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Syllabus for Unit-l : Riemann Integration: Inequalities of upper and lower
sums, Darbaux Integation, Darboux Theorem, Riemann Conditions of
Integrability, Riemann sum and definition of Riemann Integral through
Riemann sums, Equivalence of two definitions, Riemann Integrability of
monotone and continuous functions, Properties of the Riemann Integral,
Definition and integrability of piecewise continuous and monotone functions.

Intermediate Value Theorem for Integrals, Fundamental Theorem of Integral
Calculus.

The famous German Mathematician B. Riemann was the First to remove the concept of
definite integral from a geometrical basis and give an arithmetical approach to it.

SOME DEFINITIONS AND NOTATIONS

DEFINITION : (Division or Partition ) By a division or partition D ( orP) of a closed

interval [a,b] we shall mean a finite set of numbers
D ={a=X,, X, Xpreeees Xp_gs X yoreens Xy gy X, = D} satisfying
a=X, <X <X, <ote <Xy <X < <X,5 <X, =b.

The r'" subinterval of the division D is denoted by &, . That is, 5, =[x, ;,X, |. The length of

r'" subinterval of the division D is also denoted by &, . Thatis, &, = X, — X, .

DEFINITION : (Norm) By the Norm of the division D we shall mean the length of greatest
of subintervals created by the division D . The Norm of the division D is denoted by ||D|| or
by 0.

DEFINITION : (Upper and Lower Sums) The sums
S(D)=U(D, f)=M,5, + M3, +......... +M, 6, +M



s(D)=L(D, f)=m,5, + m,5, +......... +M,_ 5 MO, e, +m, 5, +m are
respectively, called the Upper Integral Sum (or Upper Sum) and Lower Integral
Sum (or Lower Sum) of f(x)for the division/Partition D where M, is the supremum of
the function f(x) for the subinterval &, =[x, x, | and m_is the infimum of the function

f (x) for the subinterval &, =[x,_,,x, |.

DEFINITION : (Oscillatory Sum)
The difference S(D)—-s(D)=> M5, -m,5, = > (M, —m,)5, = > 0,5,is called the
r=1 r=1 r=1

oscillatory sum and O, =M, -m, is called the oscillation of the function
ind, =[x_.,x |

r-11r

DEFINITION : (Refinement of division/Partition) If a division/Partition D' be constructed
from D by distributing a few additional division points between those already occurring we
shall say that D' is a refinement of D .

NOTE : If there are two refinements D, and D, the their common refinement will be
D=D,uD,.

RIEMANN INTEGRABILITY

Let f be a bounded function defined in the closed interval [a,b].

Let D= {a = Xgs Xy Xpyereerneen D ST X, = b} be a division/partition of [a,b]. Then [XO,Xl],
[Xl,xz], [xz,xs], ............... , [erl,xr], ..................... , [anl,xn] are the subintervals in which the
interval [a,b] is divided. Let the length the r™ interval ,i.e., o, = [XH, Xr] be J, . Since the
function is bounded in [a,b] is also necessarily bounded in each of the subintervals . Let

M, and m, be the supremum and infimum of f in o, = [erl,xr].

If M and m be the supremum and infimum of f in [a,b] then for every value of r, we
have, m<m <M, <M

=md, <m0, <M, 5, <Mo,.Putting r=123,.......... ,N we have
mo, <m;6, < M6, < Mo, ,

ms, <m,s, <M,5, < M3,



mo, <m,o, <M, o, <MJ,. Adding these, we get,

m(o, +9, +...+9,) <mod, +m,5, +...+ m.8, <M, 6, + M,0, +..+ M 5, <M (S, +0,...+9,)
=mb-a)<s(D)<S(D)<M(b-a).

This is true for all possible divisions/partitions D,,D,, D;,........... . Therefore,

m(b —a) < 5(D),s(D,),S(D,),eeeveirerirrirnnn. <S(D),S(D,),S(D,),veeeeverirerirrnnne. <M (b-a)
Therefore, the set of all lower sums s(D),s(D,),s(D,),...cc.ccce.... and the set of all lower sums

S(D),S(D,),S(D,),ccvevene are bounded.
The infimum of the set of all upper sums S(D),S(D,),S(D,),ccccrnunee. is called the upper

integral of f over [a,b] and is denoted by U = I: f (x)dx.
The supremum of the set of all lower sums s(D),s(D,),S(D,),.....cccce.... is called the lower
integral of f over [a,b] and is denoted by L = Ib f (x)dx.

A bounded function f is said to be Riemann Integrable or simply integrable over [a,b],

if its upper integral and lower integral are equal.
The common value of these integrals is called the Riemann Integral and is denoted by

= [ f(xax.
DARBOUX’S THEOREM

m To every positive quantity ¢, however small it may be, there corresponds a

b
positive quantity S such that S(D) < I f(x)dx+¢& VD with ||D|| <0

b
and  s(D)> [ f(x)dx—z VD with [D|<5

RIEMANN CONDITION OF INTEGRABILITY

NECESSARY AND SUFFICIENT CONDITION FOR
INTEGRABILITY

( FIRST FORM )

m A necessary and sufficient condition for integrability of a bounded function
is that to every ¢ >0, there corresponds a 6 >0 such that for every division D whose
norm is <9, the oscillatory sum »(D) =S(D)-s(D) < ¢



Proof : The condition is necessar

Let the given bounded function is integrable. Then we must have

b b b
I f(x)dx = .[ f(x)dx = 'f f(x)dx. Let € > 0. By darboux’s theorem, there exists ¢ > 0 such
a a a

b b
that for every division D with [D| <5 S(D) < _[ f (x)dx +§ = I f (x)dx +§ and

b b
& &
s(D)> | f(X)dx——==| f(X)dx——
(D) j ()2 j ()dx -
r & r &
Therefore, j f(dx—- <s(D) < (D) < j f(dx+- . This implies

»(D) =S(D)-s(D)<¢.

he condition is sufficient|

Let £ > 0. There exists a division D such that S(D)-s(D) < ¢.
b b b
That is, {S(D) - j f(x)dx} + { j f (x)dx — j f (x)dx}+{
7 b

the three brackets is non-negative, we have 0< J' f(x)dx—j f(X)dx<g. As &>0is

a a

f(x)dx — S(D)} < & . Since each of

Tl D C—y T

b b
arbitrary, we see that the non-negative number If(x)dx—jf(x)dx is less than
a a

every positive number, however small that number may be, and hence

i f (x)dx—i f(x)dx=0= i f(x)dx = i f (X)dx = f (x)is integrable.

NECESSARY AND SUFFICIENT CONDITION FOR
INTEGRABILITY

( SECOND FORM )

_ A necessary and sufficient condition that a bounded real valued
function f (x) be integrable in the closed interval [a,b] is that for each ¢ >0, however

small, there exists a division/partition D of [a,b] such that 0<S(D)-s(D) < &, where



S(D)and s(D)are the upper sum and lower sum of f(X) corresponding to the
division/partition D .

Proof : The condition is necessar

b b
Since f(x) is integrable, If(x)dX:If(X)dx. Also we can find a division/partition D'for
a : )
which the upper sum S(D’) (say) such that S(D’) < j f (X)dx+§ and for a division/partition
a

b
D" the lower sum s(D")(say) such that s(D”)>If(x)dx—§. Let D be the common

b b
refinement of D"and D" . Then S(D) <If(x)dx+§ and s(D) >I f(x)dx—%.

Hence S(D)—§<Tf(x)dx:if(x)dx< s(D)+§:>O§ S(D)-s(D)<¢.

he condition is sufficient

b
let 0<S(D)-s(D)<e. Since jf(x)dx is the infimum of the set of all upper sums

b
corresponding to every possible divisions and J. f (X)dx is the supremum of the set of all

a

b
lower sums corresponding to every possible divisions, we must have, S(D) ZJ.f(X)dx
b b b
and s(D) gjf(x)dx. This implies &> S(D)—s(D) zj f(x)dx—J' f(x)dx. That is,

b

f(X)dX—I f (X)dx < ¢ . Since is arbitrary positive quantity, however small, it follows that
a
b

f(x)dx—'[ f(x)dx is less than every positive quantity, however small. So

a

Dy T D m— T D —— T

b b b
f(x)dx— [ f(x)dx =0.Thatis, [ f(x)dx = [ f(x)dx. Hence f(x) is integrable.

a



RIEMANN SUM & RIEMANN INTEGRABILITY IN TERMS OF

pIFANIe[e]'R: (Riemann Sum) Let f(X) be a bounded function defined on the closed
interval [a,b]. Let D:{a:XO,Xl,XZ,....,Xr_l,Xr, ..... X ., X :b}be a division of [a,b]. Let

1 Ap-11 Mn
S . & are arbitrary chosen points such that
§ €0, = [XO,Xl],f2 € [Xl,xz],cf3 € [Xz,xs], ............ &, € [Xn_l,Xn]. Then the sum
f(&)o,+ T(5,)0, + T(&)0; + v, + f(&,)0, = z f(&,)0, is called a Riemann sum
r=1
for the division D and for the chosen point &,,r=123,........ ,N. It is denoted by

R(D, f,f) or by R(D).

\[oag Let M, and m, be the supremum and infimum of f in &, :[xr_l,x,]. Then
m <f(&)<M,, r=123,..... N

= ml'5l' S f(ér)ar S Mr5r

:zn:mrar gzn: f(&£)5, gzn:MrcSr
r=1 r=1 r=1

— (D) < R(D) < S(D).

That is, Riemann sum for a function f corresponding to a division D lies between the

lower sum and the upper sum of corresponding to a division D. No matter how we select
the intermediate points &,

pI330igle]'N: (Riemann Integrability in terms of Riemann Sum ) Let f be a bounded
function defined on the closed interval [a,b]. Then f is said to be integrable on [a,b] if

there exists a real number A such that HIB\i\moR(D):A’ where ||D|| is the norm of the

division D of [a,b], R(D) is a Riemann sum for f corresponding the division D of [a,b]

b
and corresponding to an arbitrary choice of intermediate points. In this case, A= J. f(x)dx.

a



EQUIVALENCE OF TWO DEFINITIONS OF INTEGRABILITY

m: (Equivalence of two definitions) Let f be a bounded function defined

on the closed interval [a,b], b >a. The necessary and sufficient condition that f be

b b
integrable over [a,b] and equal to A (: .[ f(x)de is that HIB‘i‘n}) R(D)=A (: I f(x)dxj .

a

Proof : The condition is necessar

b
Let f be integrable over [a,b]. That is, If(x)dx exists. Since f is integrable over
a

[a,b], for any £>0, there exists a positive 6 such that S(D)-s(D)<e& for all
possible division D of [a,b] with [D|<& [ie,

D|| - 01]. For every division D of [a,b],
b
s(D) < I f(x)dx < S(D)and for every division D of [a,b], s(D) < R(D) < S(D) where

R(D) is a Riemann sum for f corresponding the division D of [a,b] and corresponding to

an arbitrary choice of intermediate points . Therefore, for every division D of [a,b]

<S(D)-s(D) = < ¢ for all division D of [a,b] with

R(D) —T f (x)dx

R(D) -T f (X)dx

D] <5 Lie.,

D|— 0]. Hence

HIB\i\Eg) R(D)=A (: T f (x)de .

he condition is sufficient

b
Let LimR(D)=A (: J. f(x)de. Thus for each &> Othere exists 6 >0 with ||D|<& ,

|pj-0

R(D)—jl f (x)dx

b b
<§ That is, !f(x)dx—§< R(D)<£ f(x)dx+§.

That is, A—g < Z f(&,)o, < A+% for any choice of &, iN O, woevercrieicricie (1)

r=1



Then for each subinterval o6, of D, there exists «, and f, such that

r r

M, ——% <f(a)<M, and m < f(B)<m +

- That is,
" 2b-a) =0k

2(bg— a)

&

2(b-a)

Then 30 1@)d, >3 M6, e ST and S A(AS <m0

f(a,)>Mr—ﬁ and f(B)<m, +

That is, Zn:f(ar)ér>S(D)—g and Zn:f(ﬂr)ér<s(D)+% ............................................. (2).
r=1 r=1

Since (1) holds for any choice of &, in o,, let £, =, , we have from (1) Z f(a,)o, < A+g
r=1

whereby from (2) we have S(D) —% < Z f(a,)d, < A+§ = S(D)< A+ € v, (3).

r=1

Similarly taking &, = 5, we have from (1), z f(p,)o, > A—% whereby from (2) we have

r=1

s(D)+g>Zn:f(ﬁr)5,>A—g = S(D) > A= & e (4).
r=1

b b b b
Since s(D)sjf(x)dxsjf(x)dxssm), we have, A-g<jf(x)dxsjf(x)dx< A+e

b b
Whereby j f (x)dx — j f (x)dx < 2¢ and

b
I f(x)dx — A‘ < ¢&. Since ¢ is arbitrary small positive
a

b b b
quantity, we must have [ f (X)dx = [ f(x)dx and [ f(x)dx= A

Therefore,

QD ey T |

b b
f(x)dx = J- f(X)dx=A= J- f (X)dx. Hence f is Riemann integrable.

INTEGRABILITY OF CONTINUOUS FUNCTION

m: Every continuous function is integrable.

Proof : Let a continuous function f is defined on the interval [a,b]. Let D be a division of

[a,b] which divides the interval [a,b] into a finite number of sub-intervals



S, =[x, %, r=123,.....,n. Since f is continuous in [a,b] it is bounded in [a,b]. So fis

r

bounded in every sub-intervals &, =[x, ,,x, [ r=123,...... nof [ab]. Again since f is

continuous, it is uniformly continuous in [a,b]. That is, for any € > 0, there exists a positive

5 such that |f(x,) - f (x,)| <b—‘9a whenever X, =X, <&, X, %, €[a,b]rrrrvrsrennn(1).

Again since f is continuous in [a,b], it is continuous in every sub-interval
o —[ X, 1, X ]r—123 ,N . Therefore, there exist o, and g, in J, =[ X, 1, X ]r—123

r

such that f(e,)=M,and f(B,)=m, where M, and m, are respectively, the supremum
and infimum of the function f in &, =[ X, 1, X ]r—123 ,N. Then by (1), we have

M, —m,|=|f(a,)- f(ﬂr)|<bi. The oscillatory sum of f for the division D, i.e., is
-a

S(D)—s(D):anl“(M,—mr)@<rznl:(bfa)r ( Z5J )b a)=¢

= S(D)-s(D) < &.Hence f isintegrable in [a,b].

INTEGRABILITY OF MONOTONIC FUNCTION
m: If a function f is monotonic in[a,b] then it is integrable in [a,b].

Proof : Since f is monotone in [a,b] it is bounded in [a,b]. Let f(a) and f(b) are the
bounds. For the sake of definiteness, let us suppose that the function f is monotonic
increasing. Let £ >0.Let D = {a = Xgs X1 Xgyereerreen s Xp yeenees X, = b} be a division/partition of

[a,b] such that the length of each subinterval is < i . Let the length of the r™

f(b)-f(a)+1
subinterval [ 1 r] is 9, =X, —X,, . Let f(X,)(=M,say) and f(x,,)(=m,say) are the
bounds of f in &8, =[x_,,x].

Now S(D)-s(D)= > (M, -m, )5, = 3((f (x)~ f (x,.)),

L ()~ (%,

St - @15

g

T f(b)—f(a)+1

(f(b)-f(a))<e

= S(D)-s(D)<e. = f isintegrablein [a,b].



PROPERTIES OF THE RIEMANN INTEGRAL

el 5l:  If f (X)is integrable in a<x<b, then it is integrable in c<x<d where

a<c<d<bh. Thatis, f(x) isintegrable in every subinterval.

PROP-2§ If f(X)is integrable in a<x<cand in c<Xx<Db, then it is integrable in
as<x<b.

eIzl [f (X)is integrable in a<x<b, so also is Af (X) where A is any real number.

el 2 If f(X) and g(X)are both integrable in a<x<b, then f(x)+g(x)are also
integrable in a < x<D.
el B4 [ff(X) and g(X)are both integrable in a<x<b, then f(x)eg(x) is also
integrable in a< x<b.

f(X)

el B If f(X) and g(X) are both bounded and integrable in a < x<b, then )
g(x

is

also integrable in a < x <b provided |g (X)| >0.

JUIBA If f(x)is bounded and integrable in [a,b], then |f(X)| is also bounded and
integrable in [a,b].

Proof : Evidently, there exists a positive real number k such that |f(x)|<k, vx e[a,b].

Therefore,

f (X)| is bounded. Next let £ > 0. Since f(x) isintegrable, there exists a division
D= {a: Xos X5 Xp peeirenens y X e ' X :b} such that the corresponding oscillatory sum for
f(x) is less than ¢, i.e., S(D)—s(D)<¢.Let M/, M, are the supremums and m;, m, are
the infimums of f (x)and |f(X)| respectively, in &, = [X, . %, ]. Now Vx,,x, €85,, we have
H f (XZ)‘—| f (Xl)” <|f (%) — f(x)| <M —m/ ( See justification at the end of the proof)

M,-m <M/ -m/.

S0 Y (M, —m, )5, <> (M! —m)p, <.
r=1 r=1

= Zn:(Mr —m, )5, <&.Hence | f(x)| is also integrable in [a,b].
=1

JUSTIFICATION : [ Let |a|b|. Now |a|=|(a—b)+b|<|a—b|+o|. ..|a|—[o|<[]a—b]...... D).
Again, let [o|>[a|. Now |b|=|b-a)+a|=|(a-b)+al<[a-Db|+[a]. ..|o|-[a|<[a-b]......(2).

From (1) & (2), we have Ha| —|b” <la—b|]



Converse of the above theorem is not true.
Example : Let f =[a,b]— R be defined by f(x)=1, xe[a,b]nQ

=-1 X e[a,b]—Q then f is
not integrable on [a,b]. But |f(x)|=1 forall x [a,b]. ..|f| is integrable on [a,b].

If f(X) be bounded functions integrable in [a,b] and F(x)= I f(t)dt,

a<x<b, then F(x) is continuous function of Xin [a,b]. If however, f(x) be continuous

in [a,b]. Then at every point of [a,b], F(x) possesses a derivative and F'(x) = f (x).

MEAN VALUE THEOREM FOR INTEGRALS

Let f(x)and ¢(x) be two bounded functions integrable on [a,b] and let
b b

#(x) keeps same sign in [a,b], then I f (X)p(x)dx = ,uj¢(x)dx where m< u<M , m and
a a

M are the greatest lower bound and least upper bound of f in [a, b].

Proof : For the sake of definiteness let us suppose that ¢(X)is non-negative. That is,
$(x)=0 in [a,b]. In [a,b] , m<F(X)<M . - mg(x) < f(X)d(X) <Mg(x). Since mgp(x),
f (X)p(x) and Mg(x) are each integrable in [a,b], we have

o < 1 000 < [ Mt

= mjl H(x)dx < T f (X)(x)dx < M jlqﬁ(x)dx

—ml < T f (X)¢(x)dx < MI , where | = iqﬁ(x)dx
f f (X)$(X)dx = 2 where m< <M .

= jl f (X)p(x)dx = ﬂj¢(X)dX where m< y <M



COROLLARY : Let f(x) be a bounded function integrable on [ab], then
b
I f(x)dx = ,u(b —a) where m< <M, m and M are the greatest lower bound and least

upper bound of f in [a,b].

Proof : Let us put ¢(x)=1 in the first mean value theorem(generalized meam value

b b
theorem) . Then I f(x).1dx = ,uj'ldx = ,u(b—a).

ABEL’S INEQUALITY :
If (1) a,,8,,85,..ccccvnee. ,a, is a non increasing sequence of n positive numbers

(2) V;,V,, Vg ,V, isasetofany n numbers

and (3) handH are two numbers such that h<v,+Vv, +Vv,+.....4V, <Hfor 1< p<n

then ah<ayv, +a,v, +a,v, +....+a,\v, <aH.

SECOND MEAN VALUE THEOREM (BONNET’S FORM)

m If f(x) be a bounded monotonic non-increasing never negative function
defined on [a,b] and $(x) be bounded function integrable on [a,b]. Then there exists a

b <
number & of X in [a,b]such that I f(X)p(x)dx = f (a)_[;b(x)dx where a<¢&<b.

Proof : Let D = {a = X s Xy s Xp yevereenens s Xy yeeenens X, = b} be any division/partition of [a,b] and
let M,and m_ are respectively, the supremum and infimum of the function ¢(x) in

S, =[x, % r=123...,n.Let & €[x, ;. ].

r r-1"r

Now in &, =[X,,,X, ], m, <p(Xx) <M, =m, (x, —x_,)< '|L¢(x)dxs M, (X, =X,y )eeerrerranne (1)
and M, (X, =X, ) S BE )X =X, )M, (X, =X,y ) eovvevvrrrnnnns (2).  Putting r=123,...,p<n
p X p
and adding we get from (1) Z:mré'r < I¢(X)dx SZM e S (3)
r=1 a r=1
p p p
and from (2) get, Z:mﬁr < Z¢(§r)5r SZMrér ................................... (4)
r=1 r=1 r=1

X P P p
Now from (3), we get I¢(X)dx < Z M,d, and from (4) we get —Z:¢5(§r)5r < —Z m.o, .
a r=1

r=1 r=1

pcding, |~ > 9515, + [ p0x)cx

Si'vlrér _imré‘r = p (Mr _mrbr Si(l\/lr _mrbr'
r=1 r=1 =1 r=1

r




n

Or, JB¢(X)dX_Z(M r — My ﬁr < i¢(§r)5r < JB¢(X)dX+i(M P — My br :

r=1

X
Now since ¢(X) is integrable, I¢(X)dx is a continuous function of X(by theorem )

a

and it must have its supremum (M, say) and infimum (m,say) .

Hence m_i(Mr _mrbr Si¢(§r)5r <M +i(Mr _mrﬁr'

let a_ = (&), v, =¢(&)5,, h:m—zn:(Mr—mr)f?r, H:M+Zn:(Mr—mr)§r.Then
r=1 r=1

using Abel’s inequality we have

f(a){m—zn:(Mr —m,)gr}gzn: f(E)P(E)S, < f(a){M +i(|\/|r —mr)§,}. Let D[ -0, so

r=1

n b
that >"(M, —=m, )5, — 0 whereby mf (a) < [  (x)¢(x)dx < Mf (a) . That is,
=1 a
b
I f(X)p(x)dx < uf (@), where m<u<M. Since Mand mare the supremum and

X X
infimum of the continuous function I¢(X)dx, the function _[¢(x)dx must assume every

a a

intermediate value of M and m. Therefore, there must exists at least one value £ in [a,b]

for which if(x)qﬁ(x)dx: f(a)jg/)(x)dx.

SECOND MEAN VALUE THEOREM (WEIERSTRASS FORM)

L[LelH3\YRNE If f(X) be a bounded and monotonic function defined on [a,b] and ¢(X)

be bounded function integrable on [a, b] .Then there exists at least value of X , say &, in

[a,b] such that i f (X)p(x)dx = f (a)f¢(x)dx+ f (b)i¢(x)dx where a<&<b .
a a é

Proof : Let f(X) be monotonically decreasing function so that w(x)= f(x)— f(b)is

monotonically decreasing and positive. Then from S.M.V.T(Bonnet’s form) we have

il//(x)¢(x)dx = W(a)i¢(x)dx where a< & <b.

b

¢
or, [[f(x)—f B)lp(x)dx = [f () - f (0)][ #(x)ax

a



b b 3 ¢
=N j f (X)p(x)dx = f (b) j (x)dx + f (a) j #(x)dx — f (b) j $(x)dx
¢ b ¢
= f(a)[ g(x)dx+ f (b){ [0)dx— | ¢(x)dx}
s a b
= f(a) j $(x)dx + f (b)[ j S(X)dx + j ¢(x)dx}
a & a
4 b
= f(a) [ g(x)dx+ f (b) [ $(x)dx.
a 4

That is, j- f(X)p(x)dx = f (a)jigé(x)dx + f (b)j-gzﬁ(x)dx where a<¢&<b.
a a 3

FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS

If f(x)is integrable on [a,b]and if there exists a function ¢(x)such that
b
¢'(X)=f(x) on (a,b), then J.f(x)dx=¢(b)—¢(a). (¢(x)is called primitive of f (x)and

f (x) is called derivative of #(x) ).

Proof : Let ¢ >0. Since ¢'(x)= f(x)is bounded and integrable on [a,b], there exists a
division/partition D = {a = X1 Xps Xp yerereerenny P S X, = b} of [a,b] such that

< E s (1) Where Z(p'(fr)é} is the Riemann sum for the

r=1

()3, - [[# (0K

function ¢'(X) corresponding to a division D. Considering the ' subinterval

o =[XH,X,], by the Lagrange’s Mean-Value Theorem of differential calculus, we have

r

B ) =X 1) = (% =X (&) = ¢'(£)5, where & e[x, % ].
Therefore, i;ﬂ(g,)@ = Zn:[¢(xr)—¢(xr,l)]: PO C) J— (2). Then by (1) and (2),

it follows that < ¢&.As gis an arbitrary positive number, we conclude

$(0) -~ 9(2) - [ #(x)dx

that ¢(b) —4(a) — j:¢'(x)dx =0 or j f (x)dx = g(b) — (a).



If f(x) be bounded in [a,b] and if M and m be the supremum and infimum of
f(x) in [a,b], then m(b-a)< [ f(xax< [ t(x)dx<M(b-a).

Proof : Let D =1{a =Xy, X, Xy, erernn Xp s X, = b} be a division/partition of [a,b]. Then

[Xo,xl], [Xl,xz], [XZ,XS], ............... ,[Xr_l,xr], ..................... ,[anl,xn] are the subintervals in
which the interval [a,b] is divided. Let the length the r'™" subinterval ,i.e., &, =[x, X, | be
0, . Let norm of the division/partition D is ||D|| Since the function is bounded in [a,b] is

also necessarily bounded in each of the subintervals . Let M, and m, be the supremum and

infimum of f in &, =[x, x,].

If M and m be the supremum and infimum of f in [a,b] then for every value of r, we

have, m<m, <M, <M

=md, <m0, <M, 5, <Mo,.Putting r=123,.......... ,N and adding, we have

> M, <> mS, <Y M5, <D MG, .
r=1 r=1 r=1 r=1
= mb-a)<s(D)<S(D)<M(b-a).

Now if [D| = 0, then m(b—a)< jbf (x)dx < _[bf (x)dx<M(b—a).

If f(X) be bounded and integrable in [a,b] and if M and m be the supremum
and infimum of £ () in [a,b], then m(b-a)< ['f (x)dx<M(b-a).

Proof : Since f(X) isintegrable in [a,b] we have J.bf (X)dx = J.b f(x)dx = Ib f (x)dx. The form

the conclusion of the result-1 we get m(b—a) < Ibf (x)dx<M(b-a).

HHBIREeE  If f(X) be integrable in [a,b], then there exists a number i where

m<u<M, Mand mare the supremum and infimum of f(x)in [a,b], such that

[ (dx=ulb-a).

Proof : Since m < i <M the result follows from the conclusion of result-2.

If f(X) be integrable in [a,b] and f(x)>0,then I:f (x)dx>0.



Proof : By result-2, we have I:f(x)dxz mb-a). As f(x)>0, m>0and as (b—a)is the

b
length ot the interval [a,b], we have (b—a)>0. Therefore, L f(x)dx>m(b-a)>0.

If f(x)and g(x) be both bounded and integrable in [a,b] and f (x) > g(x),
then jb f (x)dx > j:g(x)dx .

Proof : Since f(x) and g(x) be both bounded and integrable in [a,b], f(x)—g(x) is also

bounded and integrable in [a,b]. Then by result-4, we have Ib{f(x)—g(x)}dXZO. Hence

[t (x> ["g(x)dx.

HRINECE If f(X) be integrable in [a,b] then

Proof : Since f(X) isintegrable in [a,b], Jj f (X)dx exists and also j:| f (X)|dX exists (by Prop-7).

[0 ooax < [ (fex.

Now —|f(x)|< f()<[f)| (.. x<x)
= —[1f oofdx < [ £ (9dx < [[]f (0

— jbf (X)dx < jb| f (x)ldx and jbf (X)dx < ﬁ f (x)ldx

- ‘ [t (x)dx‘ < 1t Gofix.

EXAMPLES ON RIEMANN INTEGRATION

m Show by an example that if |f(X)| is integrable then f(X) may not be integrable.

Solution : Let f(x) =1, when Xis rational.
=-1, when xis irrational. be defined in [a,b], b>a. Clearly f (x)is
bounded in [a,b]. Let Let D= {a: Xos Xp5 Xg yererreens D I X, = b} be a division/partition of



[a,b]. Let the length the r™ subinterval ,i.e., &, :[Xr_l,xr] be J,. Since the function is
bounded in [a,b] is also necessarily bounded in each of the subintervals . Let M and m, be

the supremum and infimum of f in &, = [Xr_l,xr].
Then S(D)=U(P, 1°)=Zn“|\/|r5r =Zn:1.5, =(b—a) and the same will be result for every
r=1 r=1
possible division/partition of [a,b]. Hence the infimum of the set of all upper sums is clearly
(b—a). That is, ff(x)dx:(b—a). Again, s(D):L(P,f):Zn:mrér =i—1.5r =—(b-a)
r=1 r=1
and the same will be result for every possible division/partition of [a,b]. Hence the

b
supremum of the set of all lower sums is clearly —(b—a). That is, J f(x)dx=—(b—a).

Therefore, ij (x)dx = ij (x)dx.So f(x) is notintegrable.

Where as for |f(X)

, S(D)=s(D) = Zl.é'r = (b —a) ad it is true for every possible division. So
=1

in that case J.:| f (x)|dx = E| f (x)|dxand consequently | f (x)| is integrable.

m If f(x)=x?,when 0<x<1.
=+/X, when 1< x<2. Evaluate J: f (x)dx

Solution : Since f(x)=x?and f(x)=+/x are both continuous in [01] and [1,2]

respectively, they are integrable in their respective interval.

Now joz f (X)dx = jol f (x)dx+f f (x)dx

:rxzdx+r\/;dx:ﬂ—1.
0 A 3 3

EEE if f(x)=(1-x), when 0<x<1.

=(x-1), when 1< x <2, Evaluate _[02|1— x|dx

Solution : Since f(x)=(1—x) and f(x)=(x-1) are both continuous in [01] and [12]

respectively, they are integrable in their respective interval.

Now [ (x)dx= [ 1-xdx =[ f (x)dx+f f (x)dx

= [[— xjdx-+ [ x 1.

2 0 2 1



a, (a<b)

¢
Show that J-;dx =|b|-
a

X
Solution : Case-1. When O <a<b. Then for all xe[a,b], f(x)= U =X _1 is continuous
X X

b b b

in [a,b]and hence integrable in [a,b]. Therefore, I f (x)dx = Imdx = J.dX =b-a=|b/-a
a a X a

(~~O0<a<b).

Case-2. When a<0<Db. Then the function f(X) :% has only one point of discontinuity at

x =0and hence integrable in [a,b].

. b _ —x . M _ x
Now if a<x<O0, then f(x)=—=—=-1 and if 0<x<Db, then f(Xx)=—=—=1.
X X X X

L W B
Therefore, J.f(x)dx:.[;dx='f;dx+_|.;=—[x]a+[x]0 =a+b=[p|-]a] (~b>0,a<0).
a a a 0
Case-3. When a<x<b<0. Then for all xe[a,b], f(x) :M is continuous in [a,b]and
X
b b|X| b
hence integrable in [a,b]. Therefore, [ f (x)dx= | k= [dx=—o-a]=a—b=]|-d. 50

- tX
in any case, J.—dx =|b|-al.
X
a

5.
Using the relation m(b - a)S Ibf (X)dx <M (b —a) estimate sin x dx.
a J X
4

Solution : Since f (X) _Snx is continuous in [%,%} f (x) is integrable m{% g} That is,
X

5.
J-wdx exists. Also f(Xx)is bounded and monotonically decreasing in{%,%] The
v X
4
3V3
greatest lower bound (m) of is f(= )—— and the least upper bound (M) of is
2



Therefore, m(b—a)< I: f(x)dx<M(b-a)

L2z 1) fonsy 42(x 1)

X  27\3 4

1 1
H Show that _[|x|dx =1 and also show that I{x+|x|}dx =1.
1 -1

Solution : f(x)=|x=-x when —1<x<0
=X when 0<x<1.
Since f(x)=-xand f(x)=x are both continuous in [-1,0] and [0,1] respectively, they are

integrable in their respective interval.
0

Therefore, j|x|dx = J' — xdx+ Jl. xadx
-1 0

-1
=1
Also f(X) = {x+[x}=x+(~x)=0 when —1<x<0
=X+X=2X when 0<x<1.
Since f(x)=0and f(x)=2x are both continuous in [-1,0] and [0,1] respectively, they are

integrable in their respective interval.
1 1 0 1
Therefore, f f (x)dx = J.{x +[x|}x ='|.0.dx + IZde
1 -1 -1 0
=0+ [XZ];
=1

3
Show that 4sj\/3+ x3dx <2430 .
1

Solution : Let f(x)=+/3+x®. Clearly, f(x) is monotonically increasing in [1,3]. Therefore,
supremum (M ) of f(x) is f(3) =+/30 and infimum (m) of f(x) is f(l):\/Z=2. Since

3
f (x) is monotonically increasing in [1,3], it is integrable in [1,3]. That is, I\/3+ x*dx exists.
1

Therefore, using the relation m(b—a)sj.bf(x)dXSM(b—a), we can have

2(3-1)< T\/3+ x*dx <~/30(3-1)

1



3

= 4<[+3+x3dx<2430.
K v
1

2 2
If 0< x <1 show that ~— <—> < x2 and hence show that
V2 1+X 3

QI [y
N
IA
O e
>
o
>
AN
[ =

Solution : Let f(X) = Clearly, f(x) is monotonically decreasing in [O,l]. Therefore,

1
Vi+x
supremum (M ) of f(x) is f(0)=1 and infimum (m)of f(x) is f(l):%.

Now m< f(x) <M

:i< 1 <1
V2 1ex
2 2
X X )
= —=< <X° (-x2>0)
J2 7 1+ x
2
Now for second part, let ¢(x) = . X’ is continuous and hence integrable in|0,1] and
VJ1+X o4
1
is monotonically decreasing in|0,1land hence integrable in{0,1|. Therefore,
v [o7] o]
2 1
X 2 ]
#(X) = is integrable in 01 Thus dx and | X“dx exist. Now we have from the
V1+X ) J.\/ J.
2 2
first part X < X < x?
2 NJ1+X
1,2 1 2 1
X X
= | =< dx < | x?dx
o el
1 _ X 1
=—=<] dx <=
3W2 9M1+x 3
2 % 2
Show that < I_Z—de < z
= sin X 3
6

2X
Solution : Let f(x)=——. Clearly, f(x) is monotonically increasing in [%,%} . Therefore,
SN X

supremum (M ) of f(x) is f(g):n and infimum (m) of f(x) is f(%):\/_:%[.smce



3
f (x) is monotonically increasing in [%,%}, it is integrable in [%,%} That is, J-Z—de
5

exists. Now m< f(x)<M

1
Show that ESILSE
2 oV4-x*+x* 6

Solution: 4—x* +x*>4-x* (~-0<x<1)
4—x2+x3>4—(x2—x3)<4 (-0<x<1)
Therefore, VA—x2 + X > vV4—x% and VA—x2+x° <4 =2 .
O S
"2 4t ix® Ja-x?

1 1 1

-, and are all continuous in [0,1] and hence they are intigrable in
2" Ja-x2 4% 4-x°

So

Now

dx andjl. dx
VA—x*+x° o Va—X°
Now from (1) we have 1< ! < !
2 Ja-x2+x* Ja-x°
t1 1 dx ¢ dx
<]
0 0\/4—X2-|-X3 o\/4—X2

exist.

1 1 1
[0,1]. That is, I—dx, I
0 2 0




dx

[1_ X2X

Solution : 1-x?*<1 ('.'OSXS%) and 1-x**>1-x%. Therefore, V1-x* <1 and

Prove that -5< <0-524.

O t—o |

V1-xZ >41-x2. Theseimply 1< ! < ! cevvrerrrsressessensensennennns(1)
2 2
JI-x> J1-x
Here 1, 1 and ! are all
V1-x* 1-x°
1 1
2 2 dx
continuous in [O,—} and hence they are integrable in [O,—] That is, jldx, J. - and
0 o V1—x
1 1 1 1
2 2 2 2
I ax exist. Therefore, from (1) IldXSJ. dx SI d
0 1-x° 0 0\/1—X2X 0\/:|.—X2
1
2
:lsj ox <sint =
2 0 1—X2X 2
L
2
= 5<| Ix 7 3146 _ 5,
0 1—X2X 6 6

) 1 % =
Prove that le—Ie W gt = V10,
Xx—3 X_33

X
Solution : At the point x=3, jemdtzo. Then by L’ Hospital’s rule the given limit
3

2
becomes Lime:LTJrX (using theorem 7))

x—3

=gl

. X e
Prove that Lim _ Iet dt =-1.
X—0 1_ex 5




X
Solution : At the point x=0, Ietzdt:O. Then by L’ Hospital’s rule the given limit

xi Ietzdt +Iet2dt
. dx 0 0
becomes Lim

o jx(l—exz)

xe* + I et dt .
=Lim———2— {— form}
x—0 _ 2xex 0

2 2 2
X +2x%* +e*

=Lim . -
0 _2eX —4x%e”
=-1
Isin Jx )
Prove that Lim-2 =—. (task).
x—0 X 3

b
H If f(x) be continuous in [a,b] and f(x)>0for allx in [a,b]and if jf(x)dX:O,

prove that f(x)=0, ¥xe[a,b].

Solution : Let C be any point in [a,b]. Since f(x)>0,Vxe[a,b] we must have f(c)>0.
If f(c)=0then, the result follows immediately. Next let f(c)>0. Since f(x) is continuous
in [a,b] and ¢ be any point in [a,b], f(x) must be continuous at c. Hence for every

& > 0,however small, there exists a 6 >0 such that |f(X)— f(c)| < & whenever |X—C| <0.

()

Let us take ¢ = where K is a large positive quantity. That is,

[ (x)— f(c) < whenever x—c|<s.

f (c)

= f(xX)>——
0 f( ) [
:>J- f(x)dx > ——= J'dx - f(X) is continuous in [a,b]and hence f (X) is integrable in [a,b])

:>j‘f(x)dx>¥(b—a)>%5



b
:>J-f(x)dx> ()5>O( f(c)>0and §>0). But it is given thatjf(x)dx 0. Hence

our assumption, thatis, f(c) >0 is not true. Therefore, in any case f(c)=0

APPLICTIONS OF MEAN VALUE THEOREMS

M If 0<x'<x"then show that

Solution : Let f(X) :1 and ¢(x)=sinx. Clearly, f(x) :1 is monotonically decreasing
X X

2

Ismx <

in [X',X"] and bounded. And ¢(X)=sinXxis continuous in [X’,X”] and hence

integrable in [X',X”] . Then by Second Mean Value Theorem of Bonnet’s form we have

X" I
j f (X)p(x)dx = f(x')j #(X)dx when X' <E<X" .
X sin x 1% .
Or, J'—dx:—,J'sm xdx
"X X5
1 B
=—|—COSX|;
L [cosl

:%[cosx'—cosé]

X" x
Therefore, IS"]Tde‘ = ‘%(cosx’—cosé){ = ‘%|cosx’—cos§| < %|cosx’|+ %|cos§|
v
1 1 2
= ‘Y(jcos X' +|cos &) < ;‘2 =
("r|cos x| < <1)

<

Ismx

4
Xl

DEVA If 0<x' < x"then show that



1 . 1
Solution: Let f(Xx)== and ¢(x)=sinx. Clearly, f(x)== is monotonically decreasing
X X

in [x,x"] and bounded. And ¢(x)=sinxis continuous in [x,x"] and hence

integrable in  [x',x"] . Then by Second Mean Value Theorem of Weierstrass’s form we

X" 5 X"
have [ f()g(x)dx = f () [ f(x)dx+ f (") [ p(x)dx when X' <&<x".
) ) ;

x"-

Inx_

g X!

lj' |nxdx+i"J'sinxdx

X' X"

xi[ cosx[; +—[—cosx]§
:—,[cosx’—cos§]+%[cosf—cosx”]

Therefore,

J~|nx ‘ ‘%(cosx'—cos§)+%(cos§—cosx”)1

1
<|=(cosx’ —cos§){+
X

iﬂ(cosé —cosx”){
X

= ‘i, lcosx’' —cosé|+|—
X
<t + i,|cos§|+ i"|cos§|+ —
X X X
1 1
= ‘; (cos x| +|cosé])+ 7([005§| +|cosx"|)
Ismx 2+ |—= L 2= %+%<%+%=i,( "|<1, [cosé|<1)
X" X x" X x X
and('.‘X'<X":>i”<i,:>£”<3'),
X" x X" X
1
‘ dx V4 1
Show for k<1, Z< <r._ -
6 '([\/(1—X2Xl—k2X2) 6 1_ik2

1
Solution : Let us chose ¢ in {O,E] Applying First Mean Value Theorem, we get

dx

: L
M xXl Kx )_\/1—k2§2£\/1—x2




1
Now let us put £=0 and c§=§ in (1) to get the minimum and maximum values of

1 1
2 dx Vs 2 dx Vs 1

. Thatis, — < <—-
e s B W ey s 1

m Verify Second Mean Value Theorem of Weierstrass form for the function X’ cosx in

the interval —Z,z .
2 2

Solution : Given integrand, that is, x*cosx can be considered as the product of two
functions f(x) and ¢(x) in the following way :

1) f(x)=x*, ¢(x) =cosx
2) f(x)=cosx, ¢(x)=x>
3) f(x)=x, ¢(X)=xcosx.

Let f(x)=x*, @#(x)=cosx. Then f(x)=x> is not monotonic in [—%,%} and hence

Second Mean Value Theorem of Weierstrass’s form is not applicable for the integrand
X COS X

Next let f(x)=cosx, @(x)= x2. Then also f (x) =cosx is not monotonic in {—%,%} and

hence Second Mean Value Theorem of Weierstrass’s form is not applicable for the integrand
2
X~ COSX.

Lastly, let f(X)=x, ¢(X)=xcosx. Then f(x)=x is monotonic in {—%%} and

¢(x) =xcosx is integrable in {—%,%} and hence Second Mean Value Theorem of

Weierstrass form is applicable in [—%,%} for the integrand x?coSX.



