Maxwell’s Stress Tensor (Based on D. J. Griffiths, Introduction to electrodynamics, Chapter-8):
Total electromagnetic force on a distribution of charge in a volume :

F=fpdr(f+?><l_-f)=fp(f+?x§)dr=f(pf+ix§)dr=J7dr............(1)

T

Where the integrand

=p(f+1_7’xl_-f) =pE+JXB.oi..(2)

~!

can be identified as the force per unit volume. We can express 7 in terms of fields E and B only, by

replacing p and J with the help of Maxwell’s 1% and 4™ equations:

—

—(V-E) and pB=j=—VxB-e
p =€ an pv—]—#0 ant

Thus:

. e s (1 -  OE\ -
f=pE+]xB=¢)(V-E)E+ #—VxB—eOE X B
0

e 1, o 0E_
=¢(V-E)E+—(VxB)xB—¢,— x B
Ho ot

Now, using Maxwell' s 3rd eqn.:

B _ GxE
Ee
We can write
O ExB)=Ex BB Ex(@xE)+LxE
a( X )— XE'FEX = - X( X )+EX
0E — 0~ o o o
:Ex3=a(ExB)+Ex(V><E)

Then:
f=EO(V-E)E+H—(V><B)xB—eo[a(ExB)+Ex(VxE)]
0
o o momoa 1o o o 0~
=eo[(v-E)E—Ex(VxE)]—H—Bx(VxB)—eoa(ExB)
0

The expression of 7 can look more symmetrical if we add a term ui (V . §)§ This will not hamper
0

anything since from Maxwell’s 2™ equation V:B = 0. Thus:

7:eo[(v-ﬁ)ﬁ_fx(vxﬁ)]+”l[(v-§)§_§x(v’xﬁ)]_%%(ﬁxﬁ) ......... @)
0
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Again, from vector identities:
V(EF) = 2(E-V)E + 2E x (V x E)
= Ex (VxE) =79 - (B V)E
Similarly:
B x (VxB) = V(8" - (B - V)B
Then we can write f as:

F=c|( B+ (E V)E- V) +%[(—v’-§)§ + (B V)B -2 9(8%)| - o5 (ExB)

. (4)
Also we can replace ExB by uog, where $ is the Poynting vector. Then:
- B 1T o = =g 1o as
f=¢ [(v E)E+ (E-V)E - EV(EZ)] to [(V’ ‘B)B+ (B-V)B - EV(BZ)] — €oo 5,
0
......... (5)
The expression within the first bracket can be expressed in terms of a tensor through few steps as
follows. The x-component f of can be written as:
- o - o 10E? 1] - - N 10B? as.
fe = € [(v “E)E, + (E-V)E, — EW] + - [(v B)B, + (B-V)B, — EW] - “°E°a_tx

=€ <v- (EE,) — SV (xE2)> + H—0<v- (BBy) — SV (x32)> — Uo€o a_tx
. - 1_,1 13 1_ S,
:V'(GQ I:EEx—E.XE ]+H—O[BB)C—§XB ])_HOEOE

Also we can write:

- 1_, R R ~ 1_, R R I
EE, — ExE = (ExX + Ey9 + E,2)E, — ExE = ExExX + EyE,y + E,E, 2 — - RE

1 1 _
- Z (EkExk—E(SkxkEZ)= Z (EkEx—E(Sksz)k

k=x,y,z k=xy,z

N

Similarly:

B _1" 2 _ _1 2\ %
BB, —SXB* = BB, 25ka k
k=x,y,z
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Thus:

- ) 1 1 2\ = 08,
f=V {eo (Bl = 5 80cB?) + — (Biby = 5 8187 )} | = o 5
2 o 2 Jat
k=xy,z
Or:
- - a5,
f;C = V Tkxk - ”060 E ......... (7A)
k=x,y,z
- - as.
fy = V Tkyk - ”060 at ......... (7B)
k=x,y,z
- - as,
f‘Z = V Tka - I.loeo E ......... (7C)
k=x,y,z
=>f=V Tk | — oo 0 l=xyze.. (7D)
k=x,y,z
Where,
1 ) 1 1 )
Tkl = €p (EkEl - _6klE ) +_(BkBl ——5le ) ......... (8)
2 Uo 2
T}, are the elements of a 3 X 3 tensor T, given by:
Txx Txy sz
T= Tyx Tyy Tyz ......... (9)
sz sz Tzz
The diagonal and off diagonal elements of T look like:
Toe = (B2 — B, — E,%) + —— (B — B,? — B,? 104
we =5 (Ex* —Ey* —E,*) +=—(B,* —=B,* = B,%) .. .. . (104)
2 240
1
Tyy = €oExEy + ”—BxBy ......... (10B)
0

Using the property of divergence operation on a tensor, equation (1) can be written as:

Therefore:
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To realize the interpretation of ?, let us convert the first volume integralin the r.h.s of eqn. (12) to
surface integral with the help of Gauss’s divergence theorem. Then:

- o as

F = ﬁ T-dﬁ—uoeof adt vev e ee e o (134)
S T

=g «—> — d -

F = # T-da _”Oeoﬂf Sdt ... ... .. .. (13B)
N T

Where S is the closed surface bounding the volume 7. As seen from eqn. (13A), the second term

vanishes in static case i.e. if S does not depend explicitly on time. Eqn. (13B) shows that the second

term will vanish if the volume integral fT Sdr is independent of time, even if S has time dependence

at different points within the volume 7. Thus in the cases, where the second term vanishes, we have:

To understand T, we note that it has the dimension of stress, i.e. force per unit area. Now consider a
fluid element, having an imaginary boundary surface S, at different points on which the (normally

acting) pressure is P. The net force on the element will be given by:

F:ﬁpda

N

Comparing eqn. (14) with the above one we can interpret the tensor T as a stress tensor. The elements

T;; represent the force per unit area acting in the i-th direction on an element of surface oriented in the

j-th direction. The diagonal elements of Tie.are Tyy, Tyy, T,, are pressures and the off diagonal T,

yy
etc. are shears. T is called Maxwell’s stress tensor. Thus we sece that the electromagnetic field has
stress associated with it, which is given by Maxwell’s stress tensor.
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