
Quantum theory of Paramagnetism 

 In classical theory, we assume that the permanent magnetic moment of a given atom or 
ion rotates freely and can possess any orientation with respect to the applied magnetic field. 
According to quantum theory, since these magnetic moments are quantized, the magnetic 
dipole moment μ and its component μz in the direction of the applied magnetic field can not 
have arbitrary values. We have, in general, a direct relation between the magnetic dipole 
moment μ of an atom or ion in free space and its angular momentum J as 𝜇 = −𝑔𝜇஻𝐽 

The quantity μB is called the Bohr magneton and is equal to 
௘௛

ଶ௠
 in SI system; g is known as 

Lande’s g-factor and is equal to 2 if the net angular momentum of the dipole is due to electron 
spin and 1 if it is due to orbital motion only. In general, it has mixed origin and is obtained 

from the expression: 𝑔 = 1 +
௃(௃ାଵ)ାௌ(ௌାଵ)ି௅(௅ାଵ)

ଶ௃(௃ାଵ)
 

where S and L represent the spin and orbital quantum numbers of the dipole respectively. The 
orientations of the magnetic moment μ with respect to the direction of the applied magnetic 
field are specified by the rule that the possible components of μ along the field direction are 
given by 

𝜇௭ = −𝑔𝜇஻𝑚௝ ; where 𝑚௝ = −𝐽, −𝐽 + 1, . . . . . . . . . . , 𝐽 − 1, 𝐽 is the magnetic quantum 

number associated with J. For each value of J, mj can have (2J+1) values which means that the 
magnetic moment of the atom can have (2J+1) different orientations relative to the applied 
magnetic field. 

The potential energy of such a magnetic dipole in the presence of a magnetic field is, therefore, 
given by  

𝐸 = −𝝁 • 𝑩 = 𝑔𝑚௝𝜇஻𝐵 

According to the M-B distribution, the number of atoms having a particular value of mj is thus 

proportional to 𝑒𝑥𝑝 ቀ−
௚௠ೕఓಳ஻

௞ಳ்
ቁ 

Considering a unit volume of a paramagnetic material containing a total of N atoms, the 
magnetization in the direction of the field is given by 

M = N× (Statistical average of the magnetic moment component per atom along magnetic field 
direction) 
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We consider following two cases: 

Case I: At normal flux densities and ordinary temperature 

𝑖. 𝑒  
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Now,    ∑ 𝑚௝ = 0
௝
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    ∑ 1 = (2𝑗 + 1)௝
௠ೕୀି௝  

and  ∑ 𝑚௝
ଶ = 2 ∑ 𝑚௝

ଶ = 2{1ଶ + 2ଶ + 3ଶ + ⋯ + 𝑗ଶ} = 2
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 is Curie constant. 

and 𝑝௘௙௙ = 𝑔ඥ𝑗(𝑗 + 1) is effective Bohr magneton number. 

Case II: At low temperature and strong magnetic fields, 
௠ೕ௚ఓಳ஻

௞்
 is not smaller than unity and 

it is not possible to make a series expansion of the exponential terms present in the equation 
of magnetization. After some algebraic manipulations*we get, 𝑀 = 𝑁𝑔𝑗𝜇஻𝐵௝(𝑥) 

Where 𝑥 =
௚௝ఓಳ஻

௞்
 𝑎𝑛𝑑 𝐵௝(𝑥) is the Brillouin function defined as, 
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For 𝑥 ≫ 1 i.e. at low temperature and strong magnetic fields, 

    Coth 𝑥 ≅ 1 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝐵௝(𝑥) ≅ 1 

Therefore, 𝑀 = 𝑁𝑔𝑗𝜇஻𝐵௝(𝑥) becomes 𝑀 = 𝑁𝑔𝑗𝜇஻ 

This result implies the state of magnetic saturation, i.e., all the dipoles get aligned along the 
magnetic induction B. Thus, in this limit, the expression is analogous to the Langevin 
expression with the difference that the latter is applicable to freely rotating dipoles only. In 
fact, for 𝑗 → ∞, i.e., for a large number of allowed orientations of a magnetic dipole, we have 

coth ൬
𝑥

2𝑗
൰ →
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And coth ቀ1 +
ଵ

ଶ௝
ቁ 𝑥 → coth 𝑥 

𝐵௝(𝑥) → coth 𝑥 −
1

𝑥
 𝑜𝑟 𝐿(𝑥) 

Thus, the quantum results approach the classical ones. This is what is expected as the classical 
theory allows all conceivable orientations. For other values of j, however, the two results differ 
considerably. 
For 𝑥 ≪ 1 , 𝑖. 𝑒, at weak magnetic field and high temperature, we have 
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Thus, the susceptibility becomes 
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Thus, we see that Curie law is valid again. The above equation is successfully employed 
to predict the values of susceptibility for various paramagnetic crystals particularly rare earth 
ions. The value of j is determined by applying the Hund’s rules. 

Hund’s rules state that, for the ground state of atoms with incompletely filled shells, 
(i) the electron spins add up to give the maximum possible S consistent 
with the Pauli's exclusion principle. 
(ii) the orbital momenta combine to give the maximum value for L that 
is consistent with (i) 
(iii) the value of J is given by 

𝐽 = |𝐿 − 𝑆| if a shell is less than half-filled 
𝐽 = |𝐿 + 𝑆| if a shell is more than half-filled. 
If the shell is just half-filled, L=0 and, therefore, J = S 

However, equation of paramagnetic susceptibility written above is unable to account for the 
experimental observations of susceptibility for the ions of the iron group. This is because of 
the presence of crystal field due to other ions which cannot be neglected in comparison with 
the externally applied field.  

In case of iron group ions, it is found that different J-multiplate are very close together 
so that orbital and spin momenta are quantized separately. In such a case, 𝑝௘௙௙ should be given 

by the expression 𝑝௘௙௙ = ඥ𝐿(𝐿 + 1) + 4𝑆(𝑆 + 1). However, experiments show that  𝑝௘௙௙ of 

these elements is given by 𝑝௘௙௙ = ඥ4𝑆(𝑆 + 1). D.M. Bose and Stroner explained this by 

suggesting orbital quenching due to crystal field of these ions. According to them the orbital 
motion for these ions are not manifested in the determination of magnetic moment and hence 
we get only the contribution of spin. Thus, for iron group elements such as Ni2+, Co2+, Mn2+, 

(3d configuration) the 𝑝௘௙௙ will be given by ඥ4𝑆(𝑆 + 1). 

 
Example1: 
Dy3+ has outer electron configuration of 4f 96s0. Calculate magnetic susceptibility for a salt 
containing one kg mole of Dy3+ ions at 300 K. 
Ans:  
 
 
 
 
 
 



 
 

 

 

 

 

 

 

Example 2: 

The electronic configuration of a Cr2+ ion is 3d 44s0. Calculate the magnetic susceptibility for 
a salt containing 1 kg mole of Cr2+ ions at 300 K. 

Ans:  


