
LECTURE 2 For CBCS 4th Semester Students

Python Programming
By

Subhadip Mukherjee
Dept. of Computer Science and BCA,

Kharagpur College,

Kharagpur, India

COMMON SEQUENCE OPERATIONS

All sequence data
types support the
following operations.

Operation Result

x in s True if an item of s is equal to x, else False.

x not in s False if an item of s is equal to x, else True.

s + t The concatenation of s and t.

s * n, n * s n shallow copies of s concatenated.

s[i] ith item of s, origin 0.

s[i:j] Slice of s from i to j.

s[i:j:k] Slice of s from i to j with step k.

len(s) Length of s.

min(s) Smallest item of s.

max(s) Largest item of s.

s.index(x) Index of the first occurrence of x in s.

s.count(x) Total number of occurrences of x in s.

Python Programming By Subhadip Mukherjee

COMMON SEQUENCE OPERATIONS

Mutable sequence types further
support the following operations.

Operation Result

s[i] = x Item i of s is replaced by x.

s[i:j] = t Slice of s from i to j is replaced by the contents of t.

del s[i:j] Same as s[i:j] = [].

s[i:j:k] = t The elements of s[i:j:k] are replaced by those of t.

del s[i:j:k] Removes the elements of s[i:j:k] from the list.

s.append(x) Same as s[len(s):len(s)] = [x].

Python Programming By Subhadip Mukherjee

COMMON SEQUENCE OPERATIONS

s.extend(x) Same as s[len(s):len(s)] = x.

s.count(x) Return number of i’s for which s[i] == x.

s.index(x[, i[, j]]) Return smallest k such that s[k] == x and i <= k < j.

s.insert(i, x) Same as s[i:i] = [x].

s.pop([i]) Same as x = s[i]; del s[i]; return x.

s.remove(x) Same as del s[s.index(x)].

s.reverse() Reverses the items of s in place.

s.sort([cmp[, key[, reverse]]]) Sort the items of s in place.

Mutable sequence types further
support the following operations.

Python Programming By Subhadip Mukherjee

BASIC BUILT-IN DATA TYPES

• Set

• set: an unordered collection
of unique objects.

• frozenset: an immutable
version of set.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange']
>>> fruit = set(basket)
>>> fruit
set(['orange', 'pear', 'apple'])
>>> 'orange' in fruit
True
>>> 'crabgrass' in fruit
False
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a
set(['a', 'r', 'b', 'c', 'd'])
>>> a - b
set(['r', 'd', 'b'])
>>> a | b
set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
Python Programming By Subhadip Mukherjee

BASIC BUILT-IN DATA TYPES
$ python
>>> gradebook = dict()
>>> gradebook['Susan Student'] = 87.0
>>> gradebook
{'Susan Student': 87.0}
>>> gradebook['Peter Pupil'] = 94.0
>>> gradebook.keys()
['Peter Pupil', 'Susan Student']
>>> gradebook.values()
[94.0, 87.0]
>>> gradebook.has_key('Tina Tenderfoot')
False
>>> gradebook['Tina Tenderfoot'] = 99.9
>>> gradebook
{'Peter Pupil': 94.0, 'Susan Student': 87.0, 'Tina Tenderfoot': 99.9}
>>> gradebook['Tina Tenderfoot'] = [99.9, 95.7]
>>> gradebook
{'Peter Pupil': 94.0, 'Susan Student': 87.0, 'Tina Tenderfoot': [99.9, 95.7]}

• Mapping

• dict: hash tables, maps
a set of keys to
arbitrary objects.

Python Programming By Subhadip Mukherjee

PYTHON DATA TYPES

So now we’ve seen some interesting Python data types.

Notably, we’re very familiar with numeric, strings, and lists.

That’s not enough to create a useful program, so let’s get some control flow tools
under our belt.

Python Programming By Subhadip Mukherjee

CONTROL FLOW TOOLS

While loops have the following
general structure.

Here, statements refers to one or
more lines of Python code. The
conditional expression may be any
expression, where any non-zero
value is true. The loop iterates while
the condition is true.

Note: All the statements indented by
the same amount after a
programming construct are
considered to be part of a single
block of code.

while expression:

statements

i = 1

while i < 4:

print i

i = i + 1

flag = True

while flag and i < 8:

print flag, i

i = i + 1

1

2

3

True 4

True 5

True 6

True 7

Python Programming By Subhadip Mukherjee

CONTROL FLOW TOOLS

The if statement has the following
general form.

If the boolean expression evaluates
to True, the statements are executed.
Otherwise, they are skipped entirely.

if expression:

statements

a = 1

b = 0

if a:

print "a is true!“

if not b:

print "b is false!“

if a and b:

print "a and b are true!“

if a or b:

print "a or b is true!"

a is true!

b is false!

a or b is true!

Python Programming By Subhadip Mukherjee

CONTROL FLOW TOOLS

You can also pair an else with an
if statement.

The elif keyword can be used to
specify an else if statement.

Furthermore, if statements may be
nested within eachother.

if expression:

statements

else:

statements

a = 1

b = 0

c = 2

if a > b:

if a > c:

print "a is greatest“

else:

print "c is greatest“

elif b > c:

print "b is greatest“

else:

print "c is greatest"

c is greatest

Python Programming By Subhadip Mukherjee

CONTROL FLOW TOOLS

The for loop has the following general form.

If a sequence contains an expression list, it is
evaluated first. Then, the first item in the sequence
is assigned to the iterating variable var. Next, the
statements are executed. Each item in the list is
assigned to var, and the statements are executed
until the entire sequence is exhausted.

For loops may be nested with other control flow
tools such as while loops and if statements.

for var in sequence:

statements

for letter in "aeiou":

print "vowel: ", letter

for i in [1,2,3]:

print i

for i in range(0,3):

print i

vowel: a

vowel: e

vowel: i

vowel: o

vowel: u

1

2

3

0

1

2Python Programming By Subhadip Mukherjee

CONTROL FLOW TOOLS

Python has two handy functions for creating a range
of integers, typically used in for loops. These functions
are range() and xrange().

They both create a sequence of integers, but range()
creates a list while xrange() creates an xrange object.

Essentially, range() creates the list statically while
xrange() will generate items in the list as they are
needed. We will explore this concept further in just a
week or two.

For very large ranges – say one billion values – you
should use xrange() instead. For small ranges, it
doesn’t matter.

for i in xrange(0, 4):

print i

for i in range(0,8,2):

print i

for i in range(20,14,-2):

print i

0

1

2

3

0

2

4

6

20

18

16
Python Programming By Subhadip Mukherjee

CONTROL FLOW TOOLS

There are four statements provided for
manipulating loop structures. These are
break, continue, pass, and else.

• break – terminates the current loop.

• continue – immediately begin the next
iteration of the loop.

• pass – do nothing. Use when a
statement is required syntactically.

• else – represents a set of statements
that should execute when a loop
terminates.

for num in range(10,20):

if num%2 == 0:

continue

for i in range(3,num):

if num%i == 0:

break

else:

print num, 'is a prime number'

11 is a prime number

13 is a prime number

17 is a prime number

19 is a prime number

Python Programming By Subhadip Mukherjee

OUR FIRST REAL PYTHON PROGRAM

Ok, so we got some basics out of the way. Now, we can try to create a real program.

I pulled a problem off of Project Euler. Let’s have some fun.

Each new term in the Fibonacci sequence is generated by adding the previous two
terms. By starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

By considering the terms in the Fibonacci sequence whose values do not exceed four
million, find the sum of the even-valued terms.

Python Programming By Subhadip Mukherjee

https://projecteuler.net/

A SOLUTION USING BASIC PYTHON

from __future__ import print_function

total = 0

f1, f2 = 1, 2

while f1 < 4000000:

if f1 % 2 == 0:

total = total + f1

f1, f2 = f2, f1 + f2

print(total)

Notice we’re using

the Python 3.x version of

print here.

Python supports multiple

assignment at once.

Right hand side is fully evaluated

before setting the variables.

Output: 4613732

Python Programming By Subhadip Mukherjee

FUNCTIONS

A function is created with the def
keyword. The statements in the block of
the function must be indented.

The def keyword is followed by the
function name with round brackets
enclosing the arguments and a colon. The
indented statements form a body of the
function.

The return keyword is used to specify a list
of values to be returned.

def function_name(args):

statements

Defining the function

def print_greeting():

print "Hello!"

print "How are you today?"

print_greeting() # Calling the function

Hello!

How are you today?

Python Programming By Subhadip Mukherjee

FUNCTIONS

All parameters in the Python language
are passed by reference.

However, only mutable objects can be
changed in the called function.

Hello, Ben !

Ben [3, 2]

1 2

def hello_func(name, somelist):

print "Hello,", name, "!\n“

name = "Caitlin"

mylist[0] = 3

return 1, 2

myname = "Ben"

mylist = [1,2]

a,b = hello_func(myname, mylist)

print myname, mylist

print a, b

Python Programming By Subhadip Mukherjee

FUNCTIONS

What is the output of the following code?

def hello_func(names):

for n in names:

print "Hello, ", n, "!"

names[0] = 'Susie’

names[1] = 'Pete’

names[2] = 'Will’

names = ['Susan', 'Peter', 'William']

hello_func(names)

print "The names are now ", names, ".\n"

Python Programming By Subhadip Mukherjee

FUNCTIONS

What is the output of the following code?

def hello_func(names):

for n in names:

print "Hello,", n, "!"

names[0] = 'Susie’

names[1] = 'Pete’

names[2] = 'Will’

names = ['Susan', 'Peter', 'William']

hello_func(names)

print "The names are now", names, "."

Hello, Susan !

Hello, Peter !

Hello, William !

The names are now [‘Susie’, ‘Pete’, ‘Will’] .

Python Programming By Subhadip Mukherjee

A SOLUTION WITH FUNCTIONS

from __future__ import print_function

def even_fib():

total = 0

f1, f2 = 1, 2

while f1 < 4000000:

if f1 % 2 == 0:

total = total + f1

f1, f2 = f2, f1 + f2

return total

if __name__ == "__main__":

print(even_fib())

The Python interpreter will set some special

environmental variables when it starts

executing.

If the Python interpreter is running the

module (the source file) as the main program,

it sets the special __name__ variable

to have a value "__main__". This allows for

flexibility is writing your modules.

Python Programming By Subhadip Mukherjee

INPUT

• raw_input()

• Asks the user for a string of input, and returns
the string.

• If you provide an argument, it will be used as
a prompt.

• input()

• Uses raw_input() to grab a string of data, but
then tries to evaluate the string as if it were a
Python expression.

• Returns the value of the expression.

• Dangerous – don’t use it.

Note: In Python 3.x, input() is now just an alias for raw_input()

>>> print(raw_input('What is your name? '))
What is your name? Caitlin
Caitlin
>>> print(input(‘Do some math: ’))
Do some math: 2+2*5
12

Python Programming By Subhadip Mukherjee

A SOLUTION WITH INPUT

from __future__ import print_function

def even_fib(n):

total = 0

f1, f2 = 1, 2

while f1 < n:

if f1 % 2 == 0:

total = total + f1

f1, f2 = f2, f1 + f2

return total

if __name__ == "__main__":

limit = raw_input(“Enter the max Fibonacci number: ")

print(even_fib(int(limit)))

Enter the max Fibonacci number: 4000000

4613732

Python Programming By Subhadip Mukherjee

Thank You

Python Programming By Subhadip Mukherjee

