Physiology of the nerve

Objectives

Transmembrane potential Action potential Relative and absolute refractory period The all-or-none law Hoorweg – Weiss curve Du Bois – Reymond principle Types of nerve fibres

Practical tasks

Virtual physiology of the nerve (PC programme)

Parts of a neuron

Synapse

- connection: neuron-neuron or or neuron effector (muscle, gland)
- transmits signals from a neuron to another neuron or to the effector

Draw a scheme of a neuron and indicate its parts

Types of neurons

© 2013 Pearson Education, Inc.

Receptive and conductive membranes

Dendrites and the cell body

- receptive and integrative region of the neuron
- receptive membrane
 - receives incoming signals
 - detects/codes the intensity of a stimulus (amplitude coding)
 - sums up (spatial and temporal summation) the incoming signals
 - send them towards the axon

Axon

- axon hillock generates an action potential (an outgoing signal /a nerve impulse)
- axon (conductive membrane) conducts the action potential to the next cell

- the receptive and conductive membranes differ in their properties

Membrane (transmembrane) potential

- is the voltage difference between the interior and exterior of a cell (can be masured by electrodes – one INSIDE/ one OUTSIDE the cell)
- electrical potential exists across the membranes of all cells in the body
- the interior of the cell is more negative than the exterior
- typical values of transmembrane potential are -30 mV to -90 mV
- changes in the transmembrane potential basis og the funvtion of excitable tissues

Excitable tissues

- nerve (and muscle) = excitable tissues
 - they react to stimulation by a change of the membrane potential
 - depolarization membrane potential becomes less negative (or even positive)
 - hyperpolarization potential becomes more negative
 - change in membrane potential is the principle of their function
 - nerve signal transmission
 - muscle contraction

RESTING MEMBRANE POTENTIAL of nerves

- is the **membrane potential of nerves when they are not transmitting** nerve signals (they are at rest)
- normal value -90 mV: due to unequal concentration of Na⁺ and K⁺ in intracellular fluid (ICF) and extracellular fluid (ECF)

 ECF
 Na⁺ 142 mmol/l
 K⁺ 4 mmol/l

 ICF
 Na⁺ 14 mmol/l
 K⁺ 140 mmol/l

RESTING MEMBRANE POTENTIAL of nerves

- unequal ion distribution is generated by:
 - 1. activity of Na⁺- K⁺ pump (3 Na⁺ pumped out of the cell for 2 K⁺ into the cell)
 - 2. large negatively charged **protein molecules** inside the neuron cannot cross the membrane (attract positively charged ions)
 - 3. different permeability of the cell membrane for ions
 - permeable for K⁺
 - K⁺ is attracted inside by the negative protein ions
 - K⁺ tends to leak in the concentration gradient outwards
 - until a balance between chemical and electric gradient is established
 - impermeable for Na⁺ (leaks through the membrane only in very small amounts)

ACTION POTENTIAL of a nerve

- a stimulus (e.g. electric current) may cause a change of membrane potential and elicit the action potential (AP)
- AP are transmitted along the nerve fibres (axons)

When transmembrane potential is measured:

- unstimulated nerve resting membrane potential shows a straight line
- after stimulation action potential shows a curve with a typical shape:

ACTION POTENTIAL of a nerve – the curve and its parts

- curve of action potential has a typical shape and involves following parts:
 - 1. depolarisation (comes after stimulation)

- quick increase of the membrane potential - **overshoot (transpolarization)** to positive values

- 2. repolarisation
 - the membrane potential decreases
- 3. hyperpolarisation (after-potential)
 - the membrane potential becomes more negative than in resting state
- 4. resting membrane potential

What is the cause of the voltage changes?

- changes of membrane potential are caused by opening or closing of membrane voltage-gated Na⁺ and K⁺ channels, that cause changes in permeability for Na⁺, K⁺
- 1. depolarisation Na⁺ voltage-gated channels open causing flow of Na⁺ into the cell
- 2. **repolarisation** the Na⁺ channels get inactivated Na⁺ influx stops
 - voltage-gated K⁺ channels open K⁺ ions exit out of the the cell
- 3. after-hyperpolarisation
 - K* channels are inactivated slowly and only gradually
 - this allows prolonged efflux of small amounts of K⁺ that causes hyperpolarization
- 4. resting membrane potential

Response of a SINGLE NERVE FIBRE to a stimulus All or nothing principle (law)

- only a stimulus with sufficient intensity can elicit an action potential (AP)
- threshold stimulus stimulus with minimum intensity that elicits action potential
- subthreshold stimulus stimulus with too low intensity does not elicit AP
- All or nothing principle: the stimulus may elicit either
 - -full response of the nerve fibre (action potential)
 - no response of the nerve fibre (no action potential)
 - no graded response (i.e. stronger stimulus stronger response) of the nerve fibre is possible

Response of a NERVE to stimulation – the compound AP

- a nerve = a bundle of nerve fibres (axons)
- individual fibres differ in sensitivity to stimuli = they have different threshold (more sensitive respond to a weaker stimulus, less sensitive to a stronger stimulus)
- a nerve displays graded response the higher the intensity of the stimulus, the higher the response (progressively more fibres respond)
- the amplitude of AP is composed of responses of several individual fibres
 = compound AP

Minimum threshold stimulus - minimum intensity of stimulus that initiates the response of the most sensitive nerve fibres

Maximum threshold stimulus - intensity of stimulus that initiates also the response of the least sensitive fibres, i.e. of **all fibres**

A nerve fibre - responds according to all or nothing law A nerve (bundle of nerve fibres) - does not respond according to the all or nothing law, it shows a graded response

Hoorweg – Weiss curve

- the term **rheobase** is used for the minimum threshold stimulus
- a stimulus can elicit an action potential if it has sufficient duration
- **intensity** and **duration** of the electric stimulus and have an inverse relation
- **chronaxy** is defined as: the minimum interval of time necessary to electrically stimulate a muscle or nerve fiber, using twice the minimum current (rheobase) needed to elicit a threshold response

Du Bois – Reymond principle

- initiation of action potential requires a fast and sudden change (stimulus)
- if the intensity of stimulus is increasing slowly no action potential is initiated
- the membrane gets accomodated to slowly increasing change (Na channels are inactivated)

Absolute and relative refractory period

- during the period of action potential the ability of nerve to respond to next stimulus is diminished
- due to change in ion distribution

absolute refractory period

(immediately after depolarization)

- no response to the next stimulus
- the Na channels are inactive after previous depolarization
- relative refractory period the nerve responds to the next stimulus, but is more difficult to excite (follows the absolute refractory period)
 - requires a stronger stimulus
 - the response may be weaker
 - some of the Na channels are recovered and already active

Types of nerve fibres in nerves of mammals

	Туре	Function	Diameter (mm)	Speed of AP propagation (m/s)	
А	α	proprioception, motor functions	12 – 20	70-120	
	β	touch, pressure	5 – 12	30-70	
	γ		3-6	15-30	
	δ	pain, heat	2-5	12-30	
В		preganglionic autonomic fibres	3	3-15	
С	dorsal roots	pain	0,4 -1,2	0,5-2	
	sympa- thetic	postganglionic sympathetic fibres	0,3 -1,3	0,7-2,3	

The fibres differ in myelinization, diameter and speed of transmission

- •the thicker the fibre, the faster the transmission
- velocity of nerve impulse transmission higher in myelinated nerve fibres
- (A, B) than unmyelinated (C fibres) -

Conduction of the action potential

Unmyelinated axons

- AP at one spot excites adjacent portions of the membrane resulting in propagation of AP (local currents)
- the depolarization process travels along the membrane

B. MYELINATED AXON

Myelinated axons - Saltatory transmission of AP

- propagation from one node of Ranvier to another
- in myelinated nerve fibres

Advantages

- increases velocity of transmission
- energy needs for AP propagation are reduced

Physiological properties of a nerve

- experiments on a frog nerve musculus ischiadicus
- (please test only one nerve)

Dissection

- a short video showing the preparation of a frog nerve
- 6 steps (see in the right)
- each step is manually started by the button

Experiments

- a virtual laboratory is available for experiments with the frog nerve
- electric current will be used for stimulation
- if the nerve responds biphasic curve is seen on the screen
- (electrodes are placed in the membrane, none is inside the nerve)

monophasic biphasic

stimulator

- serves for stimulation of the nerve
- quality of the stimulus must be preset
 - intensity of the stimulus = amplitude
- duration of the stimulus
- single/twin mode
- (1 pushing of button gives 1 or 2 stimuli)
- **delay** time between 2 stimuli
- multiplier allows to modify quality of the stimulus within a broader range

experimental chamber

- the nerve is put inside

oscilloscope - screen for viewing the results

- timebase, channel 1, channel 2 must be preset properly in order to see the results (AP) in proper size
- store switch on to store the results on screen
- clear screen push to remove previous results

Procedure

- turn on the stimulator and oscilloscope (click on the ON/OFF)
- open the experimental chamber
- place one nerve to the experimental chamber (drag-and-drop)

• preset the devices:

- by moving the appropriate knob to desired value (click with mouse on the value)
- channel 1: 100 mV/div (or 200 mV/div)
- channel 2: to value 5 mV/div
- timebase: 1 ms/div
- mode: single
- duration: 20 ms
- delay : 1 ms

A/ Compound action potential and stimulus intensity

- preset a stimulus with long duration (20 ms)
- stimulate the nerve with a low intensity stimulus (10 mV) if there is no response (straight line), continue the stimulation with stimuli of increasing intensity (20, 30....mV)
- intensity that causes action potential (on the oscilloscope) is the minimum (threshold) stimulus
- switch on the "store" button presets the oscilloscope for saving the results
- stimulate the nerve further with increasing intensity it is presumed that the response will also increase
- record the last intensity (in mV) when an increase was observed, i.e. maximum threshold intensity stimulus

Result: value of minimum and maximum threshold intensity **Conclusion**: explain what is minimum and maximum threshold intensity

B/ Chronaxy and rheobase of the frog nerve

- the **minimum (threshold) stimulus** = **rheobase** (result of part A)
- set the intensity of stimulus (amplitude) to the value equal to 2x rheobase
- start to stimulate the nerve with a stimulus of short duration (0,1 ms)
- if you observe no action potential continue the stimulation with gradually increasing stimulus (0,2 ms – 0,3 ms)
- record the minimum duration of stimulus that causes response
 - = chronaxy

Result: value of rheobase and chronaxy

C. Determination of the absolute and relative refractory period of the frog nerve

change settings
 d
 C

mode – twin duration 1 ms CH1 200 (500) timebase 2 delay 10 ms amplitude 200 mV CH2 5 store: OFF

Procedure

- stimulate the nerve with twin stimuli
- stepwise decrease the delay between 2 stimuli
- record the time when you first time observe a decrease of the second response (=end of RRF)
- continue with stimulation, further decrease the delay
- record the time when no 2nd response occurs (=end of ARF)
- Beginning of the ARF = beginning of the stimulation

Result: determine the duration of ARF and RRF

D. The Hoorweg-Weiss curve

Change the settings:

timebase: 5 ms/div delay: 1 ms channel 1: 100 trig: off

Channel 2: 5 Store: off

- preset a short duration of the stimulus (0,2 ms)
- by increasing the intensity of stimulus find the minimum strength of stimulus that causes action potential
- repeat the measurement for a series of stimuli with increasing duration (the duration time is indicated in the table)

Result:

0,2	0,3	0,5	1	2	3	4	5	(ms)
								(mV)

Conclusion:

- draw the Hoorweg – Weiss curve