)P+ w2(y ~2)g = 2(@* +v°).
[LAS. 1006]

Solution: Lagrange’s auxiliary equations.cprresponding to the given
equation are ' y |
dz dy dz

= ————5- 1)
o ci I R RS :
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. 3 3 = i
From the first two ratios we at once get = + ¥~ = C1. ChOOSlng
1,—1,0 as multipliers each ratio of (1)

dzr — dy _ dz — dy
T (z —y) (= +y?)

Yz —y) -2y - o)

Combining it with the third ratio of (1) we write

de —dy . _ dz
@-pE+y?) - 22+
or, d_(:f_—y)___d_z-:- = 0.
T—y z

On integration we get log(z — y) — log z = log ¢z (say)

T—y
or, = C2
P

.. The required general solution is
s (:::3 +4%, “’—_Q> = 0.
_ —

where ¢ is any arbifrary function.

» Example 2.3.15 Solve: (z* — y% — 22)p + 2zyq = 222.
: [I.A.S. 1973, W.B.C.S. 2001]

Solution: Lagrange’s subsidiary equations corresponding to the given

equation are
_ dz _dy-  dz
22 —y? —22  2my 2z ,(1)

Taking the last two ratios we easily get, on integration y [z = e1.
Choosing z,y, z as multipliers of the ratios,

Tdr+ydy+ 2 dz
z(2? —y? - 22) 4 2zy? + 222
cdr+ydy+ 2 dz
z(z? + 2 + 22)

each ratio of (1) - =

Combining thisvwith third ratio of ( 1)., we wfite

zdrx+ydy+ 2 dz d>
T(z? + y? + 22) T 922

2 2 2
or, d@® +y* + 2% _ . dz
2 +y? 42 T
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‘On integration we g¢ 2
Bt log(u? + 42 4 2%) —logz =

. m2 :
or, T+
2 .= C2.

log ¢,

Hence the general solution ig
(Y a? +y? 52

) — 1 =0

2 z X

where ¢-is an arbitrary function

p Example 2.3.16 Solve: cos(z + y)p + sin(z + y)q = 2.

5°|“ti°“: Lagrange’s auxiliary equations corresponding to
equation are _

_dL — dy _ dz
cos(z+y) sin(wx+y) 2

[ 477
the given
(1)

Choosing 1, 1,0 as multipliers of the ratios of (1), each ratio of (1)

_ d(z +y)
cos(z + y) + sin(z +y)

(2)

Choosing 1, —1, 0 as multipliers of the ratios of (1), each ratio of (1)

_ d(z —y)
~ cos(z +y) —sin(z+y)

From (1), (2) and (3) we write
dz d(z +y) _ d(z - y)

(3)

(4)

z cos(z +y) + sin(z + ¥) ~ cos(z +y) —sin(T +

Taking the first two fractions of (4)

dz d(z +y) .
~  cos(z+y)+ sin(z +y)

Pﬁtting r +y =t on the right side we write

y)

i _—’(_1—,3_’_: dt
— cost+sint ﬁ{-\};cost%—-\lﬁsint}
, dt
= Vaem (5 +9)
or, 2515- = cosecC (Z"*‘t) dt.
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Hence on integration, -
t
logz‘/i = log {tan (28[ + —2-) } +logc

zV2 =¢ tan (Z + &), where t =72 +y

' m
or, zV2cot <§ + 5) = c1. | : (5)

Taking. the last two fractions of (4) we get

t

‘ _ cos(z + y) —sin(z +¥)

. On the right side put z +y = t and theh integrate

‘ cost — sint ‘

r—y= | ————dt+ constant
cost +sint

or, x—y = log(sint+ cost)+logcy = log cy(sint + cost)

or, €*~¥ = ch[sin(z +y) + cos(z + y)]

. 1
or, [sin(z +y)+cos(z +y)le!™" = T =0 (say).
: o 2 -

Then. the general solution can be written as

¢ (z"/f cot (-g 4+ 2 ; y) ,e¥~%{sin(z + y) + cos(z + y)}) =0

where ¢ is an arbitrary function.

» Example 2.3.17 S'olve;
pr(z+9) —qy(@+y) + (@ —y)2z + 2y +2) = 0.

Solution: Given équation may be written as
z(z +y)p —y(@ +y)g = —(z - y)((2z + 2y + 2)

Lagrange’s subsidiary equations are

dz ___ dy dz
Rl e Rl e e MR
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The first two ratios of (1) at once 8ive, on int
inte

Again each fraction of (1 (1) becoy gration zy = ¢,.
nes
_dz+ dy
R S e,
d(z + ) y)_y($+y)*($‘y)(2x+2y+z)
or, dz + dy + dz

(w—y)(m+y) Wz +y—2z - 2y—z]

(z -
—(@+y+2)

Hence, on integration, we get
C+y)@+y+2)=c
.. The required general solution is
Bz, @ +y)@+y+2) =0
where ¢ is an arbitrafy function.
Try Yourself (Ezamples for practice)
Solve the following linear partial differential equations

L 1+yp+(l+2z)g=2

2. xzp+ yzq = TY.

3. (2 — y2)p + (W — 22)3 = 2 — 7Y

L (a2 —y? —y2)p + (2 - y? — 22)q = 2(z — ).
0. :z:p-i—yq:z—am. _
A2® + 3zy2)p + @3 + 32%y)q = 22(z + y?). | | [I.A.S. 1993]

prg=z+y+s

® N o

)+ (2% +2y° +2° —yz — 222 -

— —2x—TY
(0% +y° +2° — 202 9y, LA.S. 1992]

zy)g=a? +y? +22° —YE AT

9. (47 4y +ye)p+ (@ +9? T = AT N

il

o

1
. cos(z +y)p+ sin(z+9)9=271%
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4

5. P~ qylogy = zlogy,.

6. P+ y2q =g 44,

7 z(p+Q)=z2+($—y)2.
8. ($z+y2)p+(yz-2z)
9. (z% + 2y2)p - TYq = 1

‘J+2:17y+z =0.

Answers

L. ¢(y—z,e " *y+z) = 2. ) (ccy, :ne%w) =0. 3. p(zy—=z?, z/zy) = 0.
4.z"+y"+2™ = ¢(zyz). 5. #(yz,e” logy) = 0. 6. ¢[—— ;,e"‘(z—y)]

0. 7. log{z +( — 9’} =22 = ¢(z —y). 8. d(yz + 2%, 222 — 1?) = 0.
9. p(z?y? + ¢, yz) = 0.

2.4 Integral Surfaces Through a

Given Curve

W'U?’k.avf RiMe
Given: Pp+ Qq = R, a hnear p.d.e. of ﬁrst order. We obtain two

independent solutions |
U(E,y, Z)b =a and v(.'z:,y,z) =C2 (241)

by using Lagrange’s auxiliary equations.

Suppose now we wish to obtain the integral surface which passes
through a curve whose parametric equations are

o= a(t), y=y) z=20)
where t. is a parameter.
(24.1) is then written as
ulz(t), y(t), Z(t)] =¢ and v[z( t) y(t),2(t)] = c2

lving ¢ and cz. Finally,
We ¢+ and get a relation invo ’
Putting eclinfn; t:aend cy = 1g} we get the required 1ntegral surface passing

through the given curve.
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/ » Example 2.4.1 Find the integral surface of the linear partial dzﬁer-

ential equation

o(y? + 2)p — y(@® + 2)g = (2% —y*)z

which contains the straight line z +y = 0,2 = 1.

Solution: Lagrange’s auxiliary equatlons corresponding to the given

p.d.e. are
dz dy dz
= = gz (1)
z(y> +2) —y(a®+2) (z2 —y?)z

Each ratio of (1)
ldz + 1 Sdy + L dz

An Introduction to Differential Equations

ldo + ;dy + ;dz

[I.A.S. 199g] |

y +z2 (x2+z)+(a:2—y2)= 0
Ldz + %dy +42 =0, ie., logz +logy +logz =logc 1
or, TYyz =Ci. (2)
Each ratio of (1) (Multipliers z,y, —1)
_ zdr+ydy—dz _zdz+ydy—dz
Tox2(y2 4+ 2) —2(z? +2) — (22 —y2)z 0
or zdz+ydy—dz=0
ie, z2+1y?-2z=c,. (3)

Now the straight line in the parametric forms:

z=t y=-t, z=1.

}

From (2) we then write —t2 = ¢;.
From (3) we write 2t> — 2 = c,.

.. The required integral surface can be obtained as qjcl —2=c

r, —2(zyz)-2=2*+y2 -2

or, 2zyz + 2 442

/ Example 2.4.2 Find the equatzon of the integral surface of the

linear differential equation
2y(z —3)p+ (2 — 2)g = y(2z — 3)
which passes through the circle ° + y* = 2z,2 = 0.

)
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golution: Lagrange’s auxiliary ¢ .
cquation are duations corresponding to the given
dz d
-z y(Qm -3) (1)
-om first and th i .
Fro € last ratio we get by integration
ie., byi i
[ y mtegraﬁmg (22 - 3)dz = 2(; - 3) dz)
We get
$2—3m—zz+6z=cl. (2)
Again each ratio of (1) |
Yz +ydy—d ipli
& P) yay —az Multipliers
y(z—3)+y(2z —z) —y(2z - 3) |arel,y,-1
3 ldz +ydy—dz
i .
1 z, ¥ t
5d:z:+y dy—dz=0 = §+_2_—z=constan
= x+y2_2z:62. ' (3)

Now the given circle in the parametric form is

Tz =1, ’y=\/2t-—t2, z2=0

From (2) and (3) we obtain
42— 3t=c. and t+@2t-t) =0

. o
Eliminating t, we get ¢t +¢2 =

2_22=0

ral Surface
' _ 0 Reqd. Integra
le. 72 4 42 — 2 _9p+42=0 ' . '
=y \; +y | z t always write the equation of the given curve in
e need not a o below:
parametric form. See the example &1V
| e linear partial differ-

rface of th
torf the circle Z2+y*> =1,

W Example 2.4.3 Find the mtig;?; — 7 through
ential equation (z—y)p+ (y-= :
z=1. : :
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Solution: Given equation: (z —y)p+ (¥ —z—2)g==2

Lagrange’s auxiliary equations are:

dr dy _ d_z
z—y—y—z—z—z (1)
S dz+dy+dz _ dz+dy+dz
Each ratio = B e e R 5
dx+d§j+dz=0 or, r+y+z=c. )
Taking the last two ratios of (1) we get y—_‘iz%; =4
or, dy = —z, using (2)
S y-z—(a-z-y) =z
d
of; y _dz "
2y — ¢y z

On integration this gives 3 log(2y — ¢1) = log z + constant

or, log(2y —c1) —2logz =logcs

or, yz2 2= C2 .
2y—(z+y+=z .
or, y. ( o) y+2) = ¢y [using (2)]
oi', y—z—2=c2% C ' (3)

Given curve: 22 +y?2 =1,2z=1
Using z = 1, in (2) and (3)

$+y=61—1,. (y—x)zc.2+1
+y)?+@y-2)°=(c1— 1)+ (2 +1)*
or, 2(z>+y2) =(c; —1)®+ (ca +1)?

or, ¢} +c5—2c +2c; =0 (using 22 +y? =1 of the curve).

From (2) and (3) it follows

§ oot 232 . T
(z+y+z)2+(y-‘:f”')—2(x+y+.z)+2(y—é%f)=0

%

i.e., the required surface is
Az +y +4z')2‘+ (y—z—-2)2 -2z +y+2)+ 222(y —z—2)

=0.

Scanned by CamScanner



Chapter 2. Lagrange's Solution of a Linear Partial Diff. Eqn.

gxample 2.4.4 Find the integral surface of

4
/ — 2 2 2
p+y“q+2°=0,

[ 487

yhich passes through the hyperboloid zy = = +y,z = 1. [LA.S. 1994]

Solution: Given equation: z%p +y%¢ + 22 =0
or, z2p+1y?q= 22
Ofm: curve:
zy=z+y, z=1
Lagrange’s auxiliary equations are

&HI&|@I dz

2 yr =22
Taking the first and third ratio
z7%dz +272d2 =0
Integrating —2 — = = —c1 (say)
1,1
z

or, —+
x

=C-

Taking the second and third ratio y~2dy+272dz=0

Integrating |w —-Ll=—0c (say)
1 2

1
or, —+—-=¢c".
y z

Adding (4) and (5) 2 +3+2=a+c

or, HM\Q +wn9 tc2
or, Weilocite [using ()]
zy 1

or, ¢g+c2=3

obtain

o101
W+.H|+l+l = 3
T z Yy =z

or, yz+2zy+12 = 3zyz. Ans.

0

2

®3)

(4)

©)

(6)

Substituting the values of ¢; and cp from (4) and (5) in (6), we

oo T ——
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Surfaces orthogonal to a given system of surfaces

Let
f@y.2)=c (24.2)

represent a system of surfaces with ¢ as a parameter. We wish to
- obtain a system of surfaces which cut each surface of (2.4.2) at right
angles. -

Then the direction ratios of the normal at (z,y, z) to (2.4.2) which
passes through the point are

of of . of
oz’ Oy and 0z

: Le't the surfaceA . )
z=¢(z,y) (2.4.3)

cuts each surface of (2.4.2) at right angles. Then the normal at (z,y,2)
to (2.4.3) has direction ratios

0z, 08 1, i.e -1
ax ) ay b) ’ b | p? q’ | &
Since normals at (z,y, z) to (2.4.2) and (2.4.3) are at rigl\lt angles, we
have ' :
of  90f Of _ ‘
3 +q 3 9z 0, (2.4.4)

which is of the form Pp+ ch =R.

Conversely, any solution of (2.4.4) is orthogonal to every surface of
(2.4.2).- '

» Example 2.4.5 Find the surface which intersects the surface of the
system z(z +y) = c(3z + 1) orthogonally and which passes through the
circle 2> +y? =1,z = 1. . [I.A.S. 1999

Solution: The given system of surfaces is given by

2(z +y)

f(a:,y,z) = 3Z+1 =cC: ‘ (1)
of z - of _ z_ Of _ 1
8z 3z+1 8y 32+1’6z_($+y) [(324_1)2]'
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The required orthogona) surface is solution of
ion o
0
péi + qg'i = éi
: dy 8z
or £
2. Db+ = z+y
z+1)p+z(3z+1)q=:c+y. (2)
Lagrange’s auxiliary equations for (2) are
3da: _ dy _ dz
z(3z + 1) 3Bz+1) " x4y R

Taking the first two fractions of (3) we get dr — dy = 0 so that

T—y=q. _ (4)
Choosing ,y, —2(3z + 1) as multipliers, each fraction of (3)

_Tdz+ydy—2z(3z+1)dz
0
or, z dr+ydy —32%dz — 2 dz = 0.

. 2 2 3
Integrating, - + % — 3 x & — 122 = ¢, (say)
or, 22 +1%—22% — 2% = ¢ (5)

Hence any surface which is orthogonal to (1) has equation of the
form

| z? +y% - 22° = 2° = ¢(z - v), (6)
¢ being any arbitrary function. N
| In order to get the required surface passing through the circle

z2 +y% = 1, z = 1 we must choose #(z —y) = —2. Thus the required

: o w2 a2 3 _ .2 _
particular surface is z° + ¥~ — 2z° — 2 .

ti ical description o‘f the solutions
» Example 2.4.6 What 15 the geometrical
of Pp+Qq=R and of the system of equations dz/P =dy/Q = dz/R

and establish the relationship between the two-.
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» Example 2.4.9 Find the family of surfaces orthogonal to the family '

of surfaces given' by the differential equation

(y+2)p+(zta)g=2+Y
Solution: Let
P=y+z Q=z+1, R=z+y. 1)
Then the given differential equation becomes
Pp+Qq=R. (2)

Now the differential equation of the family of surfaces orthogonal
to the given family is given by
Pdz + Qdy + Rdz =0
or (y+z)dz+(z+3z)dy+(z+y)dz=0
or (ydz + zdy) + (ydz + zdy) + (zdz + zdz) = 0.

Integrating zy+ yz + zz = ¢ (c being a parameter) which is the
required family of surfaces.

Examples I
@ Find the equation of the integral surface of the differential
equation
(@ ~y2)p+(y° ~22)g =2 —zy
which passes through the line z =1, y = 0.

[Following the solved examples of art. 2.4 obtain (z — y)(y . z) =¢; and

Zy +yz + 2z = c2. Using the equation of the line z = 1, y = 0 obtain
cic2 = -1

-". Required surface (z — y)(y — z)(zy + yz + 22) + 1 = 0.]

j” @ Find the equation of the integral surface satisfying

dyzp+q+2 =0

and passing through y* + 22 = 0,z 4 2 = 2. [I.A.S. 1997)

Chapter 2- Lagrange's Solution of 3 Linear Partial Diff. Eqn. [ 493

@Find the general integral of the partial differential equation
(2(L'y - 1)p+ (Z - 2{t2)q = 2(; - yz)

and also the particular integral which passes through the line
g=1y=0. [LA.S. 1981]

@Fiﬂd the equation of the integral surface of the P.D.E.
..‘,’ .

2y(z - 3)p+ (2z — 2)g = y(2z — 3)
which passes through the circle z = 0,22 — 2z +y2 = 0.
@ Find the general solution of the P.D.E.
2y +p+yy+27)g=2"
_and hence prove that y2(2% + zz — 2y) = z? is a solution.

Solve: zp + yq = z. Find a solution representing a surface
meeting the parabola y? = 4z,z = 1.

7. Find the. surface which is orthogonal to the one-parameter

system z = czy(z®+1?) and which passes through the hyperbola

22—y =a*z=0.

Answers
. 2. .2 _on—
2.2 +22+z+2z-3=0. 3.4y +z—zz—y=1l4z"+y -2

2 2
22 — 4z. 6. General solution ¢ (5, %) = 0; surface Y= 4@‘1. 7. (22 +y° +
42?)(z? - v?)? = o' (&® + ).
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