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UNIT-I (Riemann Integration)                                                Dr. Pradip Kumar Gain 

Syllabus for Unit-I : Riemann Integration: Inequalities of upper and lower 

sums, Darbaux Integation, Darboux Theorem, Riemann Conditions of 

Integrability, Riemann sum and definition of Riemann Integral through 

Riemann sums, Equivalence of two definitions, Riemann Integrability of 

monotone and continuous functions, Properties of the Riemann Integral, 

Definition and integrability of piecewise continuous and monotone functions. 

Intermediate Value Theorem for Integrals, Fundamental Theorem of Integral 

Calculus.  

 

The famous German Mathematician B. Riemann was the First to remove the concept of 

definite integral from a geometrical basis and give an arithmetical approach to it.  

 

SOME DEFINITIONS AND NOTATIONS 

DEFINITION : (Division or Partition )  By a division or partition D ( or P )  of a closed 

interval  ba,  we shall mean a finite set of numbers 

 bxxxxxxxaD nnrro   ,,.....,,,....,,, 1121  satisfying 

bxxxxxxxa nnrro   1121 ........... . 

The rth subinterval of the division D  is denoted by r . That is,  rrr xx ,1 . The length of 

rth subinterval of the division D  is also denoted by r . That is, 1 rrr xx .  

DEFINITION : (Norm)  By the Norm of the division  D  we shall mean the length of greatest 

of subintervals created by the division D . The Norm of the division D  is denoted by D  or 

by  . 

DEFINITION : (Upper and Lower Sums)  The sums 

    nnnnrrrr MMMMMMfDUDS    11112211 .........................., , 



    nnnnrrrr mmmmmmfDLDs    11112211 ..........................,  are 

respectively, called the Upper Integral Sum (or Upper Sum) and Lower Integral 

Sum (or Lower Sum) of )(xf for the division/Partition D  where rM is the supremum of 

the function )(xf  for the subinterval  rrr xx ,1  and rm is the infimum of the function 

)(xf for the subinterval  rrr xx ,1 . 

DEFINITION : (Oscillatory Sum)                                   

The difference 
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)()()( is called the 

oscillatory sum  and rrr mMO   is called the oscillation of the function 

in  rrr xx ,1 .                                                  

DEFINITION : (Refinement of division/Partition) If a division/Partition D  be constructed 

from D  by distributing a few additional division points between those already occurring we 

shall say that D  is a refinement of D . 

NOTE : If there are two refinements 1D  and 2D  the their common refinement will be 

21 DDD  . 

 

RIEMANN INTEGRABILITY 

Let f  be a bounded function defined in the closed interval  ba, . 

Let  bxxxxxaD nr  ,.......,.,,.........,, 210  be a division/partition of  ba, .  Then  10 , xx , 

 21 , xx ,  32 , xx ,……………,  rr xx ,1 ,…………………,  nn xx ,1  are the subintervals in which the 

interval  ba,  is divided.  Let the length the rth interval ,i.e.,  rrr xx ,1  be r . Since the 

function is bounded in  ba,  is also necessarily bounded in each of the subintervals . Let 

rM and rm be the supremum and infimum of f  in  rrr xx ,1 . 

If M  and  m  be the supremum and infimum of f  in  ba,  then for every value of r , we 

have,   MMmm rr   

rrrrrr MMmm   . Putting nr .,,.........3,2,1  we have  

111111  MMmm   , 

 222222  MMmm  , 

  …………………………………………. , 

  …………………………………………. , 

  …………………………………………. , 



                                                          nnnnnn MMmm   .                 Adding these, we get,     

)...(......)...( 212211221121 nnnnnn MMMMmmmm  

)()()()( abMDSDsabm  . 

This is true for all possible divisions/partitions ..,.........,, 321 DDD . Therefore,  

)(..............),........(),(),(..................),........(),(),()( 2121 abMDSDSDSDsDsDsabm 

Therefore, the set of all lower sums ......),........(),(),( 21 DsDsDs and the set of all lower sums 

.......),........(),(),( 21 DSDSDS  are bounded.  

The infimum of the set of all upper sums .......),........(),(),( 21 DSDSDS is called the upper 

integral of f  over  ba,  and is denoted by 
b

a
dxxfU )( . 

The supremum of the set of all lower sums ......),........(),(),( 21 DsDsDs is called the lower 

integral of f  over  ba,  and is denoted by 
b

a
dxxfL )( . 

A bounded function f  is said to be Riemann Integrable or simply integrable over  ba, , 

if its upper integral and lower integral are equal. 

The common value of these integrals is called the Riemann Integral and is denoted by 


b

a
dxxfI )( . 

DARBOUX’S THEOREM 
 

THEOREM 1 :  To every positive quantity  , however small it may be, there corresponds a 

positive quantity  such that  
b

a

dxxfDS )()(   D with D  

                                        and         
b

a

dxxfDs )()(   D with D  

 

RIEMANN CONDITION OF INTEGRABILITY 
 

NECESSARY AND SUFFICIENT CONDITION FOR 

INTEGRABILITY 
 

( FIRST FORM ) 
 

THEOREM 2 :  A  necessary and sufficient condition for integrability of a bounded function 

is that to every 0 , there corresponds a 0  such that for every division D  whose 

norm is  , the oscillatory sum   )()()( DsDSD  



 

Proof :                                          The condition is necessary 

Let the given bounded function is integrable. Then we must have 
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dxxfdxxf )()( . Let 0 .  By darboux’s theorem, there exists 0  such 

that for every division D  with D        
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dxxfDSDsdxxf  . This implies 

  )()()( DsDSD . 

The condition is sufficient 

Let 0 . There exists a division D  such that  )()( DsDS . 

That is, 
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. Since each of 

the three brackets is non-negative, we have  
b

a

b

a

dxxfdxxf )()(0 . As 0 is 

arbitrary, we see that the non-negative number  

b

a

b

a

dxxfdxxf )()(  is less than                  

every positive number, however small that number may be, and hence 

)()()(0)()( xfdxxfdxxfdxxfdxxf

b

a

b

a

b

a

b

a

  is integrable. 

 

NECESSARY AND SUFFICIENT CONDITION FOR 

INTEGRABILITY 

 

( SECOND FORM ) 
 

THEOREM 3:  A  necessary and sufficient condition that a bounded real valued 

function )(xf be integrable in the closed interval  ba,  is that for each 0 , however 

small, there exists a division/partition D  of  ba,  such that  )()(0 DsDS , where 



)(DS and )(Ds are the upper sum and lower sum of )(xf  corresponding to the 

division/partition D . 

 

Proof :                                          The condition is necessary 

 

Since )(xf  is integrable,  

b

a

b

a

dxxfdxxf )()( . Also we can find a division/partition D for 

which the upper sum )(DS  (say) such that 
2

)()(
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 
b

a

dxxfDS  and for a division/partition 

D  the lower sum )(Ds  (say) such that 
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b
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dxxfDs . Let D  be the common 

refinement of D and D  . Then 
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The condition is sufficient 

 

Let    )()(0 DsDS . Since 
b

a

dxxf )(  is the infimum  of the set of all upper sums 

corresponding to every possible divisions and 
b

a

dxxf )(  is the supremum of the set of all 

lower sums corresponding to every possible divisions, we must have, 
b

a

dxxfDS )()(  

and 
b

a

dxxfDs )()( . This implies  

b

a

b

a

dxxfdxxfDsDS )()()()( . That is, 

 
b

a

b

a

dxxfdxxf )()( . Since is arbitrary positive quantity, however small, it follows that 
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b

a

b

a

dxxfdxxf )()(  is less than every positive quantity, however small. So 

0)()(  
b

a

b

a

dxxfdxxf . That is,  

b

a

b

a

dxxfdxxf )()( . Hence )(xf  is integrable.  



 

 

RIEMANN SUM  &  RIEMANN INTEGRABILITY IN TERMS OF 

RIEMANN SUM   

 

DEFINITION : (Riemann Sum) Let )(xf  be a bounded function defined on the closed 

interval  ba, . Let  bxxxxxxxaD nnrro   ,,.....,,,....,,, 1121 be a division of  ba, . Let 

n ...,,.........,, 321  are arbitrary chosen points such that 

       nnn xxxxxxxx ,...,,.........,,,,, 13232121011   . Then the sum 


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n

r

rrnn fffff
1

332211 )()(.............)()()(  is called a Riemann sum 

for the division D  and for the chosen point nrr ,........,3,2,1,  . It is denoted by 

 ,, fDR   or by  DR . 

 

NOTE : Let rM and rm be the supremum and infimum of f  in  rrr xx ,1 . Then 

rrr Mfm  )( , nr ,........,3,2,1  

rrrrrr Mfm   )(  
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111

)(   

)()()( DSDRDs  .   

That is, Riemann sum for a function f  corresponding to a division D  lies between the 

lower sum and the upper sum of corresponding to a division D . No matter how we select 

the intermediate points r  

 

 

DEFINITION : (Riemann Integrability in terms of Riemann Sum ) Let f  be a bounded 

function defined on the closed interval  ba, . Then f  is said to be integrable on  ba,  if 

there exists a real number A  such that ADRLim
D




)(
0

, where D  is the norm of the 

division D  of  ba, , )(DR  is a Riemann sum for f  corresponding the division D  of  ba,   

and corresponding to an arbitrary choice of intermediate points. In this case, 
b

a

dxxfA )( .   



 

 

EQUIVALENCE OF TWO DEFINITIONS OF INTEGRABILITY 

 

THEOREM 4 : (Equivalence of two definitions)  Let f  be a bounded function defined 

on the closed interval  ba, , ab  . The necessary and sufficient condition that f  be 

integrable over  ba,  and equal to A

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dxxf )( . 

 

Proof :                                          The condition is necessary 

Let f  be integrable over  ba, . That is, 
b

a

dxxf )(  exists.  Since f  is  integrable over        

 ba, , for any 0 , there exists a positive   such that  )()( DsDS  for all            

possible division D  of  ba,  with D  [ i.e., 0D ]. For every division D  of  ba, , 

)()()( DSdxxfDs

b

a

  and for every division D  of  ba, ,  )()()( DSDRDs   where 

)(DR  is a Riemann sum for f  corresponding the division D  of  ba,   and corresponding to 

an arbitrary choice of intermediate points . Therefore, for every division D  of  ba,  

)()()()( DsDSdxxfDR

b
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dxxfDR )()(  for all division D  of  ba,  with 

D  [ i.e., 0D ].  Hence  ADRLim
D




)(
0 













 

b

a

dxxf )( . 

 

The condition is sufficient 

Let  ADRLim
D
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Then for each subinterval r  of D , there exists r  and r such that 
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That is,  
2

)()(
1


 



DSf
n

r

rr
    and   

2
)()(

1


 



Dsf
n

r

rr
………………………………………(2). 

Since (1) holds for any choice of r  in r , let rr   , we have from (1) 
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Similarly taking rr    we have from (1), 
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quantity, we must have  
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dxxfAdxxfdxxf )()()( .  Hence f  is  Riemann integrable. 

 

INTEGRABILITY OF CONTINUOUS FUNCTION 

 

THEOREM 5 :  Every continuous function is integrable. 

 

Proof : Let a continuous function f  is defined on the interval  ba, . Let D  be a division of 

 ba,  which divides the interval  ba,  into a finite number of sub-intervals 



  nrxx rrr ,.......,3,2,1,,1   . Since f is continuous in  ba,  it is bounded in  ba, . So f is 

bounded in every sub-intervals   nrxx rrr ,.......,3,2,1,,1   of  ba, . Again  since f  is 

continuous, it is uniformly continuous in  ba, . That is, for any 0 , there exists a positive 

  such that 
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Again since f  is continuous in  ba, , it is continuous in every sub-interval 

  nrxx rrr ,...,3,2,1,,1   . Therefore, there exist r  and r  in   nrxx rrr ,...,3,2,1,,1    

such that rr Mf )( and rr mf )(  where rM and rm are respectively, the supremum 

and infimum of the function f  in   nrxx rrr ,...,3,2,1,,1   . Then by (1), we have 
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)()(  

 )()( DsDS . Hence f  is integrable in  ba, . 

 

INTEGRABILITY OF MONOTONIC FUNCTION 

 

THEOREM 6 :  If a function f is monotonic in  ba,  then it is integrable in  ba, . 

 

Proof : Since f  is monotone in  ba,  it is bounded in  ba, . Let )(af  and )(bf  are the 

bounds. For the sake of definiteness, let us suppose that the function f  is monotonic 

increasing. Let 0 . Let  bxxxxxaD nr  ,.......,.,,.........,, 210  be a division/partition of 

 ba,  such that the length of each subinterval is  
1)()( 


afbf


 . Let the length of the rth 

subinterval  rr xx ,1  is 1 rrr xx  . Let ))(( sayMxf rr   and  ))(( 1 saymxf rr   are the 

bounds of f  in  rrr xx ,1 . 

Now       r

n

r

rr

n

r

rrr xfxfmMDsDS  







1

1

1

()()()(  

                                                                    






n

r

rr xfxf
afbf 1

1()(
1)()(


 

                                                                     





 )()(
1)()(

afbf
afbf

 

 )()( DsDS .      f  is integrable in  ba, . 



 

PROPERTIES OF THE RIEMANN INTEGRAL 

 

PROP-1:  If )(xf is integrable in bxa  , then it is integrable in dxc   where 

bdca  . That is, )(xf  is integrable in every subinterval. 

PROP-2:     If )(xf is integrable in cxa  and in bxc  , then it is integrable in 

bxa  . 

PROP-3:     If )(xf is integrable in bxa  , so also is )(xf  where   is any real number. 

PROP-4:  If )(xf  and )(xg are both integrable in bxa  , then )()( xgxf  are also 

integrable in bxa  . 

PROP-5:  If )(xf  and )(xg are both integrable in bxa  , then )()( xgxf   is also 

integrable in bxa  . 

PROP-6:     If )(xf  and )(xg are both bounded and integrable in bxa  , then 
)(

)(

xg

xf
 is 

also integrable in bxa   provided 0)( xg . 

PROP-7:  If )(xf is bounded and integrable in  ba, , then )(xf  is also bounded and 

integrable in  ba, . 

Proof : Evidently, there exists a positive real number k  such that kxf )( ,  bax , . 

Therefore, )(xf  is bounded. Next let 0 . Since )(xf  is integrable, there exists a division 

 bxxxxxaD nr  ,.......,.,,.........,, 210  such that the corresponding oscillatory sum for 

)(xf  is less than  , i.e.,  )()( DsDS . Let rM  , rM are the supremums and rm , rm are 

the infimums of )(xf and )(xf  respectively, in  rrr xx ,1 . Now rxx  21, , we have 

rr mMxfxfxfxf  )()()(( 121)2 .( See justification at the end of the proof) 

rrrr mMmM  .  

So       


r

n

r

rr

n

r

rr mMmM
11

.  

   


r

n

r

rr mM
1

. Hence )(xf  is also integrable in  ba, . 

JUSTIFICATION : [ Let ba  . Now   bbabbaa  . )1........(baba  . 

Again, let ab  . Now     abaabaaabb  . )2........(baab  . 

From (1) & (2), we have baba  ] 



Converse of the above theorem is not true. 

Example : Let   Rbaf  ,  be defined by ,1)( xf    Qbax  ,  

                                                                                        ,1    Qbax  ,                      then f  is 

not integrable on  ba, .  But 1)( xf  for all  bax , . f  is integrable on  ba, .   

 

THEOREM 7 :   If )(xf  be bounded functions integrable in  ba, and 
x

a

dttfxF )()( , 

bxa  , then )(xF  is continuous function of x in  ba, . If however, )(xf  be continuous 

in  ba, . Then at every point of  ba, , )(xF  possesses a derivative and )()( xfxF  . 

 

 

MEAN VALUE THEOREM FOR INTEGRALS 
 

FIRST MEAN VALUE THEOREM 

(GENERALIZED MEAN VALUE THEOREM) 
 

THEOREM 8 :  Let  )(xf and )(x  be two bounded functions integrable on  ba,  and let  

)(x  keeps same sign in  ba, , then  

b

a

b

a

dxxdxxxf )()()(   where Mm   , m  and 

M are the greatest lower bound and least upper bound of f in  ba, . 

 

Proof : For the sake of definiteness let us suppose that )(x is non-negative. That is, 

0)( x  in  ba, . In  ba,  , Mxfm  )( .   )()()()( xMxxfxm   . Since )(xm , 

)()( xxf   and )(xM are each integrable in  ba, , we have     

dxxMdxxxfdxxm

b

a

b

a

b

a

   )()()()(  . 

dxxMdxxxfdxxm

b

a

b

a

b

a

  )()()()(   

MIdxxxfmI

b

a

  )()(   , where dxxI

b

a

 )(  

 Idxxxf

b

a

  )()(  where Mm   .  

 dxxdxxxf

b

a

b

a

  )()()(   where Mm    



COROLLARY : Let  )(xf  be a bounded function integrable on  ba, , then 

  

b

a

abdxxf )(  where Mm   , m  and M are the greatest lower bound and least 

upper bound of f in  ba, . 

Proof :  Let us put 1)( x  in the first mean value theorem(generalized meam value 

theorem) . Then  abdxdxxf

b

a

b

a

   1.1).( .  

 

ABEL’S INEQUALITY :  

       If (1) naaaa ...,,.........,, 321  is a non increasing sequence of n positive numbers 

           (2) nvvvv ,,.........,, 321   is a set of any n  numbers   

  and (3) h and H are two numbers such that Hvvvvh n  ......321 for np 1   

then  Havavavavaha nn 13322111 ......  . 

 

SECOND MEAN VALUE THEOREM (BONNET’S FORM) 

THEOREM 9 :  If )(xf  be a bounded monotonic non-increasing never negative function 

defined on  ba,  and )(x  be bounded function integrable on  ba, . Then there exists a 

number of x in  ba, such that dxxafdxxxf
a

b

a

 



 )()()()(  where ba    . 

 

Proof : Let  bxxxxxaD nr  ,.......,.,,.........,, 210  be any division/partition of  ba,  and 

let rM and rm are respectively, the supremum and infimum of the function )(x  in 

  nrxx rrr ,...,3,2,1,,1   . Let  rrr xx ,1 .  

Now in  rrr xx ,1 , rr Mxm  )(     11

1

)(   


rrr

x

x

rrr xxMdxxxxm
r

r

 …………..(1) 

and      111 )(   rrrrrrrrr xxMxxxxm  ……………(2).   Putting npr  ,...,3,2,1  

and adding we get from (1)  



p

r

rr

p

r

x

a

rr Mdxxm

p

11

)(  …………………….(3) 

and  from (2)   get,  
 


p

r

rr

p

r

p

r

rrrr Mm
11 1

)(  ……………………………..(4) 

Now from (3), we get  

px

a

dxx)( 


p

r

rrM
1

  and from (4) we get 



p

r

rr

p

r

rr m
11

)(  .  

Adding,      r

n

r

rrr

p

r

rr

p

r

rr

p

r

rr

x

a

p

r

rr mMmMmMdxx

p

 



11111

)()( . 



Or,     r

n

r

rr

x

a

p

r

rrr

n

r

rr

x

a

mMdxxmMdxx

pp

 



111

)()()( .  

Now since )(x  is integrable, 
x

a

dxx)(  is a continuous function of x (by theorem )                      

and it must have its supremum ),( sayM and infimum ),( saym .    

Hence       r

n

r

rr

p

r

rrr

n

r

rr mMMmMm  



111

)( . 

Let )( rr fa  ,    rrrv  )( ,       r

n

r

rr mMmh 



1

,      r

n

r

rr mMMH 



1

. Then 

using Abel’s inequality we have  

   

















 


r

n

r

rr

n

r

rrrr

n

r

rr mMMaffmMmaf 
111

)()()()( .  Let 0D , so 

that   0
1




r

n

r

rr mM   whereby  

b

a

aMfdxxxfamf )()()()(  . That is,  

 

b

a

afdxxxf )()()(  , where Mm   . Since M and m are the supremum and         

infimum of the continuous function 
x

a

dxx)( , the function 
x

a

dxx)(  must assume every                   

intermediate value of M and m . Therefore, there must exists at least one value   in  ba,  

for which   dxxafdxxxf
a

b

a

 



 )()()()( . 

 

SECOND MEAN VALUE THEOREM (WEIERSTRASS FORM) 

THEOREM 10:  If )(xf  be a bounded and monotonic function defined on  ba,  and )(x  

be bounded function integrable on  ba, .Then there exists at least value of  x  , say  , in 

 ba,  such that  dxxbfdxxafdxxxf

b

a

b

a

 




 )()()()()()(  where ba    . 

 

Proof : Let )(xf  be monotonically decreasing function so that )()()( bfxfx  is 

monotonically decreasing and positive. Then from S.M.V.T(Bonnet’s form) we have  

dxxadxxx
a

b

a

 



 )()()()(  where ba   .  

Or,     dxxbfafdxxbfxf
a

b

a

 



 )()()()()()(  



dxxbfdxxafdxxbfdxxxf
aa

b

a

b

a

 



 )()()()()()()()(  

                              







  dxxdxxbfdxxaf

a

b

aa



 )()()()()(  

                               











  dxxdxxbfdxxaf

b

a

a

a

)()()()()( 




 

                                dxxbfdxxaf

b

a

 




 )()()()( . 

That is, dxxbfdxxafdxxxf

b

a

b

a

 




 )()()()()()(  where ba   .  

FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS 
 

THEOREM 11:  If )(xf is integrable on  ba, and if there exists a function )(x such that 

)()( xfx   on  ba, , then )()()( abdxxf

b

a

  . ( )(x is called primitive of )(xf and 

)(xf  is called derivative of )(x ).  

 

Proof : Let 0 . Since )()( xfx  is bounded and integrable on  ba, , there exists a 

division/partition  bxxxxxaD nr  ,.......,.,,.........,, 210  of  ba,  such that  

  


n

r

b

a
rr dxx

1

)()( ………….(1) Where r

n

r

r 



1

)( is the Riemann sum for the 

function )(x corresponding to a division D . Considering the rth subinterval       

 rrr xx ,1 , by the Lagrange’s Mean-Value Theorem of differential calculus, we have 

  rrrrrrr xxxx  )()()()( 11
    where  rrr xx ,1 .  

Therefore,   )()()()()(
1 1

1 abxx
n

r

n

r

rrrr   
 

 ……………….(2).   Then by (1) and (2), 

it follows that   
b

a
dxxab )()()( . As  is an arbitrary positive number, we conclude 

that 0)()()(  
b

a
dxxab    or  )()()( abdxxf

b

a

  . 

 

SOME IMPORTANT RESULTS 



RESULT 1:  If )(xf  be bounded in  ba,  and if M and m be the supremum and infimum of 

)(xf  in  ba, , then      
b

a

b

a
abMdxxfdxxfabm )()( . 

 

Proof : Let  bxxxxxaD nr  ,.......,.,,.........,, 210  be a division/partition of  ba, .  Then 

 10 , xx ,  21 , xx ,  32 , xx ,……………,  rr xx ,1 ,…………………,  nn xx ,1  are the subintervals in 

which the interval  ba,  is divided.  Let the length the rth subinterval ,i.e.,  rrr xx ,1  be 

r . Let norm of the division/partition D  is D . Since the function is bounded in  ba,  is 

also necessarily bounded in each of the subintervals . Let rM and rm be the supremum and 

infimum of f  in  rrr xx ,1 . 

If M  and  m  be the supremum and infimum of f  in  ba,  then for every value of r , we 

have,   MMmm rr   

rrrrrr MMmm   . Putting nr .,,.........3,2,1  and adding, we have  





n

r

rr

n

r

r

n

r

rr

n

r

r MMmm
1111

 . 

)()()()( abMDSDsabm  .  

Now if 0D , then     
b

a

b

a
abMdxxfdxxfabm )()( . 

 

RESULT 2:  If )(xf  be bounded and integrable in  ba,  and if M and m be the supremum 

and infimum of )(xf  in  ba, , then      
b

a
abMdxxfabm )( . 

 

Proof : Since )(xf  is integrable in  ba,  we have  
b

a

b

a

b

a
dxxfdxxfdxxf )()()( . The form 

the conclusion of the result-1 we get     
b

a
abMdxxfabm )( . 

 

RESULT 3:  If )(xf  be integrable in  ba, , then there exists a number   where 

Mm   , M and m are the supremum and infimum of )(xf in  ba, , such that 

 abdxxf
b

a
 )( .  

 

Proof : Since Mm   the result follows from the conclusion of result-2. 

RESULT 4:  If )(xf  be integrable in  ba,  and 0)( xf ,then 0)( 
b

a
dxxf . 



 

Proof : By result-2, we have  abmdxxf
b

a
 )( . As 0)( xf , 0m and as  ab  is the 

length ot the interval  ba, , we have   0 ab . Therefore,   0)(  abmdxxf
b

a
. 

 

RESULT 5:  If )(xf and )(xg  be both bounded and integrable in  ba,  and )()( xgxf  , 

then  
b

a

b

a
dxxgdxxf )()( . 

 

Proof : Since )(xf and )(xg  be both bounded and integrable in  ba, , )()( xgxf   is also 

bounded and integrable in  ba, . Then by result-4, we have   0)()( 
b

a
dxxgxf . Hence 

 
b

a

b

a
dxxgdxxf )()( . 

 

RESULT 6:  If )(xf  be integrable in  ba,  then dxxfdxxf
b

a

b

a   )()( .  

 

Proof : Since )(xf  is integrable in  ba, , 
b

a
dxxf )(  exists and also dxxf

b

a )(  exists (by Prop-7). 

Now   )()()( xfxfxf   ( xx   ) 

  
b

a

b

a

b

a
dxxfdxxfdxxf )()()(  

dxxfdxxf
b

a

b

a   )()(  and  dxxfdxxf
b

a

b

a   )()(  

dxxfdxxf
b

a

b

a   )()( . 

 

EXAMPLES ON RIEMANN INTEGRATION 

 

EX 1:  Show by an example that if )(xf  is integrable then )(xf  may not be integrable.  

 

Solution : Let 1)( xf , when x is rational. 

                                   1 , when x is irrational. be defined in  ba, , ab  . Clearly )(xf is 

bounded in  ba, . Let Let  bxxxxxaD nr  ,.......,.,,.........,, 210  be a division/partition of 



 ba, .  Let the length the rth subinterval ,i.e.,  rrr xx ,1  be r . Since the function is 

bounded in  ba,  is also necessarily bounded in each of the subintervals . Let rM and rm be 

the supremum and infimum of f  in  rrr xx ,1 .  

Then   abMfPUDS
n

r

rr

n

r

r  
 11

.1),()(   and the same will be result for every 

possible division/partition of  ba, .  Hence the infimum of the set of all upper sums is clearly 

 ab  . That is,   
b

a
abdxxf )( . Again,  abmfPLDs

n

r

rr

n

r

r  
 11

.1),()(   

and the same will be result for every possible division/partition of  ba, . Hence the 

supremum of the set of all lower sums is clearly  ab  . That is,   
b

a
abdxxf )( . 

Therefore,  
b

a

b

a
dxxfdxxf )()( . So )(xf  is not integrable.  

Where as for )(xf  ,   abDsDS
n

r

r  
1

.1)()(   ad it is true for every possible division. So 

in that case  
b

a

b

a
dxxfdxxf )()( and consequently )(xf  is integrable. 

 

EX 2:  If 2)( xxf  , when 10  x . 

                         x , when 21  x .  Evaluate  
2

0
)( dxxf   

Solution : Since 2)( xxf  and xxf )(  are both continuous in  1,0  and  2,1  

respectively, they are integrable in their respective interval. 

Now  
2

1

1

0

2

0
)()()( dxxfdxxfdxxf  

                            
3

1

3

242

1

1

0

2   dxxdxx . 

 

EX 3:  If  xxf  1)( , when 10  x . 

                          1 x , when 21  x ,  Evaluate   
2

0
1 dxx   

Solution : Since  xxf  1)(  and  1)(  xxf  are both continuous in  1,0  and  2,1  

respectively, they are integrable in their respective interval. 

Now  
2

1

1

0

2

0

2

0
)()(1)( dxxfdxxfdxxdxxf  

                             
2

1

1

0
11 dxxdxx . 
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
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
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xx
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                            1  

 

 

EX 4:  Show that abdx
x

xb

a

 ,   ba   

Solution : Case-1. When ba 0 . Then for all  bax , , 1)( 
x

x

x

x
xf  is continuous 

in  ba, and hence integrable in  ba, . Therefore,  

b

a

b

a

b

a

ababdxdx
x

x
dxxf )(  

( ba 0 ). 

Case-2. When ba  0 . Then the function 
x

x
xf )(  has only one point of discontinuity at 

0x and hence integrable in  ba, .  

Now if 0 xa , then 1)( 



x

x

x

x
xf  and if bx 0 , then 1)( 

x

x

x

x
xf . 

Therefore,      

0

0

0

0

)(
a

b

a

bb

a

b

a

abbaxx
x

x
dx

x

x
dx

x

x
dxxf     ( 0,0  ab ). 

Case-3. When 0 bxa . Then for all  bax , , 
x

x
xf )(  is continuous in  ba, and 

hence integrable in  ba, . Therefore,   

b

a

b

a

b

a

abbaabdxdx
x

x
dxxf )( . So 

in any case, abdx
x

xb

a

 . 

 

EX 5:   Using the relation     
b

a
abMdxxfabm )(  estimate 

3

4

sin





dx
x

x
. 

Solution : Since
x

x
xf

sin
)(   is continuous in 









3
,

4


, )(xf is integrable in 









3
,

4


. That is, 


3

4

sin





dx
x

x
 exists.  Also )(xf is bounded and monotonically decreasing in 









3
,

4


. The 

greatest lower bound ( m ) of is 




2

33
)

3
( f  and the least upper bound ( M ) of is 





2

24
)

4
( f  .  



Therefore,     
b

a
abMdxxfabm )(  


















  432

24sin

432

33 3

4













dx
x

x
 

6

2sin

8

3 3

4

 





dx
x

x
. 

EX 6:   Show that 1

1

1




dxx  and also show that   1

1

1




dxxx . 

Solution : xxxf )(  when 01  x  

                                     x    when    10  x .  

Since xxf )( and xxf )(  are both continuous in  0,1  and  1,0  respectively, they are 

integrable in their respective interval. 

Therefore,  




0

1

1

0

1

1

xdxxdxdxx  

                     1  

Also     0)(  xxxxxf  when  01  x  

                                   xxx 2      when    10  x .  

Since 0)( xf and xxf 2)(   are both continuous in  0,1  and  1,0  respectively, they are 

integrable in their respective interval. 

Therefore,    




0

1

1

0

1

1

1

1

2.0)( xdxdxdxxxdxxf  

                                                              1020 x  

                                                             1  

EX 7:   Show that  30234

3

1

3   dxx . 

Solution : Let 33)( xxf  . Clearly, )(xf  is monotonically increasing in  3,1 . Therefore, 

supremum ( M ) of )(xf  is 30)3( f  and infimum ( m ) of )(xf  is 24)1( f . Since 

)(xf  is monotonically increasing in  3,1 , it is integrable in  3,1 . That is, dxx 

3

1

33  exists.  

Therefore, using the relation     
b

a
abMdxxfabm )( , we can have 

   13303132

3

1

3   dxx  



30234

3

1

3   dxx . 

EX 8: If 10  x  show that 2
22

12
x

x

xx



  and hence show that 

3

1

123

1
1

0

2




  dx
x

x
. 

 

Solution : Let 
x

xf



1

1
)( . Clearly, )(xf  is monotonically decreasing in  1,0 . Therefore, 

supremum ( M ) of )(xf  is 1)0( f  and infimum ( m ) of )(xf  is 
2

1
)1( f . 

Now Mxfm  )(  

1
1

1

2

1





x
 

2
22

12
x

x

xx



   ( 0x ). 

Now for second part, let 
x

x
x




1
)(

2

 .   2x  is continuous and hence integrable in  1,0  and 

x1

1
 is monotonically decreasing in  1,0 and hence integrable in 1,0 . Therefore, 

x

x
x




1
)(

2

  is integrable in  1,0 . Thus dx
x

x




1

0

2

1
 and dxx

1

0

2  exist.  Now we have from the 

first part 2
22

12
x

x

xx



  

dxxdx
x

xx
 




1

0

2

1

0

21

0

2

12
 

3

1

123

1
1

0

2




  dx
x

x
. 

 

EX 9:   Show that  
3sin

2

9

2 22

6

2 





  dx
x

x
. 

 

Solution : Let 
x

x
xf

sin

2
)(  . Clearly, )(xf  is monotonically increasing in 









2
,

6


. Therefore, 

supremum ( M ) of )(xf  is 


)
2

(f  and infimum ( m ) of )(xf  is 
3

2
4)

6
(


f . Since 



)(xf  is monotonically increasing in 








2
,

6


, it is integrable in 









2
,

6


. That is, dx

x

x

2

6

sin

2





 

exists.   Now   Mxfm  )(  





x

x

sin

2

3

2
 

 
2

6

2

6

2

6

sin

2

3

2
















dxdx
x

x
dx  

3sin

2

9

2 22

6

2 





  dx
x

x
. 

 

EX 10:   Show that  
642

1
1

0
32





 

xx

dx
. 

 

Solution : 232 44 xxx    ( 10  x ) 

                     444 3232  xxxx   ( 10  x ) 

Therefore, 232 44 xxx   and 244 32  xx  . 

So, 
232 4

1

4

1

2

1

xxx 



 …………………..(1) 

 Now 
2

1
, 

324

1

xx 
and 

24

1

x
 are all continuous in  1,0  and hence they are intigrable in 

 1,0 . That is,  dx
1

0
2

1
,  



1

0
324 xx

dx
 and 



1

0
24 x

dx
 exist.  

 Now from (1) we have     
232 4

1

4

1

2

1

xxx 



  

                                          







1

0
2

1

0
32

1

0 442

1

x

dx

xx

dx
dx  

                                          
2

1
sin

42

1 1

1

0
32




 
xx

dx
 

                                          
642

1
1

0
32





 

xx

dx
. 

 

 



EX 11:   Prove that  5240
1

5
2

1

0
2




  xx

dx
. 

Solution :  11 2  xx    (
2

1
0  x )  and   22 11 xx x  .  Therefore, 11 2  xx  and  

22 11 xx x  .   These imply   
22 1

1

1

1
1

xx x 



 …………………………..(1) 

 Here 1, 
xx21

1


 and 

21

1

x
 are all  

 

continuous in 








2

1
,0  and hence they are integrable in 









2

1
,0 . That is, 

2

1

0

1dx , 


2

1

0
21 xx

dx
and 




2

1

0
21 x

dx
 exist.     Therefore, from (1)     







2

1

0
2

2

1

0
2

2

1

0 11
1

x

dx

x

dx
dx

x
 

                                                                
2

1
sin

12

1 1
2

1

0
2




  xx

dx
 

                                                                524
6

14163

61
5

2

1

0
2







 


xx

dx
 

 

EX 12:   Prove that 10

3

1

3

2

3

1
edte

x
Lim

x

t

x


 



.  

 

Solution :  At the point  3x ,   0
3

1 2


 dte

x

t . Then by L’ Hospital’s rule the given limit 

becomes  
1

1 2

3

xe
Lim
x




 (using theorem 7 ) 

                   10e  . 

 

EX 13:   Prove that 1
1 0

0

2

2





dte
e

x
Lim

x

t

xx
.  

 



Solution :  At the point  0x ,   0
0

2

 dte

x

t . Then by L’ Hospital’s rule the given limit 

becomes   

 2

22

1

00

0 x

x

t

x

t

x

e
dx

d

dtedte
dx

d
x

Lim




















 

               
2

22

2

0

0 x

x

tx

x xe

dtexe

Lim








 








form

0

0
 

               
22

222

2

2

0 42

2
xx

xxx

x exe

eexe
Lim







 

               1  

 

EX 14:   Prove that   
3

2
sin

3

0

0

2




 x

x

Lim

x

x
.  (task ). 

 

EX 15:   If )(xf  be continuous in  ba,  and 0)( xf for all x  in  ba, and if  

b

a

dxxf 0)( , 

prove that 0)( xf ,  bax , . 

 

Solution :   Let  c  be any point in  ba, . Since 0)( xf ,  bax ,  we must have 0)( cf . 

If 0)( cf then, the result follows immediately. Next let 0)( cf . Since )(xf  is continuous 

in  ba,  and c  be any point in  ba, , )(xf  must be continuous at c . Hence for every 

0 ,however small, there exists a 0  such that  )()( cfxf whenever  cx . 

Let us take 
k

cf )(
 where k is a large positive quantity. That is,  

k

cf
cfxf

)(
)()(   whenever  cx . 

k

cf
xf

)(
)(   

 

b

a

b

a

dx
k

cf
dxxf

)(
)( .( )(xf  is continuous in  ba, and hence )(xf  is integrable in  ba, ) 

  
k

cf
ab

k

cf
dxxf

b

a

)()(
)(    



0
)(

)(   
k

cf
dxxf

b

a

 ( 0)( cf and 0 ). But it is given that  

b

a

dxxf 0)( . Hence 

our assumption , that is, 0)( cf  is not true. Therefore, in any case 0)( cf  

 

 

 

 

APPLICTIONS OF MEAN VALUE THEOREMS 
 

 

EX 16:   If xx 0 then show that  
x

dx
x

x
x

x







2sin
. 

 

Solution :   Let 
x

xf
1

)(    and  xx sin)(  .  Clearly,  
x

xf
1

)(   is monotonically decreasing 

in  xx ,  and bounded. And xx sin)(  is continuous in  xx ,  and hence                

integrable in   xx ,  .  Then by Second Mean Value Theorem of Bonnet’s form we have 

dxxxfdxxxf

x

x x

 


 





 )()()()(   when  xx    . 

Or, 











x

x

x

xdx
x

dx
x

x
sin

1sin
 

                        xx
x




 cos
1

 

                        coscos
1




 x
x

 

Therefore,    cos
1

cos
1

coscos
1

coscos
1sin

x
x

x
x

x
x

x
dx

x

x
x

x
















 

                                                                                                        
xx

x
x 








2

2
1

coscos
1

                                                                                                         

                                                                                                                ( 1cos x and 1cos  ) 

 

 

EX 17:   If xx 0 then show that  
x

dx
x

x
x

x







4sin
. 

 



Solution :   Let 
x

xf
1

)(    and  xx sin)(  .  Clearly,  
x

xf
1

)(   is monotonically decreasing 

in  xx ,  and bounded. And xx sin)(  is continuous in  xx ,  and hence                

integrable in   xx ,  .  Then by Second Mean Value Theorem of Weierstrass’s form we 

have dxxxfdxxxfdxxxf
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EX 18:     Show for  12 k ,      
   2
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Solution :   Let us chose   in 








2

1
,0 .  Applying First Mean Value Theorem, we get 
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Now let us put 0  and 
2

1
  in (1) to get the minimum and maximum values of 
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EX 19 :   Verify Second Mean Value Theorem of Weierstrass form for the function xx cos2  in 

the interval 









2
,

2


.  

 

Solution :  Given integrand, that is, xx cos2  can be considered as the product of two 

functions )(xf and )(x  in the following way : 

                                       1) 2)( xxf  , xx cos)(   

                                       2) xxf cos)(  , 2)( xx   

                                       3) xxf )( , xxx cos)(  .  

Let 2)( xxf  , xx cos)(  . Then 2)( xxf   is not monotonic in 







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2
,

2


 and hence 

Second Mean Value Theorem of Weierstrass’s form is not applicable for the integrand 

xx cos2 . 

Next let  xxf cos)(  , 2)( xx  . Then also xxf cos)(   is not monotonic in 
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

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
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2
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2


 and 

hence Second Mean Value Theorem of Weierstrass’s form is not applicable for the integrand 

xx cos2 . 

Lastly, let xxf )( , xxx cos)(  . Then xxf )(  is  monotonic in 









2
,

2


 and 
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
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 and hence Second Mean Value Theorem of 

Weierstrass form is applicable in 









2
,

2
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 for the integrand xx cos2 . 

  


