
LECTURE 4 For CBCS 4th Semester

Python Programming
By

Subhadip Mukherjee
Dept. of Computer Science and BCA,

Kharagpur College,

Kharagpur, India

FUNCTIONAL PROGRAMMING TOOLS

Last time, we covered function concepts in depth. We also mentioned that Python
allows for the use of a special kind of function, a lambda function.

Lambda functions are small, anonymous functions based on the lambda abstractions
that appear in many functional languages.

As stated before, Python can support many different programming paradigms
including functional programming.

Right now, we’ll take a look at some of the handy functional tools provided by Python.

Python Programming By Subhadip Mukherjee

LAMBDA FUNCTIONS

Lambda functions within Python.

• Use the keyword lambda instead of def.

• Can be used wherever function objects are used.

• Restricted to one expression.

• Typically used with functional programming tools.

>>> def f(x):

... return x**2

...

>>> print f(8)

64

>>> g = lambda x: x**2

>>> print g(8)

64

Python Programming By Subhadip Mukherjee

FUNCTIONAL PROGRAMMING TOOLS

Filter

• filter(function, sequence) filters items from
sequence for which function(item) is true.

• Returns a string or tuple if sequence is one
of those types, otherwise result is a list.

def even(x):

if x % 2 == 0:

return True

else:

return False

print(filter(even, range(0,30)))

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

Python Programming By Subhadip Mukherjee

FUNCTIONAL PROGRAMMING TOOLS

Map

• map(function, sequence) applies function
to each item in sequence and returns the
results as a list.

• Multiple arguments can be provided if
the function supports it.

def square(x):

return x**2

print(map(square, range(0,11))))

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Python Programming By Subhadip Mukherjee

FUNCTIONAL PROGRAMMING TOOLS

Map

• map(function, sequence) applies
function to each item in sequence
and returns the results as a list.

• Multiple arguments can be
provided if the function supports
it.

[1, 1, 4, 27, 256]

def expo(x, y):

return x**y

print(map(expo, range(0,5), range(0,5))))

Python Programming By Subhadip Mukherjee

FUNCTIONAL PROGRAMMING TOOLS

Reduce

• reduce(function, sequence) returns a
single value computed as the result of
performing function on the first two items,
then on the result with the next item, etc.

• There’s an optional third argument
which is the starting value.

def fact(x, y):

return x*y

print(reduce(fact, range(1,5)))

24

Python Programming By Subhadip Mukherjee

FUNCTIONAL PROGRAMMING TOOLS

We can combine lambda abstractions with functional programming tools. This is
especially useful when our function is small – we can avoid the overhead of creating
a function definition for it by essentially defining it in-line.

>>> print(map(lambda x: x**2, range(0,11)))

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Python Programming By Subhadip Mukherjee

MORE DATA STRUCTURES

• Lists

• Slicing

• Stacks and Queues

• Tuples

• Sets and Frozensets

• Dictionaries

• How to choose a data structure.

• Collections

• Deques and OrderedDicts

Python Programming By Subhadip Mukherjee

WHEN TO USE LISTS

• When you need a non-homogeneous collection of elements.

• When you need to ability to order your elements.

• When you need the ability to modify or add to the collection.

• When you don't require elements to be indexed by a custom value.

• When you need a stack or a queue.

• When your elements are not necessarily unique.

Python Programming By Subhadip Mukherjee

CREATING LISTS

To create a list in Python, we can use bracket notation to either create an empty list
or an initialized list.

The first two are referred to as list displays, where the last example is a list
comprehension.

mylist1 = [] # Creates an empty list

mylist2 = [expression1, expression2, ...]

mylist3 = [expression for variable in sequence]

Python Programming By Subhadip Mukherjee

CREATING LISTS

We can also use the built-in list constructor to create a new list.

The sequence argument in the second example can be any kind of sequence object or
iterable. If another list is passed in, this will create a copy of the argument list.

mylist1 = list()

mylist2 = list(sequence)

mylist3 = list(expression for variable in sequence)

Python Programming By Subhadip Mukherjee

CREATING LISTS

Note that you cannot create a new list through assignment.

mylist1 and mylist2 point to the same list

mylist1 = mylist2 = []

mylist3 and mylist4 point to the same list

mylist3 = []

mylist4 = mylist3

mylist5 = []; mylist6 = [] # different lists

Python Programming By Subhadip Mukherjee

ACCESSING LIST ELEMENTS

If the index of the desired element is known, you can simply use bracket notation to
index into the list.

If the index is not known, use the index() method to find the first index of an item. An
exception will be raised if the item cannot be found.

>>> mylist = [34,67,45,29]

>>> mylist[2]

45

>>> mylist = [34,67,45,29]

>>> mylist.index(67)

1

Python Programming By Subhadip Mukherjee

SLICING AND SLIDING

• The length of the list is accessible through len(mylist).

• Slicing is an extended version of the indexing operator and can be used to grab
sublists.

• You may also provide a step argument with any of the slicing constructions above.

mylist[start:end] # items start to end-1

mylist[start:] # items start to end of the array

mylist[:end] # items from beginning to end-1

mylist[:] # a copy of the whole array

mylist[start:end:step] # start to end-1, by step

Python Programming By Subhadip Mukherjee

SLICING AND SLIDING

• The start or end arguments may be negative numbers, indicating a count from the
end of the array rather than the beginning. This applies to the indexing operator.

• Some examples:

mylist[-1] # last item in the array

mylist[-2:] # last two items in the array

mylist[:-2] # everything except the last two items

mylist = [34, 56, 29, 73, 19, 62]

mylist[-2] # yields 19

mylist[-4::2] # yields [29, 19]

Python Programming By Subhadip Mukherjee

INSERTING/REMOVING ELEMENTS

• To add an element to an existing list, use the append() method.

• Use the extend() method to add all of the items from another list.

>>> mylist = [34, 56, 29, 73, 19, 62]

>>> mylist.append(47)

>>> mylist

[34, 56, 29, 73, 19, 62, 47]

>>> mylist = [34, 56, 29, 73, 19, 62]

>>> mylist.extend([47,81])

>>> mylist

[34, 56, 29, 73, 19, 62, 47, 81]

Python Programming By Subhadip Mukherjee

INSERTING/REMOVING ELEMENTS

• Use the insert(pos, item) method to insert an item at the given position. You may also use negative indexing to

indicate the position.

• Use the remove() method to remove the first occurrence of a given item. An exception will be raised if there is no
matching item in the list.

>>> mylist = [34, 56, 29, 73, 19, 62]

>>> mylist.insert(2,47)

>>> mylist

[34, 56, 47, 29, 73, 19, 62]

>>> mylist = [34, 56, 29, 73, 19, 62]

>>> mylist.remove(29)

>>> mylist

[34, 56, 73, 19, 62]

Python Programming By Subhadip Mukherjee

LISTS AS STACKS

• You can use lists as a quick stack data structure.

• The append() and pop() methods implement a LIFO structure.

• The pop(index) method will remove and return the item at the specified index. If no
index is specified, the last item is popped from the list.

>>> stack = [34, 56, 29, 73, 19, 62]

>>> stack.append(47)

>>> stack

[34, 56, 29, 73, 19, 62, 47]

>>> stack.pop()

47

>>> stack

[34, 56, 29, 73, 19, 62]

Python Programming By Subhadip Mukherjee

LISTS AS QUEUES

• Lists can be used as queues natively
since insert() and pop() both support
indexing. However, while appending
and popping from a list are fast,
inserting and popping from the
beginning of the list are slow
(especially with large lists. Why is
this?).

• Use the special deque object from the
collections module.

>>> from collections import deque

>>> queue = deque([35, 19, 67])

>>> queue.append(42)

>>> queue.append(23)

>>> queue.popleft()

35

>>> queue.popleft()

19

>>> queue

deque([67, 42, 23])

Python Programming By Subhadip Mukherjee

OTHER OPERATIONS

• The count(x) method will give you the number of occurrences of item x within the list.

• The sort() and reverse() methods sort and reverse the list in place. The sorted(mylist) and reversed(mylist) built-in
functions will return a sorted and reversed copy of the list, respectively.

>>> mylist = ['a', 'b', 'c', 'd', 'a', 'f', 'c']

>>> mylist.count('a')

2

>>> mylist = [5, 2, 3, 4, 1]

>>> mylist.sort()

>>> mylist

[1, 2, 3, 4, 5]

>>> mylist.reverse()

>>> mylist

[5, 4, 3, 2, 1]

Python Programming By Subhadip Mukherjee

CUSTOM SORTING

• Both the sorted() built-in function and the sort() method of lists accept some optional
arguments.

• The cmp argument specifies a custom comparison function of two arguments which
should return a negative, zero or positive number depending on whether the first
argument is considered smaller than, equal to, or larger than the second argument.
The default value is None.

• The key argument specifies a function of one argument that is used to extract a
comparison key from each list element. The default value is None.

• The reverse argument is a Boolean value. If set to True, then the list elements are
sorted as if each comparison were reversed.

sorted(iterable[, cmp[, key[, reverse]]])

Python Programming By Subhadip Mukherjee

CUSTOM SORTING

Alternatively,

>>> mylist = ['b', 'A', 'D', 'c']

>>> mylist.sort(cmp = lambda x,y: cmp(x.lower(), y.lower()))

>>> mylist

['A', 'b', 'c', 'D']

>>> mylist = ['b', 'A', 'D', 'c']

>>> mylist.sort(key = str.lower)

>>> mylist

['A', 'b', 'c', 'D'] str.lower() is a built-in string method.

Python Programming By Subhadip Mukherjee

Thank You

Python Programming By Subhadip Mukherjee

