
LECTURE 5 For CBCS 4th Semester

Python Programming
By

Subhadip Mukherjee
Dept. of Computer Science and BCA,

Kharagpur College,

Kharagpur, India



WHEN TO USE SETS

• When the elements must be unique.

• When you need to be able to modify or add to the collection.

• When you need support for mathematical set operations.

• When you don't need to store nested lists, sets, or dictionaries as elements.

Python Programming By Subhadip Mukherjee



CREATING SETS

• Create an empty set with the set constructor.

• Create an initialized set with the set constructor or the { } notation. Do not use empty 
curly braces to create an empty set – you’ll get an empty dictionary instead.  

myset = set()

myset2 = set([]) # both are empty sets

myset = set(sequence)

myset2 = {expression for variable in sequence}

Python Programming By Subhadip Mukherjee



HASHABLE ITEMS

The way a set detects non-unique elements is by indexing the data in memory, 
creating a hash for each element. This means that all elements in a set must be 
hashable.

All of Python’s immutable built-in objects are hashable, while no mutable containers 
(such as lists or dictionaries) are. Objects which are instances of user-defined classes 
are also hashable by default.

Python Programming By Subhadip Mukherjee



MUTABLE OPERATIONS

The following operations are not 
available for frozensets. 

• The add(x) method will add element x 
to the set if it’s not already there. The 
remove(x) and discard(x) methods will 
remove x from the set.

• The pop() method will remove and 
return an arbitrary element from the set. 
Raises an error if the set is empty. 

• The clear() method removes all elements 
from the set. 

>>> myset = {x for x in 'abracadabra'}

>>> myset

set(['a', 'b', 'r', 'c', 'd'])

>>> myset.add('y')

>>> myset

set(['a', 'b', 'r', 'c', 'd', 'y'])

>>> myset.remove('a')

>>> myset

set(['b', 'r', 'c', 'd', 'y'])

>>> myset.pop()

'b' 

>>> myset

set(['r', 'c', 'd', 'y'])

Python Programming By Subhadip Mukherjee



MUTABLE OPERATIONS CONTINUED

set |= other | ...

Update the set, adding elements from all others.

set &= other & ...

Update the set, keeping only elements found in it and all others.

set -= other | ...

Update the set, removing elements found in others.

set ^= other

Update the set, keeping only elements found in either set, but not in both.

Python Programming By Subhadip Mukherjee



MUTABLE OPERATIONS CONTINUED

>>> s1 = set('abracadabra')

>>> s2 = set('alacazam')

>>> s1 

set(['a', 'b', 'r', 'c', 'd'])

>>> s2 

set(['a', 'l', 'c', 'z', 'm'])

>>> s1 |= s2 

>>> s1 

set(['a', 'b', 'r', 'c', 'd', 'l', 'z', 'm'])

>>> s1 = set('abracadabra')

>>> s1 &= s2 

>>> s1 

set(['a', 'c'])

Python Programming By Subhadip Mukherjee



SET OPERATIONS

• The following operations are available for both set and frozenset types.

• Comparison operators >=, <= test whether a set is a superset or subset, 
respectively, of some other set. The > and < operators check for proper 
supersets/subsets.  

>>> s1 = set('abracadabra')

>>> s2 = set('bard')

>>> s1 >= s2 

True

>>> s1 > s2 

True

>>> s1 <= s2 

False

Python Programming By Subhadip Mukherjee



SET OPERATIONS

• Union:     set | other | …

• Return a new set with elements from the set and all others.

• Intersection:     set & other & …

• Return a new set with elements common to the set and all others.

• Difference:    set – other – … 

• Return a new set with elements in the set that are not in the others.

• Symmetric Difference:    set ^ other

• Return a new set with elements in either the set or other but not both.

Python Programming By Subhadip Mukherjee



SET OPERATIONS

>>> s1 = set('abracadabra')

>>> s1

set(['a', 'b', 'r', 'c', 'd'])

>>> s2 = set('alacazam')

>>> s2

set(['a', 'l', 'c', 'z', 'm'])

>>> s1 | s2 

set(['a', 'b', 'r', 'c', 'd', 'l', 'z', 'm'])

>>> s1 & s2 

set(['a', 'c'])

>>> s1 - s2 

set(['b', 'r', 'd'])

>>> s1 ^ s2 

set(['b', 'r', 'd', 'l', 'z', 'm'])

Python Programming By Subhadip Mukherjee



OTHER OPERATIONS

• s.copy() returns a shallow copy of the set s. 

• s.isdisjoint(other) returns True if set s has no elements in common with set 
other. 

• s.issubset(other) returns True if set s is a subset of set other. 

• len, in, and not in are also supported. 

Python Programming By Subhadip Mukherjee



WHEN TO USE TUPLES

• When storing elements that will not need to be changed.

• When performance is a concern. 

• When you want to store your data in logical immutable pairs, triples, etc.

Python Programming By Subhadip Mukherjee



CONSTRUCTING TUPLES

• An empty tuple can be created with an empty set of parentheses.

• Pass a sequence type object into the tuple() constructor.

• Tuples can be initialized by listing comma-separated values. These do not need to be 
in parentheses but they can be.  

• One quirk: to initialize a tuple with a single value, use a trailing comma. 

>>> t1 = (1, 2, 3, 4)

>>> t2 = "a", "b", "c", "d"

>>> t3 = ()

>>> t4 = ("red", )

Python Programming By Subhadip Mukherjee



TUPLE OPERATIONS

Tuples are very similar to lists and support a lot of the same operations. 

• Accessing elements: use bracket notation (e.g. t1[2]) and slicing. 

• Use len(t1) to obtain the length of a tuple. 

• The universal immutable sequence type operations are all supported by tuples. 

• +, *

• in, not in

• min(t), max(t), t.index(x), t.count(x)

Python Programming By Subhadip Mukherjee



PACKING/UNPACKING

Tuple packing is used to “pack” a collection of items into a tuple. We can unpack a 
tuple using Python’s multiple assignment feature.  

>>> s = ("Susan", 19, "CS") # tuple packing

>>> (name, age, major) = s # tuple unpacking

>>> name 

'Susan' 

>>> age 

19

>>> major 

'CS'

Python Programming By Subhadip Mukherjee



WHEN TO USE DICTIONARIES

• When you need to create associations in the form of key:value pairs.

• When you need fast lookup for your data, based on a custom key.

• When you need to modify or add to your key:value pairs. 

Python Programming By Subhadip Mukherjee



CONSTRUCTING A DICTIONARY

• Create an empty dictionary with empty curly braces or the dict() constructor.

• You can initialize a dictionary by specifying each key:value pair within the curly braces. 

• Note that keys must be hashable objects. 

>>> d1 = {}

>>> d2 = dict() # both empty 

>>> d3 = {"Name": "Susan", "Age": 19, "Major": "CS"}

>>> d4 = dict(Name="Susan", Age=19, Major="CS")

>>> d5 = dict(zip(['Name', 'Age', 'Major'], ["Susan", 19, "CS"]))

>>> d6 = dict([('Age', 19), ('Name', "Susan"), ('Major', "CS")])

Note: zip takes two equal-length collections and merges their corresponding elements into tuples. 

Python Programming By Subhadip Mukherjee



ACCESSING THE DICTIONARY

To access a dictionary, simply index the dictionary by the key to obtain the value. An 
exception will be raised if the key is not in the dictionary. 

>>> d1 = {'Age':19, 'Name':"Susan", 'Major':"CS"}

>>> d1['Age']

19 

>>> d1['Name']

'Susan'

Python Programming By Subhadip Mukherjee



UPDATING A DICTIONARY

Simply access a key:value pair to modify it or add a new pair. The del keyword can 
be used to delete a single key:value pair or the whole dictionary. The clear() method 
will clear the contents of the dictionary.

>>> d1 = {'Age':19, 'Name':"Susan", 'Major':"CS"}

>>> d1['Age'] = 21

>>> d1['Year'] = "Junior"

>>> d1 

{'Age': 21, 'Name': 'Susan', 'Major': 'CS', 'Year': 'Junior'} 

>>> del d1['Major']

>>> d1 

{'Age': 21, 'Name': 'Susan', 'Year': 'Junior'} 

>>> d1.clear()

>>> d1 

{} Python Programming By Subhadip Mukherjee



BUILT-IN DICTIONARY METHODS

>>> d1 = {'Age':19, 'Name':"Susan", 'Major':"CS"}

>>> d1.has_key('Age') # True if key exists

True 

>>> d1.has_key('Year') # False otherwise

False

>>> d1.keys() # Return a list of keys

['Age', 'Name', 'Major'] 

>>> d1.items() # Return a list of key:value pairs

[('Age', 19), ('Name', 'Susan'), ('Major', 'CS')] 

>>> d1.values() # Returns a list of values

[19, 'Susan', 'CS']

Note: in,  not in,  pop(key),and popitem()are also supported.

Python Programming By Subhadip Mukherjee



ORDERED DICTIONARY

Dictionaries do not remember the order in which keys were inserted. An ordered 
dictionary implementation is available in the collections module. The methods of a 
regular dictionary are all supported by the OrderedDict class. 

An additional method supported by OrderedDict is the following: 

OrderedDict.popitem(last=True)  # pops items in LIFO order

Python Programming By Subhadip Mukherjee



ORDERED DICTIONARY

>>> # regular unsorted dictionary

>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}

>>> # dictionary sorted by key

>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))

OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)]) 

>>> # dictionary sorted by value

>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))

OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)]) 

>>> # dictionary sorted by length of the key string

>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0]))) OrderedDict([('pear', 

1), ('apple', 4), ('orange', 2), ('banana', 3)])

Python Programming By Subhadip Mukherjee



Thank You

Python Programming By Subhadip Mukherjee


