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WHEN TO USE SETS

• When the elements must be unique.

• When you need to be able to modify or add to the collection.

• When you need support for mathematical set operations.

• When you don't need to store nested lists, sets, or dictionaries as elements.
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CREATING SETS

• Create an empty set with the set constructor.

• Create an initialized set with the set constructor or the { } notation. Do not use empty 
curly braces to create an empty set – you’ll get an empty dictionary instead.  

myset = set()

myset2 = set([]) # both are empty sets

myset = set(sequence)

myset2 = {expression for variable in sequence}
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HASHABLE ITEMS

The way a set detects non-unique elements is by indexing the data in memory, 
creating a hash for each element. This means that all elements in a set must be 
hashable.

All of Python’s immutable built-in objects are hashable, while no mutable containers 
(such as lists or dictionaries) are. Objects which are instances of user-defined classes 
are also hashable by default.
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MUTABLE OPERATIONS

The following operations are not 
available for frozensets. 

• The add(x) method will add element x 
to the set if it’s not already there. The 
remove(x) and discard(x) methods will 
remove x from the set.

• The pop() method will remove and 
return an arbitrary element from the set. 
Raises an error if the set is empty. 

• The clear() method removes all elements 
from the set. 

>>> myset = {x for x in 'abracadabra'}

>>> myset

set(['a', 'b', 'r', 'c', 'd'])

>>> myset.add('y')

>>> myset

set(['a', 'b', 'r', 'c', 'd', 'y'])

>>> myset.remove('a')

>>> myset

set(['b', 'r', 'c', 'd', 'y'])

>>> myset.pop()

'b' 

>>> myset

set(['r', 'c', 'd', 'y'])
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MUTABLE OPERATIONS CONTINUED

set |= other | ...

Update the set, adding elements from all others.

set &= other & ...

Update the set, keeping only elements found in it and all others.

set -= other | ...

Update the set, removing elements found in others.

set ^= other

Update the set, keeping only elements found in either set, but not in both.
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MUTABLE OPERATIONS CONTINUED

>>> s1 = set('abracadabra')

>>> s2 = set('alacazam')

>>> s1 

set(['a', 'b', 'r', 'c', 'd'])

>>> s2 

set(['a', 'l', 'c', 'z', 'm'])

>>> s1 |= s2 

>>> s1 

set(['a', 'b', 'r', 'c', 'd', 'l', 'z', 'm'])

>>> s1 = set('abracadabra')

>>> s1 &= s2 

>>> s1 

set(['a', 'c'])
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SET OPERATIONS

• The following operations are available for both set and frozenset types.

• Comparison operators >=, <= test whether a set is a superset or subset, 
respectively, of some other set. The > and < operators check for proper 
supersets/subsets.  

>>> s1 = set('abracadabra')

>>> s2 = set('bard')

>>> s1 >= s2 

True

>>> s1 > s2 

True

>>> s1 <= s2 

False
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SET OPERATIONS

• Union:     set | other | …

• Return a new set with elements from the set and all others.

• Intersection:     set & other & …

• Return a new set with elements common to the set and all others.

• Difference:    set – other – … 

• Return a new set with elements in the set that are not in the others.

• Symmetric Difference:    set ^ other

• Return a new set with elements in either the set or other but not both.
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SET OPERATIONS

>>> s1 = set('abracadabra')

>>> s1

set(['a', 'b', 'r', 'c', 'd'])

>>> s2 = set('alacazam')

>>> s2

set(['a', 'l', 'c', 'z', 'm'])

>>> s1 | s2 

set(['a', 'b', 'r', 'c', 'd', 'l', 'z', 'm'])

>>> s1 & s2 

set(['a', 'c'])

>>> s1 - s2 

set(['b', 'r', 'd'])

>>> s1 ^ s2 

set(['b', 'r', 'd', 'l', 'z', 'm'])
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OTHER OPERATIONS

• s.copy() returns a shallow copy of the set s. 

• s.isdisjoint(other) returns True if set s has no elements in common with set 
other. 

• s.issubset(other) returns True if set s is a subset of set other. 

• len, in, and not in are also supported. 
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WHEN TO USE TUPLES

• When storing elements that will not need to be changed.

• When performance is a concern. 

• When you want to store your data in logical immutable pairs, triples, etc.
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CONSTRUCTING TUPLES

• An empty tuple can be created with an empty set of parentheses.

• Pass a sequence type object into the tuple() constructor.

• Tuples can be initialized by listing comma-separated values. These do not need to be 
in parentheses but they can be.  

• One quirk: to initialize a tuple with a single value, use a trailing comma. 

>>> t1 = (1, 2, 3, 4)

>>> t2 = "a", "b", "c", "d"

>>> t3 = ()

>>> t4 = ("red", )
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TUPLE OPERATIONS

Tuples are very similar to lists and support a lot of the same operations. 

• Accessing elements: use bracket notation (e.g. t1[2]) and slicing. 

• Use len(t1) to obtain the length of a tuple. 

• The universal immutable sequence type operations are all supported by tuples. 

• +, *

• in, not in

• min(t), max(t), t.index(x), t.count(x)
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PACKING/UNPACKING

Tuple packing is used to “pack” a collection of items into a tuple. We can unpack a 
tuple using Python’s multiple assignment feature.  

>>> s = ("Susan", 19, "CS") # tuple packing

>>> (name, age, major) = s # tuple unpacking

>>> name 

'Susan' 

>>> age 

19

>>> major 

'CS'
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WHEN TO USE DICTIONARIES

• When you need to create associations in the form of key:value pairs.

• When you need fast lookup for your data, based on a custom key.

• When you need to modify or add to your key:value pairs. 
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CONSTRUCTING A DICTIONARY

• Create an empty dictionary with empty curly braces or the dict() constructor.

• You can initialize a dictionary by specifying each key:value pair within the curly braces. 

• Note that keys must be hashable objects. 

>>> d1 = {}

>>> d2 = dict() # both empty 

>>> d3 = {"Name": "Susan", "Age": 19, "Major": "CS"}

>>> d4 = dict(Name="Susan", Age=19, Major="CS")

>>> d5 = dict(zip(['Name', 'Age', 'Major'], ["Susan", 19, "CS"]))

>>> d6 = dict([('Age', 19), ('Name', "Susan"), ('Major', "CS")])

Note: zip takes two equal-length collections and merges their corresponding elements into tuples. 
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ACCESSING THE DICTIONARY

To access a dictionary, simply index the dictionary by the key to obtain the value. An 
exception will be raised if the key is not in the dictionary. 

>>> d1 = {'Age':19, 'Name':"Susan", 'Major':"CS"}

>>> d1['Age']

19 

>>> d1['Name']

'Susan'
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UPDATING A DICTIONARY

Simply access a key:value pair to modify it or add a new pair. The del keyword can 
be used to delete a single key:value pair or the whole dictionary. The clear() method 
will clear the contents of the dictionary.

>>> d1 = {'Age':19, 'Name':"Susan", 'Major':"CS"}

>>> d1['Age'] = 21

>>> d1['Year'] = "Junior"

>>> d1 

{'Age': 21, 'Name': 'Susan', 'Major': 'CS', 'Year': 'Junior'} 

>>> del d1['Major']

>>> d1 

{'Age': 21, 'Name': 'Susan', 'Year': 'Junior'} 

>>> d1.clear()

>>> d1 
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BUILT-IN DICTIONARY METHODS

>>> d1 = {'Age':19, 'Name':"Susan", 'Major':"CS"}

>>> d1.has_key('Age') # True if key exists

True 

>>> d1.has_key('Year') # False otherwise

False

>>> d1.keys() # Return a list of keys

['Age', 'Name', 'Major'] 

>>> d1.items() # Return a list of key:value pairs

[('Age', 19), ('Name', 'Susan'), ('Major', 'CS')] 

>>> d1.values() # Returns a list of values

[19, 'Susan', 'CS']

Note: in,  not in,  pop(key),and popitem()are also supported.
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ORDERED DICTIONARY

Dictionaries do not remember the order in which keys were inserted. An ordered 
dictionary implementation is available in the collections module. The methods of a 
regular dictionary are all supported by the OrderedDict class. 

An additional method supported by OrderedDict is the following: 

OrderedDict.popitem(last=True)  # pops items in LIFO order
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ORDERED DICTIONARY

>>> # regular unsorted dictionary

>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}

>>> # dictionary sorted by key

>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))

OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)]) 

>>> # dictionary sorted by value

>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))

OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)]) 

>>> # dictionary sorted by length of the key string

>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0]))) OrderedDict([('pear', 

1), ('apple', 4), ('orange', 2), ('banana', 3)])
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Thank You
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