(10. Mapping. _ |
Let A and B be two non-empty sets. If f is a relation between 4 an(g
B then an element z of A may be related to one element or no element

or many elements of B by the relation f.

A relation f with the property that each element z of 4 g related to
exactly one element y of B is said to be a mapping from A to B.
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of f have the same first component. If (z,y) € f, f is said to assign y to
the element & of A.

N}dﬂnition. Let A and B be two non-empty sets. A mapping f from A

to B Is a rule that assigns to each element = of A a definite element y in

B.
Ais said to be the domain of f and B is said to be the co-domain

9 f. The mapping f with the domain A and co-domain B is displayed
symbolicnlly by f: A — B.

We can imagine f as a kind of agent that carries (or transforms, or
maps) each element & of A to a unique element y in B.

A mapping f is also called a function, or a transformation, or a map.
mf : A — B be a mapping and = € A. Then the unique element
y of B that corresponds to (is associated with) @ by the mapping f is

called the f-image of  (or the image of z under f) and is denoted by
f(z). If f(x) = y, we often say that ‘f maps = to y’.

A set of all f-images, i.e., the set {f(z) : © € A} is denoted by
f(A) and is said to be the image set of f (denoted by im f) or the range

set of f.

In some texts the domain of f is denoted by D(f) and the range of
f is denoted by R(f).

Examples.

1. Let S = {1,2,3,4},T = {a,b,c,d}. Let us examine the following
relations f1, f2, f3, fa between S and T.

(i) i ={(1,a),(1, b), (2,¢), (3,¢), (4,d)}.

(i) f2 = {(1,a),(2,0),(3,0)}-

(iii) f3 = {(1,0),(2,0),(3,¢), (4, d)}-

f1 is not a mapping from S to T since the element 1 in S is related
to two different elements of T by the relation.

f2 is not a mapping from S to T since the element 4 in S is not related
to any element of T by the relation.

fa is a mapping from S to T. Here the image set is {b,¢,d} and it is |
a proper subset of the co-domain set T

2, Let f={(z,y) e RxR:y =%} Let us examine if f is a mapping
from R to R.
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Let S ey IR .{ ) d sylnbOhCa y
from 9 to R. It 18 displaye 1l z€ S
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“j-.S'—-»IRisdeﬁned by f(&) =

Befntion® A B ig said tO be an into mapping if f(4) is §
1,/& mapping f : A4 =

maps A into B.
proper subset of B. In this case we 58Y that f

ing f: A— Bis said to be an onto mapping if f(A) = B. I
/A mapping J : S

this case we say that f maps

Examples (continued).

3. Let f : Z — Z be defined by f(z) =2z, T € Z. Then f is an into

) is a proper subset of

the co-domain set Z.

4. Let f: Z — Z be defined by f(z) = lz|, = 'G Z Then f is an into
mapping because f(Z) (the set of all non-negative integers) is a proper

subset of the co-domain set Z.

5. Let f: Z — Z be defined by f(z) = z+1, £ € Z. Then every element
y in the co-domain set Z has a pre-image y — 1 in the domain sct 7.
Therefore f(Z) = Z and f is an onto mapping.

- I'f:A— Bbeamappingand z € 4, then f(z) is a definite element
in B. The element z is said to be a pre-image (or inverse image) of f(z).
It may happen that an element y in the co-domain set B has only bxz/c
pre-lmage, no pre-image or many pre-images in A.

In Example 4, 0 in the co-domain set Z has only one pre-image in the

has t.wo P"e'images in the domain
Pre-image,
Yin B form a subsey, of A, which

& set containing one elemnent only),
ments. Th

Thus the pre-images of an element
may be the null set, or a singleton get (
Or a set containing more thap one ele

| inverse image set) of y is denoted by f-1 (1) € pre-image set (or the
Examples (continued).

6. Let f:R— Rb

' e
,SetOffiS{mER:_fegn;d:)l'fm):ﬁnm reR H i
. Infinite number of Pre-imawes } Very elemeng in t} gre the uuag'
{(4n + 1)% ‘N is an inte ag;s For example, the 5 1€ image set has
' ger ;. re-image got of 1 is
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7. Let f: R — R be defined by f(z) = 2z, » ¢ R, For an clement y in
the co-domain sct R, f~'(y) = {%U}. a one-element subset of the domalin

set R.

Definitions.

3/ K mapping f + A — B is said to be injective (or one-to-one) if for
each pair of distinct elements of A, their f-images arc distinct.

mapping f : A — B is said to be surjective (or onto) if f(A4) = Jn):

5./A mapping f : A — B is said to be bijective if f is both injective and
urjective.

Thus f: A — B is injective if x; # 2 in A implies f(zy) # f(az) in
B. In this case , cach element of B has at most onc pre-imagc.

If f is surjective, each element of B has at least one pre-image.
If f is bijective, each element of B has ezactly onc pre-image.

An injective mapping is called an injection, a surjective mapping a
surjection and a bijective mapping a bijection.

In Example 3, f is an injective mapping since for two distinct elements
1, To in the domain set Z, f(z1) # f (z2) . f is not surjective because
f(Z) is a proper subset of the codomain set Z.

In Example 4, f is not injective because two distinct elements 1 and
—1 in the domain set Z have the same f-image. f is not surjective
because f(Z) is a proper subset of the codomain set Z.

In Example 5, f is injective since for two distinct elements z;, T2 in

the domain set Z, f(z1) # f(z2). f is surjective because f (Z) = the
codomain set Z. Therefore f is a bijection.

When f is a bijection from A to B, f sets up a one-to-one correspon-
dence between the elements of A and the elements of B. Each element
of A is put in correspondence with the single element f(z) of B and each
element y of B is put in correspondence with the single element f~1(y)
of A.

Definitions.

8 A mapping f: A — B is said to be a constant mapping (a constant
functiorl) if f maps each element of A to one and the same element of B,
Le., f(A) is a singleton set.
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Examples (continued).
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11. Let f:R= R be defined by f(x) = z?, r € R.
Let S = R*(the set of all positive rel numbers). The restriction
mapping f/S:5 = R is defined by f/S(z) = z*, € S.

Here f is not injective, but the restriction mapping f/S is injective.

12. Let f: R — Rbe defined by f(z) = sin =z, = € R. This mapping f
is neither surjective nor injective.
If we reduce the codomain to T ={r e R: -1 <& < 1}, then the
mapping f : R — T defined by f(x) = sin z, € R is surjective, but
not injective. _
Let S = {r € R: —% <z < Z}. Then the restriction mapping
g:5—-T defined by g(x) = sin z, = € S is a bijection.

Worked Examples.

# Let f: R — R be defined by f(z) =3z + 1,2 € R. Examine if f is

(i) injective, (ii) surjective.

(i) Let us take two distinct elements x;, 2 in the domain set R.

f(z1) = 3x1 + 1, f(z2) = 3T2 + 1.

f(ml) — f(m2) = 3(x1 — T9) # 0 since ) # 9.

Since z; # z2 = f(z1) # f(z2), fis injective.

(ii) Let us take an arbitrary element z in the co-domain set R and let
us examine if there is a pre-image T of the element y under f.

Then f(z) = y. Therefore 3z +1=y or, = 1’—;—1

Since y € R, 1L-_3-l € R. Therefore y IXas a pre-image 11;—1 in the
domain set R. Since y is arbitrary, each element in the co-domain set R
has & pre-image under f. Therefore f is surjective.

%ft f:R— R be defined by f(z) = z2, x € R. Examine if f is (i)
Vinjective, (ii) surjective.
(i) f(2) =4, f(-2) =4. f is not injective since two distinct elements
2 and —2 in the domain set R have the same image.

(ii) f is not surjective since —1 in the co-domain set R has no pre-
image in the domain set R.

\\}'}/Composition of mappings.

Let f: A-> Bandg:C — D be two mappings such that f(A) is a
subset of C.

Let € A. Then f maps z to an element y in f(A) C B and since
Yy € f(A) c C.q maps ¥ to an element z in D.
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We can conceive of a mapping h: 4 — D defined by h(z)
z € A. The mapping h : A — D is said to be the Compos'i\t 9 z))
product) of f and g aud is denoted by gof (0r by gf). The ¢, (or 4,
gof : A— D is defined only if f (A) is a subset of the domain O?I;Doatﬁ
For the mappings f : A = B and g : B = C the Composit
A — C is defined. For the mappings f:A— Bandg:B— 4 bgt}gof:
composites gof : A — A and fog: B — B arc defined. 08

Exanaples.

et A={1,2,3},B= {p,q,r}, and let

f : A — B be defined by f(1) =p, f(2) =q,f(3)=r;

g: B — A be defined by g(p) = 3,9(9) = 29() =1

h: B — A be defined by h(p) =1,1(¢) =2, h(r) = 3.

gof : A — A is defined by gof(1) = 3,90f(2) =2,90f(3) = L.

fog: B — B is defined by fog(p) =) fog(q) = g, fog(r) =p.

hof : A — A is defined by hof(1) = 1,hof(2) = 2, hof(3) = 3.

foh : B — B is defined by foh(p) = p, foh(q) =4, foh(r) =r.

Here gof 75 fog, hof= iA, foh= ig.

ﬂLetf:Z—*Qandg:Q—»Qbedeﬁned by f(z) = 32, = € Z and

9(z) =z% z € Q.

gof : Z — Q is defined by gof(z) = g(%x) = %3;9, z€Z.

For example, gof(1) = 9(f(1)) = 9(3) = }. gof(2) = 9(f(2) =

g(1)=1
Here fog is not defined since the range of g is. not a subset

domain of f.

\/@/Lfetf:R-—»Randg:R-—oRbedeﬁnedbyf(:z:):m+l, ¢ € Rand
9(z)

of the

=3z, z €R.
Here gof and fog are both defined.
gof : R — R is defined by gof(z) = g(z +1) = 3z + 3, z € K;
fog : R — R is defined by fog(z) = f(8z) = 3z + 1, a;e g

Both the mappings gof and fog have th : 9
fog(z), z € R. Therefore gof # fog. e same domain but 9o/

' f?ﬁetf:R—’Rbedeﬁnedbyfm= R b
defined by g(z) =z +5, T €R. (©)=z+1,zeRand g: R

Here both gof and fog are defined.

/

;ﬁ
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fog:R—th 1s defined by fog(fr):f(x-{-f))::m-{-ﬁ, T € KR;
gof : R — R is defined by gof(z)=g(z+1) =z +6, = €R.

Since gof(x) = fog(z) for ull z € R, we have gof = fog.

\/

It is quite clear from the examples that the composition of mappings
is not commutative. That is, for two mappings f and g their composites
gof and fog are, in general, not equal. In fact, when one of them is

defined,the other may not be defined at all. In particular cascs, however,
the equality holds.

Although the composition of mappings is not commutative, it is as-

sociative. That is, for three mappings f,g and h, ho(gof) = (hog)of,

when both sides are defined mappings.
~

K.Theorem IX1.1. Let f: A B, g:B—C, h:C — D be three
mappings. Then ho(gof) = (hog)of.

Proof. Here the composite mappings gof, hog are defined because the

range f C dom g and the range g c dom h. The composite mappings
ho(gof), (hog)of are defined because the range gof C dom h and the
range f C dom hog.

We shall now prove the equality of the mappings ho(gof) : A — D
and (hog)of : A — D.

Let = be an element of A and let f(z) =y, g(y) = z, h(z) = w.
Then gof(z) = g(y) = 2, hog(y) = h(z) = w.

ho(gof) : A — D is defined by ho(gof)(z) = h(z) =w, z € A.
(hog)of : A — D is defined by (hog)f(z) = hog(y) = w, z € A.

Since ho(gof)(x) = (hog)of(z) for all z € A, we have ho(gof) =
(hog)o

eorem 1.11.2. If f : A - B and g : B — C be both injective

mappings then the composite mapping gof : A — C is injective.
y roof. Let z;,r, be two distinct elements of A.

Let f(ml) =1, f($2) = V2.
Since f is injective, y; and y; are distinct elements of B.
Let g(1n) = 21, 9(y2) = z2.
Since g is injective z; and 2, are distinct elements of C.
Now gof(z1) = g(41) = 21, gof(22) = g(y2) = z, and z, # z, in A
= 21 # 23 in C. Therefore gof is injective.
_.{N ote. The converse of the theorem is not tru

e. However if go f is injective
then f is injective (while g need not be).
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eorem 1.11.3. If f : A — B and gi. fct_i:rec e two Mapping, .
hat gof : A — C is injective then f is In) :

'/fjfoof. Let f(z1) = f(z) for some 71, T2 in)A. Then g[f(z,)) = q] f(mg)]
since g is a mapping. So gof(z1) = gof (z2)- e
Because gof is injective, gof (T1) = gof(za fp 1 = rg
Thus f(z,) = f(z2) implies z; = 2 and therefore f is mjective:

Note. In order that gof may be injective it is not necessary t},,
injective.

For example, let f : R — R be defined by f(z) = €%, 5 ¢ R g
g:R — R be defined by g(z) = 2%, z € R

2
Here gof : R — R is defined by gof(z) = €**, z € R.
gof is injective but g is not injective.

Uc},

tgig

eorem 1.11.4. If f: A— B and g: B — C be both surjective then
~*the composite mapping gof : A — C is surjective.
ﬁf. Let 2 be an element of C.

Since g is surjective, there is at least one pre-image of z in B. Lt
one such be y. Then y € B and g(y) = 2.

Since f is surjective and Y € B, there is at least one pre-image of y
in A. Let one such be z. Thenz € A and f(z) = y.

9of(T) = g(y) = z. This implies that 2 has a pre-image x in A under
the mapping gof. Since z is arbitrary, gof is surjective.

MNote. The converse of the theorem is not trye,
- Jective then g is surjective (While f need not be).

eorem 1.11.5. If f: A —» B

<iat gof : 4 — C ig surjective th
!

However if gof is sur-

and g: B — C be two mappings such
€N g is surjective,

of. Let z be an element of C. Since

eleent  in 4 such that gof(z) = 2. Therefore 9(f(z)) = 2.
This shows that z hag g pre-ima i i

. : ge f(z in : ng g.

Since z ig arbitrary, g is Surjective, A Acer the mapping

gof is surjective there is an

gof may be surjective it ; B
surjective, Jective it is not necessary that J

For example, let f : Z -, Z be ¢
9:Z — Z be defined by g(z) =

efined by f(z) = 95 4 ¢ 7 and
integer< z. Then 9of :Z—Zisg

3 c ez @] denotes the greatest
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seorem 1.11.6. If f:A— Band g: B — C be both bijective then
‘he composite mapping gof : A — C' is bijective.
This is a combination of the Theorems 1.11.2 and 1.11.4.

ote. The converse of the theorem is not true. However if go f is bijective
then f is injective and g is surjective.
This follows from the Theorems 1.11.3 and 1.11.5.

In order that gof may be bijective, it is neither necessary that f is
surjective nor necessary that g is injective.

The example given in the note of the previous theorem establishes
the assertion.

ﬁ Inverse mapping.

N%1‘ﬁtion. Let f: A — B be a mapping. If there exists a mapping

: B — A such that gof = i4 then g is said to be a left inverse of f. If
there exists a mapping h : B — A such that foh = ig then h is said to

be a right inverse of f.

Wtion. Let f : A — B be a mapping. f is said to be invertible if
here exists a mapping g : B — A such that gof =i4 and fog = ip.
In this case g is said to be an inverse of f.

Jﬁeorem 1.12.1. If f : A — B be an invertible mapping then its
inverse is unique.

Proof. Since f : A — B is invertible, there exists a mapping g: B — A
such that gof = i4 and fog =1ip.

If possible, let there exist another mapping h : B — A such that
hof =i4 and foh = ip.

Bo(fog) = (hof)og, since composition of mappings is associative.
Therefore hoig = i40g, i.e., h = g. This proves that g is unique.

\Dlote }. g is said to be the inverse of f and is denoted by f~1. Therefore
f7lof'=i4 and fof~! =ig.

ylf f : A = A be an invertible mapping then f~lof = fof-! = 3,
Where i is the identity mapping on A.

Examp]
Mm—*Zbedeﬁnedbyf(m)=[ﬂa’], zE€Rand g: Z — R be

defined by g(z) =  + %, z € Z.

fog:Z — 7 is defined by fog(z) = f(z + %) = [z + %] =z, €27
9°f : R — R is defined by gof(z) = 9([z]) = [z] + §, = € R.
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Here fog = iz, gof # in. . inverse of f,
Therefore g is’a right inverse of f, but not a left in f

=5+ 5, & €D
0 e SENpo At h(u‘:) s _lt.tai'm‘ferse Jof .
Then foh = iy, and therefore h is a righ

Note. There are many right inverses of f. Since f is not o leectlon’ f
i8 not invertible.

/Letf:lk—-»lkbedeﬁnedby flo) =3z, s €Rand g : R — g |,
defined by g(z) = 5, T € R. 3 o
gof : R — R is defined by gof(z) = g(B:'): i, =
fog: R — Ris defined by fog(z) = f(§) ==, z €R.

'4 Here gof = fog = ig. Threfore g is the inverse of f.

Th€orem 1.12.2. A mapping f : A — B is invertible if and only if f i
bijection.

Proof. Let f : A — B be invertible. Then there exists a ma
9: B — A such that gof =i4 and fog =ip.
Since i4 is injective and gof =iz, f is an injection.
Since ip is surjective and fog =ip, f is a surjection.
Therefore f is a bijection.

Conversely, let f A — B be a bijection.

Let y € B. Since f is a bijection, y hag a unique pre-image z in A,
Define a mapping ¢ : B

—Aby g(y) =1z (the pre-image of y under
f),y € B. Then gof(z) = g(y) =z, z € A and fog() = f(z) =y, y e
B.

Here gof =

Pping

14, fog =ig and therefore f is invertible,
Note. The theorem gives a clue how to

: ) determine f~1. To each element
yin B, f~! assigns the Pre-image of 4

under f,

Theorem 1.12.3. Let f: A~ Bpeg bijective mapping. Then the
mapping f~1: B — A ig also a bijection and (fH-1= 7.

Proof. Since f: A — B is a bijection, fisl
ig and fof~! =g,

Let vy, 92 be two distinct elements in B and if=3] (1) = T,
]

Then f(z;,) = flf )] = fof-1 = e
I @l = foi = 42) = yy, since gof=1 12 = 1 and f(e)

Since f is a mapping, y; # yy = L1 # @y,

That is, yy # yp = 1) # f—l(yz) and therefore f~1is injective.
To establish that f-1 s surjective, let z € 4. Let f(z) = .

B — A exists and f-1of =

f~Hy2) = z2.
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Then f~1(y) = f_l[f(fb‘)] = ["lof(z) = T, since f~lof =iy4.

This shows that y is a pre-image of @ under the mapping f~!. There-
fore f! is surjective,

Since ! is injective as well as surjective, J~1 is a bijection.
Second part.

Since f P ) 1s a l)ijUCtiOll, f-l B — A cxists and f—lof = iA
and fof~! = ip. Since fT':Bo Aisa bijection, (f~1)~!: A - B
exists and f~lo(f=1)=1 = i4 and (f~1)"1of~! = 4.

Let 2 € A and f(z) =y,

() o F=1f () = S~ of () =, since flof = i4.

(f~1) (=) = (f—l)q[f"l(y)] = () tof~Yy) = vy, since
(f)tof~t =iy |

Therefore f(a) = (™) Yx) for all z € A

Consequently, f = (f=1)-1 Tyjq completes the proof.

Theorem 1.12.4. Let Tt
mappings. Then the

f'log°1.

Proof. Since f: A — B and g: B — C are both bijective, the composite
mapping gof : A - C is a bijection, by Theorem 1.11.6.
Hence (gof)-!':C — A exists, by Theorem 1.12.2.

Since f: A — B is a bijection, f~1: B > A exists.
Since g: B— Cisa bijection, g~! : C — B exists.
Then the composite mapping f~log=1:C - A exists.

A= Band g: B — C be both bijective
mapping gof : A — C is invertible and (gof)~ ! =

Let 2 € C. Let y be the pre-image of 2 under the bijective mapping g
and 2 be the pre-image of y under the bijective mapping f.

Then gof(z) = z. Since gof is invertible, (90f)~1(2) = .

Since f is invertible and f (z) =y, @y =2

Since g is invertible and g(y) = 2,971 (2) = y.

Therefore f~log=1(z) = o 1(2)) = ' (y) =z

Thus (gof)-l(z) = (f_log—l)(Z) for all z eC.

Consequently, (gof)~! = f~log~!. This completes the proof,

Wor xamples.
+ Let 4, B be both finite sets of n elements and a mapping f: 4 — B

18 injective, Prove that f is a bijection.

Let A= {(11, as,..., (1"}- Then f((ll); f(a2)7 ok f(an) all belong to
B. Since [ is injective, f(a1), f(az),.. .y f(an) are all distinct elements
of B, As they are n in number, they are all the elements of B.



\ HIGHER ALGEBRA

is shows that £ ;.
Lek b B. Then b= (a),for some € 4 0d i St i
surjective. Since f is injective as well as surjective,

that f .
{Let f : R — R be defined by f(z) =3z+1, Z€ R. Prove that f
invertible. Find f-!.

As § is injective and surjective (worked Ex.1, 1.9), f is a bijectioy,
is invertible. ‘ O
mdéhe;e[o:: 5}1::3 ;;‘:fonlain set R has a unique pre-image 7= &
fi(; :UR — R is defined by f-1(y) = L&, vy € R; or equivalently
defined by f~!(z) = 25+, z€R.

) LetS:{a:eR:—1<m<l}and.f:R—»S:bec_i_elﬁnedby
; f.(iﬂ) = ﬁzﬂ» z € R. Show that f is a bijection. Determine f~-.

Let 2> 0. Then f(z) = % and 0 < f(z) < 1.

Letz=0. Then f(z)=0.

Let £ < 0. Thénj(a:):l—f—;:-l—l;—l and -1 <{.(.'1:)fo.ar
Let zy,z, belong to R and f(z,) = f(z2). Then ﬁr‘;ﬂ = ﬁfg?l
This implies z, and z, are either both positive,
Let z; > 0 and z, > 0.

Then flzy) = f(xz) = l:én = 12, = I = I,.
Let £; < 0 and z5 < 0.

Then f(z,) = f(z5) = T = T2
It follows that Z)#zoin R =

f(z1) # f(z2). So fis injective.
Let y be an element in S and let 0 <

U < 1. Let us examine if (> 0)
in R be a pre-image of Y. Then ==

or, z = 1—!—” € R, since y € R. Therefore ﬂ{; is a pre-image of s
Let y be an element in § and let -1 <

z(<0) inR be a pre-image of . Then =

or both negative.

= I) = I,.

V<0. Let us examine if

==V
or, = v € R, since y € R. Therefore L isa Pre-image of y.
Lety=0€8S. Then:r::Oisapre—imageo 1

It follows that each ¥ in S haga Pre-image in R, Sqo f is surjective.

Since f is injective as well as surjective, f ig q bijection.

Since fis a bijection, each vyinSh

a8 a unique Pre-image,

For y > 0, the pre-image is TJ—LU = Tlul?l X
For y < 0, the pre-image is T};—y = Tfm

For y = 0, the Pre-image is 0 =

1—-Jyl*
It follows that for each yin S the pre-image is T-]lLyl
Hence f~1: 9w R is defined by =) = 1—:"";], zeES.



