—_ - - - vk -
— - — »’ 4
— « —g!

CHAPTER

16.1 Introduction o
Trees form one of the most widely used subclass of graphs. This is due to the fact thay Many

of the applications of graph theory, directly or indirectly, involve trees. Tree occurs in Situatiop,

where many elements are to be organized into some short of hierarchy. In computer science, trees

are useful in organizing and storing data in a database. '
In this chapter we introduce the basic terminology of tree. We look at subtrees of treeg eg

rooted trees and binary trees and also many applications of trees.

16.2. Trees and their Properties
A tree is a connected acyclic graph i.e. a connected graph having no cycle. Its edges are calleq
branches. Fig. 16.1. are examples of trees with atmost five vertices. Fig. 16.2. (a) and (b) are nqt

trees, since they have cycles.
A tree with only one vertex is called a trivial tree otherwise T is a nontrivial tree.

[ ]
1 vertex

2 vertices
3 vertices 4 verties 5 vertices
Fig. 16.1
(a) (b)
Fig. 16.2
A collection of trees is called a Forest,
Characterisations

Trees have many equivalent characterisations, any of which could be taken as the definition-
Such characterisation are useful because we need only verify that a graph satisfies any one of them
to prove that it is a tree, after which we can use all other properties. A few simple and important
theorems on the general properties of trees are given below, ’
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. o 1 A - I
R 00f' Since T is a COnnec[ed Y one Path beYWe .
g in T. Let there are ty, - th
o i0eS

0 disting, °Te mug exi
) - Paths Stat leagt e
1 gihs will contain a cycle oy, the “WERN tw vy

conversel.\' L “anngy be  tree e
| 2 Theorem 16.2. If in 4 graph G there i o
gatree _ A only one Path between every pair of vertices,
b e proof. Since there exists , Path be S

i ,gﬂPh (with two or more "'Cl'liCes) imp|; h ry pa'_r of verticeg

- plies { then G is connected. A cycle in
B eare two distinct paths between ua o 4
- m

er : : -

| " Since Gils Al least gpe Pair of vertices 1, v such that

]  fvertices; G can have ng cycles, Therefor, Gisq rreas e and only one Pribeteen every pair
[manf Theorem 16.3. A tree T with Vertices b, | ed
lag;, o i ) » . B ges
ah% proof. The theorem ig Proved by Inductjop, on n, the Number of ver T
! rod is of Induction: y, = ’ o B LS

%54 Basis 0 —— \’hen "= Lthen T g only one vergey Since it h )

oy edgeic.ithas e g - e §. ; € 1thas no cycles, T cannot
eep | Inductive step: Suppose the theorem i ¢

-; ' e forn=g> i itive |

| Weuse this to show that the result is trye for n s i et

' =k+].
“wheedge of 7. Then if we remov L Let Th

| sdisconnected since =

Calleg | ulovthen when we added p

ire ng| :

vertices and Jet

3 Vs Vay ey W, from

e(T)=v(T)-|

e(T)=v(T)-1

f But the construction of T, and T, by removal of a single edge from T gives that
e(N=e(T)+e(T)+1

g and that

v(D=v(T)+ v(T)
it follows that
E(T)=v(T1)—]+V(T2)—1+1=V(7)—1=k+1‘1=k
Thus 7 b k ired
edges, as required. . . . )

thce by the principle of mathematical induction l.he theorem is proveh. " | d
torem 16,4, F positive integer n, if G is a connected graph with n vertices an

LS| 4. For any
{ edges, then & ; o ' . e
v, Gis atre % teger and suppose G is a particular but arbitrarily chosen graph
by s ¢ « Letnbegq positive fn €g d n — 1 edges. We know that a tree is a connected graph
ith, PMnecteq and has » vertices an

- | edges. We have to prove
, . em that a tree has n .
ik ulec Cycles, We have proved in previous ey then G is connected. We decompose G into k
O

cted and it has no cycles since G hag no

g :f:%mp: YETSe that if G has no cycles and - :;rftdigsef:’onne
1. ents G,G G,. Each compon e >": o % (n-)=n-kore=p_y Then
-]l a A j=1 !

n i=1 .

9y ceens

enCe‘ each Cx is a tree. Now, €,=

i tree.
. Hence, G'1s a
hat k=1 or G has only one component
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654 ———— tit is minimally conn \\AT*HEM g
' g tree i and only if 1t 18 inected "‘\ATIQ j
Theorem 16.5 A graph 18 8 lr vertices and we assume that G is a tree With \i e
" - ath v i ber of edg
Proof. Let GG bea graph W! s has (71— |) number ol Cdges. If one gq
i - of vertices 1K A i e log,
know that a tree with 7 pumber of - disconncctcd. Hence G is a minima]] Sdﬂet Wy
ith n number of vert; Y conlleq “ er"

< heconmies
4qY ted graph Wi
8 A a ¥

i Fposle, e G b 0t e, T3 1
ted if one edge of this circuit 1s.removed from G T Cony
Lccted graph. Henee Gisa tree. is °°lllra(;].si
be summarised by saying that the follg |

wi

ith » vertices is called a tree if Ing areﬁ‘;
|

2) edges an
t Gbea minima .
q connecle gl

G, then it has (77 - [ly conncc

Conversely, le '
of edgesof G2 1 - [as G118
circuit and G becomes still conne¢ ‘
our hypothesis that G 18 8 minimally cOnit™ 1

The results of the prcccding theorems cal e
different but equivalent Jefinitions of tree. A grtlr_’

l. G is connected and has no cycles (acyc ic)
G is connected and has n-1 edges

| edges e
between every pair of vertices in G

d graph.

‘9d 1D
. -

G is a acyclic and has 1=
There is exactly one path
G is a minimally connecte

» TR 5%

Rooted Trees ‘
A rooted tree is a tree in which a partic

the root. In contrast to natural trees, which
the top. First, we place the root at the top. Under oo 38

Togf

trees are typically drawn with their roots at
ertices that can be reached from the root on a simple wih b
of

and on the same level, we place the v

length 1. Under each of these vertices and on the same Jevel, we place vertices that can be reachy].
from the root on a simple path of lengt ‘
We give definitions of some terms related to it.

have their roots at the bottom, in graph theory o KB
Tooteg §

The level of the root is defined as 0. The vertices 1

I and so on.
1 to any vertex of the tree. The depth i
a vertex v in a tree is the length of the path from the root to v. F ull
f v are all those vertices thatax |
v, the viscalld |-
inte)
ertex). A}

2. The height of a rooted tree is the maximum leve

3. Given any internal vertex v of a rooted tree, the children o
adjacent to v and are one level further away from the root than v. If w is a child of

the parent of w; and two vertices that are both children of the same parent are called siblings.
4. If the vertex u has no children, then # is called a leaf (pendant or a terminal v

non-pendant vertex in a is called an internal vertex.
5. The descendants of the vertex  is the set consisting of all the children of together
the descents of those children. Given vertices v and w, if v lies on the unique path bet
the root, then v is an ancestor of w and w is a descendant of v
These terms are illustrated in Fig. 16.3. .

Root ————— 2

=3

-
e o e e T

- -
- - -

Helght

dis achildof c
cisaparentofd Ca---mmameo_J .
dandearesblings / \ ' | O TTTTRNTTTT

- -

- - -
- -
- - e W == T

----------------------- | .
e reglon

Sr

h 2. We continue in this way until the entire tree js ik

o

he number of edges along the unique path between it and the oo |

1. The level of a vertex is t
immediately under the root are said to be inleyl | -
© b sca

wit .
ween 1w & ¢

ular vertex is distinguished from the others - i o,
sca“' a i

d
L_Vertices in enclos
are descendants ofd
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le 1. Consider the root - o —
"nmp ed lree inF
f i 164,
. c
d e
g
- Fig. 1
() what is the root of 79 S5
(b F ind the Icaves and the interna] Vertices of T
(c) What are the levels of ¢ and ¢, )
(d)Find the children of ¢ anq ¢,
4 ()Find the descendants of the vertices aand ¢
L Solution. (a) Vertex a is distinguisheq as the only vertex located at the top of the tree. There-
foﬁ'ais the root. '

‘Callegﬁ' (b) The leaves are those ve
}zooledf; \atices are ¢, d and e
o vl

o0 are | and 2 respectively.
P o hildren of ¢ are
cacheg f () The children of ¢ are d and e and of ¢ gre g and h.
draw,if.f‘, () The descendants of q are b.c,d e fgh

g ~ Definition. A rooted tree js an m-ar

The descendants of ¢ are defg,h
e ¥ if every internal vertex has at most m children. A m-ary
e lrooti_fﬁ. reis a full m-ary tree if every interna]
nlevel 4

vertex has exactly m children, In particular, the 2-ary tree
“ 4 bcalled binary tree.

rtices thay have

no children. These are b, f, g and h. The internal

(c) The levels of ¢ and ¢

pth 0’{‘7 - The relationship between i, the number of internal verti
~  illm-ary tree can be proved by using the following theorem.
Theorem 16.6. A full m-ary tree with i internal vertex has n = mi + 1 vertices.

Proof. Since the tree is a full m-ary, each internal vertex has m children and the number of
nemal vertex is 7, the total number of vertex except the root is mi.

Therefore, the tree has n = mi + 1 vertices.

Since / is the number of leaves, we have n =1+ i.Using the two equalities n = mi + | ang
‘_=l i, the following results can easily be deduced.

Afull m-ary tree with
() n vertices has i = (n-1) / m internal vertices and /= [(m — 1) n + 1]/ m leaves
(ii) i imema] vertices has n = mi + 1 vertices and I=(m-1)i+1 1621\{65 -
: (7ii) 1 leaves has n = (ml = 1)/ (m - 1) vertices and i=(/-1)/(m- 1) intemal vertices.
: Thec"’em 16.7. There are at most m" leaves in an m-a.ry tree of height A.
Toof, We prove the theorem by mathematical induction.

i ith no more than m children, each
Basis tree consists of a root wi :
. duetion: For =1, The ' -ary of height 1.
'S a leaf. Hence there are no more than m' = m leaves in an m-ary g

Height =3

e leaves of T are the leaves of subtreeg

ight h. Th
::ductiun Step: Let T be an m-ary tree of heig f the vertices of level 1. Each of these

to each o
Ned y deleting the edges from the root 10
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i < the ual &=
subtroes has height less than \‘f‘c‘q‘ i
ecs has at most mr* ! Jeaves. S
- leaves, there ane al most mm

= ”:\

‘e g the thooreni ) ' R
el S “"h wrivial e T has at least nvo vertices of degree |,
Example 2. Every noiriid ‘ ) et oo b
Sol ti\pn Let » = the number of vertices of T(n22) h of th r°f\emces
Selutron, Lot m = Uk e . o

Jenote the ™ vertices of dLgR‘L 1. Then each 0 e remalmng .
Let v, v VeV b CNOIT

Al . .
v has at least degree -
' =1, 2, s M

!

-~

v « Vo, aen

- el O Wy

Thus, deg(n)=1ford

9
s2fori=m™ LLm+ 2, il

j=mel i=m+l

i deg(v)= v deg(y, )+ E de.‘:'("r) =m+ Z dég(\"-)

=)
=

>m+2n-m=2n-m

.
= |
Again Z deg(v;)=2e= An-D=2n-2
il
Hence n-22m-m=>mz22
This proves that T contains at least two vertices of degree 1.
Example 3. In a complete n-ary tree with i internal vertices, the number of Ie"f‘-'ertap?

ghvenbyp=(n-1D@x-1)n

isx=ni+|sothati=(x-1n
Again p is the number of leaves in the trees sox =i + p + 1.
Eliminaung i from (1) and (2), we get
P=(n-1)(x-1)n
Example 4. A tree has nwo vertices of degree 2, one vertex of degree 3 and three vertices
degree 4. How many vertices of degree I does it have?
Solution. Let x be the required number. Now, total number of vertices = 2+ 1 + 3 +x=b

Hence the number of edges is6+x-1=35+x [Inatree | E|=| P-]

The total degree of the tree =2 x 2+ 1 x3+3 x4+ xx=19+x

So, the number of edges is B'*'_‘. [7c=5d‘§(“
m 2

e |9+.\‘

Now, a1 3 s

19+x=10+2

or -
Thus, there are 9 venj

ces of degree one in (he tree,

16.3. Spanning Tree w

A subgraph T of a connecteq . is a e
& Ta ] » . ; ep s S8
Eraph G(V, E) is called a spanning tree if () Tlsnin:l ,“:

(i) T includes every vertex of G j ¢ D=}
G must have n vertices and hence p

= Cdges. (G) l”” = and |E| =m, then the SpanGwob(j%,;

panni - Wen from 6
a spanning tree. In removing these edges ane Wt remove m — (17 — 1) edges e

o 4
. ) ) i ) Ri o
and further there is no circuit i ji 1ust ensure that the resulting graph reft




Find all SPanning trem\ 657
faph G

Fig. 16.5

tion. The graph G has g, . . -

5(1)];1]“5 each tree can be Oblainelzirb\ El;itgets‘ o pyenee each Spanning tree must have 4 — 1 = 3
etin :

ways, except t.hat two of the Ways lead tq & tWo of the fiye edges of G. This can be done in 10

g shown in Fig. 16.6 15Conne

- Conversely, suppose that G is connected. If G is not a tree, it must contain a simple circuit.

Remove an edge from one of these simple circuits. The resulting subgraph has one fewer edge but
il contains all the vertices of G and is connected. If this subgraph is not a tree, it has a simple

mit; 50 as before, remove an edge that is in a simple circuit. Repeat this process until no simple

Ut remain, This s possible because there are only a finite number of edges in the. graph, the

FUESS terminates when no simple circuits remain. Thus we eventually produce an acyclic subgraph
¥ich is a tree, The tree is a spanning tree since it contains every vertex of G

- Exampe 6(7). Find all spanning tree of the graph G shown in Fig. 16.7

Fig. 16.7

‘ i hence each spanning
. ) 6 edges and 6 vertices and
Ilfolutmn. The graph G is connect;:d=- llt :ggses hasg to be deleted from G. The g}r\ap}l: G has onﬁ
: Uthave 6 — | = 5 edgesaSO gf;he cycle gives a tree. There are three trees which contain a
. ©¢ removal of any edge

%S of G and hence spanning frees.

¢ o d f e d
f e d ‘ j |
a b C
' b c
4 a
c
Wias Fig. 16.8
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panning trees of the gra

Example 6(ii). Find all the s

Vi

V3

V2' |
mber.of edges, m =

Solution. The number of vertices in the graph, n = 4. The nu h +g1 d 3. 8o, the

number of edges to be detected to get the spanning |

Thus, there are eight spanning, trees and they are

TSYKMXZZ

trees—m—n+l—5

Example 7. Find all spanning trees of the connected graph G:
A
: H
& (B D "
C G

Solution. Since the vertex B contains self-loop, we remove the self-loop from the vertex B,
and G becomes

The graph is connected and it has 9 edges and 8 vertices so 9 — (8 — 1) = 2 edges has to be
deleted from the graph to get a spanning tree which is connected and does not contain cycle.

The spannmg trees of the graph G’ are given below:

A F
(i) %—/> (ii) B bﬂ H
C G
' A F
(i) B % H ) B % H
D E
C G
A F
L B’_>__4/H (vi) B’%_—\I\H
D E
, - G
A F
(vii) Bo——» ﬁ\b H (viil) B ‘%_‘/I\ ,
c D E
C G
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lnlllng |
. . ree
h is given below -

Son the ¢

7 ic ith ; omplete vrank 1 .
: ‘Mp‘ wh L, Theorem 169, Tt Ut proof, Dlete graph K, can be found form Calay’s
4 9 ay s 7+ 1he comp)
1" (ol - Plete prapy, 4 ‘

: f!ﬂmple 8. Give all the SPanning re of E K hag different spanning trees,

S‘OIU‘i""' Here n = 4, 5o there will b 0 i

* e ? -—
1 e are shown below =16 differepy spanning trees, All the spanning

T___Q

Tp—2
1 2 3 L
4 3 B
1 : :2 14 2
23 g i 4 3
1 2 > 5
i * ’ L 4 3 4 3 4
4 R2 1 ﬂZ 1 2 1 2
| 4 3 4 3 lw 3 4
| Algorithms for Constructing Spanning Trees

Instead of constructing spanning trees by removing edges, spanning tree can be b_uilt up by
1 Neeessively adding edges. Two algorithms based on this principle for finding a spannig tree are

{ Breath-first Search (BFS) and Depth-first Search (DFS).

3 4 3

| BFS Algorithm

The idea of BFS is to visit all ve
lare visiteq,

rtices on a given level before going into the next level until

Procedure.
: (1) Arbitrarily choose a vertex and design
1 ™ such that the addition of edges does no X
2 i \%
(i) The new vertices added at this stage becom® the
l .
fly order them s :
. to th rtex t

(i) Next. h vertex at level 1 visited in order, add each edge incident to this vertex to
e 4, xt, for each vertex , .

e ag long as it does not produce a0Y cyc -nex 4t level 1. This produces the vertices at level

ate it as the root. Then add all edges incident to this

t produce any cycle.
ertices at level 1 in the spanning tree,

1 2, t;‘fv) Afbitrarily order the children of each ve
e tree |l the ve dices in the tree have been added.
(v) e until @ mber of edges in the graph.

Continue the same procedur

(w) The procedure ends, since there 2r¢ 5

roduced a tree without cycle containing every
avep

) . )
| ue%x\n) A spanning tree is produced since We
: i T the graph.




£ an
BES algorithm {© find a sp

e verleX ato
all vertl .
d. The two vertices

— M B

Ny,
660 //1ing trec of graph G of Fig | Q\EMATIQ’&
9 \

Example 9. Use

Solution. (/) Choos¢ th ‘
(i) Add edges incident with
{a,c} arc adde

: to a
b and
a

so that edges {a, b},
¢ are in level 1 in the tree. ' 0 adjacent
e i) Add edges from {hese vertices at levelile : Jd} y
K . cc. Hence the edge 1¢ Fi :
vertices not already in the tr2 sy 4y s not joined 7) 19. 16,9
added. The vertex dis in Jevel 2. djacem vertices not already in the

(iv) Add edge from dinlevel 2102 :

in level 3.
. Hence e and g are 1n _

{d, ¢} and {d. g} are added. - ices not already in
' vel 3 to adjacent vertices 1 y in the tree ang hen,

I'Ee_
: *y

(v) Add edge from e at le l f}
is added. — i
Fig. 16.10 ‘
The steps of Breath fast procedure are sh(;wn n K1g b
b §
8
e a a d a d :
c c c 9
@ ®) © @
b e
a d f
6 i &
(e) j o
Fig. 16.10 1
Hence Fig.16.10. (e) is the required spanning tree. | Fu
DFS Algorithm A
An alternative to Breathfirst search is Depth-first search which proceeds to successive ]evel_S; :g‘
in a trec at the earliest possible opportunity. DFS is also called back tracking. (d:

Procedure. t,
(i) Arbitrarily choose a vertex from the vertices of the graph and designate it as the root {1

(if) Form 4 pfath.star ting at this vertex by successively adding edges as long as possibl¢ wher
each new edge is incident with the last vertex in the path without producing any cycle "
(iii) If the path goes through all vertjc " nis path B b
: es of of thl L
g frce of the graph, the tree consisting m ‘
Otherwise, move back to the nex (o la |

. , st vertex i : : ,forma"
starting at this vertex passing through vertjc G i the path, and, it pOCBiO

¢s that were not already visited. pack ! |

(iv) If this cannot be done, move back another vertex in the path, that is tWO yertices

the path, and repeat.

g =

1w

the P
cap be ? i
(vi) This process ends since the graph b pectt”

. : . 1S co
spanning tree is produced. 3 a finite number of edges and
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¢l edgeg iy ==

. . and
" If the 1VEN connecyegy 8raph ¢ | %I loops from the given connected

-gctcd graph. 1S 3 directed raph 1
o 2 €n
Example 10. Find a SPanning tree e We construct 1he correspo

Fig. 16.11
path by
is Produces the

beginning g £,

; 0
1S 1o path, g 4
tree which is

Solution. Choose the vertey a. Form
Jready in the path as long as Possible
| Now back track to . There n
.;nilaffy’ after back track at ¢, there
produces the required Spanning

y Successiyel

Y adding edges incident with vertices
Path a-c-d.e.fp

Ntaining vertjces not already visited.,

0 move back track at d and form the path d - b,
shown in Fig. 16.12.
e

0 path

The DFS proceeds successively to higher levels at the first opportunity.
damental Circuits

Let Tbe a spanning tree of a graph G. Then the edges of G that are in T are called branches
- The edge of G that is not in T'is called a chord of G with respect tol T. A circuit formed by
fing a chord e to a spanning tree T of a graph is called a Fundamental circuit of G_thh respect
t‘ispanning tree T relative to chord e. The cut set containing exactly one branch of T is called fun-
“ntal cut set of G to w rt.T.

Consider the spanning tree T of the graph G as shown below:

V1 64 V4
vy e, Vy Lo
F
€3
T:
G 3 e‘ e3
es
@
o e V3
v, 2
V3
vV, e,

The branches of G are ¢,, & 2y ' v, — v, — v is formed
: freuit vy = ¥y =V, 7V TV .

© chords of G are , and & ing tree, then 0n¢ ch then the circuit V=V =V, -V is

M ihe chord e is added to the span® e 15 adde

y lskn 1 rcuit.

U “OWn ag fyndamental cir

A the = :

- I“"damental circuit.
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| Fundamental circuit is defined MR TSP 4 graph is 0ot unique
, b respect 10 8 gpanaiig = ' . ning

Fundamental circust wit respes . with respect W0 00€ spanning Uee but ng

A given circuit may be fundamental cireutt Wi b

ta

. ﬂr.:!",‘h
. . n the s8mME &% )

; nanning tree i I T
e : h n vertices and e cdges. 1 has 7= € ~ (= 1) ehey.
mple gf?-?h wae = ental circults with respect 1g 7

I so it has r fundsm™ i ;
e removal of any branch {rom g e

Lad

with respe
4. If G is a connected si

with respect 1o any spanning Uree | .
5. For every branch there is wnﬁp&pdmg f“”ﬂ:”‘“

ning tree breaks the spanning free e trtt!;‘ shown below
Example 11. Find fundamental circuits for the grapis =70

N i

3

vy

¥y ¢

We first use BFS algorithm to find the spanning trec. First delete all loops and panl.

Solution: u
v.) we get the graph G

lel edges. Deleting onc paraliel edge (v..

vy

Ya

vy

Ge : Vy

A s
(i) Choose the veriex v, (o be the root.
(if) Add edge incident with all vertices to v,, so that edge (v, v,) is added.
(iii) Add edges from this veriex v, 10 adjacent vertices not already in the tree. Hence (v, v)
and (v,, v,) are added.
(iv) Add edges from v, and v, to adjacent vertices not already in tree. Hence (v,, v,), (V» v)
and (v,, v,) are added and we get a spanning free.

The steps of BFS procedure are shown on the next page.

il \
V.
2 v,

After converting the given graph in simple graph, we have e = 1] and n = 7. So there &

r=11-7+1=35 funda ircui . ' vy Y
bt n:iemal circuits and these are v, - Vi, s relative to edge (Vy '!’)
TV o edge (v, v,), v, — v, — v, - v, - v, relative to edge (v,, v,), ¥y~ ¥~ v,
relative to edge (v, v,) and v, - v, - v, = v, = v, = v, relative 1o edge (v, v,) '
: p T8
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c]“d Nulllty

A7 e number of vertices, ¢

i ﬂ.“. ymponents of a m-i € the number of edges and

& ber of CC s £raph G then rank aoy - . Kn >k, k=1 for connected graph)
! Rank r=n-§ and nullity is defined as

Nullity =e-n+k
ral, for any graph of n vertjces

ne
¢ is called nullity of the graph

gL

"}u' e
S gnnine lement of nullity i
e cOmp ity ie., the number o : : ich gi
lr of pranches of G with respect to any spannfi:Zdtefstro)ed edges is called rank which gIves

and
and e edges, the number of edges to be removed 0
equal to the number of chords with respect to any

ghted Graph
A weighted 8 r.'.lph is a graph G in which each edge e has been assigned a non-negative number
o \-Juc_d tllef\?lgl.l: (or length) of e. Fig. 16.13 shows a weighted graph. The weight (or length)
ath 1N SUL,h a oy ighted graph G is defined to be the sum of lh; weichts of the edges in the
b Many OP_“““S?“.O“ problems amount to finding, in a suitable weighted graph, a ce?tain type
qxbgf-‘l’h with minimum (or maximum) weight. g A

yinimal spanning Trees

& LetGbea connected weightd graph. The weight of a spanning tree of G is the sum of the
ights of the edges. A minimal spanning tree of G is a spanning tree of G with minimum weight. The
h G of Fig. 16.13. shows six cities and the costs of laying railway links between certain
We want to set up railway links between the cities at minimum costs. The solution can
a subgraph. This subgraph must be a spanning tree since it COVErs all the vertices
{s that each city is in the road system), it must be connected (so that any city can be reached from
my other), it must have unique simple path between each pair of vertices. Thus what is needed is a
pnning tree the sum of whose weights is minimum i.e., a minimal spanning tree.

yeighted 2rap
i of cities.
he reprcsemed by

'Mgorithm for Minimal Spanning Trees
. There are several methods available for actually finding a minimal spanning tree in a given

: ?‘Ph- Two algorithms due to Kruskal and Prim of finding a minimal spanning tree for a connected
wighted graph where no weight is negative are presented below. These algorithms are example of

tredy algorithms. A greedy algorithm is a procedure that makes an optimal choice at each of its

s without regard to previous choices.

ska|
al's Algorithm anected weighted graph G which is a

N This algorithm provides an acyclic S“F‘g‘“ ph T
nllal Spanning tree of G. The algorithm involves
"Put : A connected weighted graph O
Uput : A minimal spanning ¢ th

of aco
the following Steps:

e
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- p) of G
which do pot form & loop y 1N nnn.dureﬁsm l‘\h
Step 1. List all the edges { .
weights, ) e o e = U
s ol W tec of mimmum weight (If more than one edge of m'“imUm
Step 2. Sefect an adge ol 1

n[\‘ L‘dLs Ol T

R » ane of the s the
tranly choose one of the m). This -e of minmum \uuhl from

. K \‘ anc ‘1
Step . At each stage, sei¢ s not form a circul! with the
N

the edge In T.
| edges have been selected, .

all the remaining edges of G ud
previously \l:u:dcd ~ in T. Include
Step 4 Repeat step 3 unnl n -
when n is the number of vertices m G-
The following examples illustrate these
Example 12. Show how Kruskal's algont
spanning tree for the graph of Fig. 16.14.
Solution:
Step 1 : List the edges in non-decreasing order of their weights, as ip Table 16,

Edgt‘ : (b 0) (c. e) | (c, d) (a, b) (e, d) (a, (ﬂ m
T | b ) 1 3 4

steps.
hm find 2 minimal

Weight : 1 = : : n
Table 16.1
Step 2 : Select the edge (b, ¢) since it has the smallest weight, include it jn ! t
b Bl ] \!

Step 3. Select an edge with the next smallest weight (c, ¢) since it doe

S N0 form ¢ireyiy won
S s . - oty |rCu" 8
the existing edges in 7, so include it in T. Wiy

b c
e
Step 4. Select an edge with the next smallest w eight (¢, d) since it does not form circuit wiy
the existing edges in T, so include it in T, the
c
b ‘ —e d
]
e a4 b

S.te.p S. Seleq an edge with the next smallest weight (a, b) since it does not form circuit wit _
the existing edges in T, so include it inT
a

g |

Since G contains 5 vertices and we have ) an
: . chosen algorith/m
mal spanning tree is produced. 4 edges, we stop the alg
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¢ 13. Show how Kruska)’

al’s " i
S algorithm fings a minim

al spanning tree of the graph of

| t \""Pl

Fig. 16.15

Solution:

Step 12 Last the edges in non-decreasing order of their weights, as in Table 16.2

(a, ) (h. d) (e, _L') (b, ) (d, Q) (d. A (. o) (. d) | (a. b) (d,f) (C,j) U: ‘L,)

L2l 3 fsistelr]sofw[ufrn
Table 16.2
Step 2 = Select the edge (a, ¢) since it has the smallest weight, include it in 7.
a
c

mh - Step 3. Select an edge with the next smallest weight (b, &) since it does not form cycle with
- | Reusting edges in 7, so include it in T.
2§ a b

.‘"{\ c d
Step 4, Select an edge with the next smallest weight (e, g) since it does not form cycle with

ath 3 = SUsting edges in T, so include itin T.
b e
a

aob d g

t (b, e) since it does not form C
3§ Step 5, Select an edge with the next smallest weight (b, ) cycle with

‘15“112 edges in T, so include it in T

e
a b




666 i ; B,
e e BN smallcs! weight (d, ¢) since it does ng, fo [
Step 6. Select an edge W! ' Yol . ¥
i : qude itin T " Wiy
the existing edges in 7, so incit Y e §
a
c d |

 with the next smallest weight (d, /) since it does no form

Step 7. Select an edg . e i .
the existing edges in T, so include 1t 0 T. . l
a b
c ) d g

f

Since G contains 7 vertices and we have chosen 6 edges, the process terminants apg the mjy;
mal spanning tree is produced.

Example 14, Using Kruskal's algorithm find a spanning tree with minimum weight frop, the
graph below. Also calculate the total weight of spanning tree.

Solution.

Step 1. List the edges in non-decreasing order of their weight as in Table 16.3

Edge | (vyv) | ) [0 v) | (v | (v, 0,) V) | (v v) | (o v | (Ve v (v v)

Weight | 3 5 7 8 9 10 1 2 | 15| D
Table 16.3
Step 2. Select the edge (v,, v,) since it has the smallest weight 3, include it in T
Ve
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_3‘ Gelect an edge with the p R SR 667

—

g inso T include it jn X1 smalegy Weight (y

» V) since it does not form cycle with
v
(]

Vz / ,

A7)
(ep 4 Select an edge with (pe i v,

: . e Smallest y o ‘ .
| ing edges in T, so include inT weight (v ;) since it does not form cycle with

Ve

va
V‘

Vg Vi

Select an edge with the
fep 5- : : NEXt smallesy ye: ) .
' xsisting edges in 7, so include it i T { Weight (v, v,) since it does not form cycle with
v, v

Vs
- Step 6. Select an edge with the nexq s

) ) h mallest weight (v, v
usting edges in 7, so include it in T

}) since it does not cycle with the

10
Ve v, T v,
3 5
Vs * v,

5 Since G contains 6 vertices and we have chosen 5 edges, we stop the algorithm and the mini-
1l Spanning tree is produced. The weight of the spanning tree is 3 + 8 + 7+ 5 10 = 33,

im's Algorithm

Initially the algorithm starting at a designated vertex chooses an edge with minimum weight
ud considers this edge and associated vertices as part of the desired ‘tree."l"hen 1tcrate.-looking for
Dedge with minimum weight not yet selected that has one of its vertices in the tree while the ot.her
E’,:flex s not. The process terminates when n — | edges have been selected from a graph of n vertices

- ™2 minimal spanning tree. The algorithm involves the following steps.
loput; o connected weighted graph G.
Output : A minimal spanning tree T.

Ste if exist) and all parallel edges betweejn t.wo vert_ices exceplt the
°Wilhp,;i;l?n:?n(:v;;llhstd;:])gzsagi i::rte)x in G. Among all the edges incident with the selected
1ght.

: itin T.
X, thoosge inimum weight. Include it in B .
St 7 an edge of mini o edae of smallest weight joining a vertex already included
r l;v. At each stage, lckziocc)lsﬁifait dogs not form a circuit with the edges in 7. Include it in T
Criex not yet included,

) : d.
Step 3. Repeat until all the vertices of G are include
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i o tree of the weighted graph
E le 15 (a). Find the minimal spanning f
xample 15 (a). I

Prim’s algorithm

Fig. 16.16

i lest weight inei
Solution. 1, We choose the vertex v, Now edge with smal ght mcldentonvis(
Solution. 1. We choos ke
so we choose the edge [or (v, v)]:

v ")

V3

N

the edge (v,, v,) since it is minimum, y "

V3
3. Againw (v, v)=3,w (v v) =T and w (v, v,) = 3. We choose the edge (v,, v,)
N v

1 V2
V4 V3

4. Now we choose the edge (v,, v,). Now all the vertices are convered. The minimal spanning

tree 1s produced.

V2
Vs

The weight of the minimal sp
342+ ]42=8

Example 16 (a). Describe p
of the following graph.

anning tree js

g ] {2 anning
nm's algorithm and yse this to find out the minimal P

Fig ), ey ]

2. Noww (v, m)=d,w(v,v)=3,w,v)=3,w(,v)=2and w (v, v)=3. We o ,

(¥

Wl
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 onler W findd ot i W) et fislltrsnt A

Wew e fulliring slefr Are
¢ ¢l nlullmﬂ Yeflan. | cilpe il aiiillegt e igh

' wi chonse the edpg .
qll’P o f8 wi : i e iigfe Wi g ‘””"”'“"-’ fies)
|

e e VEren vy i, i ifioidetit

; . J
e | .‘

iy =Wowilv v V
g Now H(l',- VISR WK, p)=3 (Vv )= 7, wnid wiv,, v,j = B, Ve chiotrs® (e odpr
i I pindmom and inclide § 4y 4 , n’

‘ SM' ‘;
i 5"“" Vg ,
) : N

s
i

sy

I e e T A R S T A Rt
St I;; (2, We choose (Vi V) 8I0Ce 1000 minlmnm and incliude in 1.

)' s v! .—""——'rw-.y..u._.,,

/)

Now among elligiplc cdgc'ﬁ,'w (Ve v,) = B, wlv, v,) = 12, wlv,, v,) = 4 we choose
{ is minimum and include it in 7,

vy ‘(°
\\ Y
\\
N\
Vp N\

Vs

-~ step 4
;v,) gince 1

Step 5. Only the vertex v, is not yet included. Now (v,, v,) = 8, w(v,, v,) = 12, w (v,, v,) = s

The minimal spanning tree is obtained and the total weight of the tree is
242+3+4+7=18

Slep 1: Remove all self-loops (if exist) and all parallel edges hetween two vertices except
14 one with minimum weight. Label the vertices by vy, vy ooV, Tahulalcvlhc given weights of the
E’ES oF G in an n % n table. This table is symmetric with respect to the diagonal and the diagona)
3 n . . . l & 5 o) ‘Biw
giy, If there s no edge connecting v, to v, sct the weight of the edge (v, v) as .
lep 2: g Lo firs d connect it to the vertex which has ¢ ~
] : St v je. first row and conn s smallest
in |, art from the vertex v, L. e
Tow of the table, say, Vo Then atrec v, v, 18 .
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. 1) that has smalleg
o (he vel

i fmlllu|

ertices unttl (1 = 1) edoe
ol Ve d&ts are .
s formua minimal sp.man tre

nt
SEep 4 Connect the ee Ve Y 5

, W
IR row i Kih row, Thas a ety
oeess ol 8¢
Iese edgt

"
lll

section
Step A Continue (his

Tee with novertices has n | edpes) v
wim's alporithea minimal spanning tree Imm the
Example to (A). Vind by | (i v,

) 7\

[ y
Vs s e g v?

. /'
/ J
) d =
§ Vs
r"/i}/

Vy

Solution: The given graph is a conneeted weighted graph having § Verticeg So

Step 13 The tabulated form of the weights of its edges are given below:

Wova V3 g Vs
wl|l- 4 3 3 3
w4 - 2 = 3
wli 2 -3«
3 = 3 - 2
w3 3 e 2 -

Step 2: Start form the vertex v,. The smallest entry in v,-ToW, i.e., the Ist row of the table j
3, which corresponds to the vertex v, or v, or v, Take any one of these three vertices, say v, thy
the tree v, v, 1s formed as shown below:
v,

Vs

- Step 3: Smallest entry in v -row and v,-row, i.e., 1st and 3rd rows is 2 which corresponds
Then the tree v, v, v, 1s formed as shown below:

vy

i
1 o
spanning trée has 4 edges mm'"‘il L

fhis 1
L Diffc

 rady

yerte

164

binay
most
N’O (

1 the

nge

Suby,

: Yemj




//—'—_—_'_——‘*_\“‘*" ——— - —EZ—:'—
Jest eNtry 10V -TOW, y oy, : . is  do

4 ’“fﬂ orresponds to v_ or ’ ) “ and v -row, ie. Ist, 2nd and 3rd rows is 3 (.WL i .
R 2 0T v,) which commesponds to v, or v, (except v, v, Which are
i in " Take anyone of these - ov, orv (excepl v, ¥y 7 formed
¢ oted) €€, say, v Thus the tree v, v,, vy ¥y 18 10

vy

v, Vs

entry inv, - '
' . The smallest entry in v, -row, v .row, vy-tow and v, -row, i.e., Ist, 2nd, 3rd and 4th row
step i rresponds to v (except v,, v,

o2 which are already taken). Thus the tree Vi Vs Vi Ve Vs is
“'l“has shown below:

Vs

: Abiﬂary tree is a tooted tree in which each vertex has atmost two children. Each child in a
tree is designated either a left child or a right child (not both), and an internal vertex has at

h = 0¢ left and ope right child. A full binary is a tree in which each internal vertex has exactly

; ﬂchi]d[en

rhth Given ap internal vertex v of a binary tree T, the left subtree of v is the binary tree whose root

b L Cft chilg of v, whose vertices consist of the left child of v and all its descendants, and whoge

C[) . 3 . bt .
iy, Sist of al] those edges of T that connect the vertices of the left subtree together. The right

*1Vis defined analogously.

- Fip _ . : ince each of its ;
MictsghIG'l'] (a) is a binary tree and Fig. 16.17 (b) is a full binary tree since each of its internal

85 twg children,
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a

) Fig. 16.17
A tree in which there is cxactly onc vertex of degree two and cflCh of the Other Verii
degree one or three is called a binary tree. The vertex of degree lW(.’) is 'ca[lcd Toot of gp, fee
Example 17. What arc the left and right children of b shown in Fig, 16,89 What g, .

and nght subtrees of a?

Fig. 16.18

Solution. The left child of b is d and the right child is e. The left subtree of the vertex a cop-
sists of the vertices b, d, e and Jand the right subtree of a consists of the vertice

sc g hjandh
whose figures are shown in Fig. 16.19 (a) and (b) respectively. :
b c
d e h
g .
f i K
(a) (b)
Fig. 16.19

Propertics of Binary Trees

deg®

Proof : Consider a binary tree on 1 yergiges This tree possess exactly one Ver'®* Osince e 3

two and other vertices of degree one o three. Thus there gre n-1 vertices of odd degrees = ynct |
number of vertices of odd degree in 5

. : a
- graph s always even, it follows than n-1 is €VEP
n is odd.

& ]

d
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' 10. In any binary (ree 7 —

l " 1 vertices, the number of pendent vertices is equal
I)..,.v [ et the number of pendany vertices i

| ;‘f'dcwcc S i anda“:)inracr:]l;cg onn ve;tices be k. Thcrerij cx:gll:;)’
amning (n - k - 1) vertices of degr ;
o degrees of vertices = 2 x o of ¢
k=D F2X D+ kx I=2n-
an-2k-1=2n-2
i+ 12
of , 16.11 The number of internal verlic

a.poreit - ; .

rheor Jices €S 1n a binary trec is one less than the number
' h

fant ¥

et the binary tree containg x + 1 yare: _
oof. L . > X7 ) vertices, wh = rices
erof non-pendant vertices i.e., intern » Where x = number of pendant ve ,

q ot Hices m=X +y al vertices in the binary tree. Therefore, the total
1! ol ve * . T

4 per ¢

f-“m;vmmwﬂyz-xz(”*‘nﬂ So, x =
j : l-1i-‘ shows that

Number of internal verticeg =

dges.
1)

‘”“-nt
4"

W+y+1y2=>5p=y_1.

Number of pendant vertices — 1.

ve : ) _ .
Theo rove that the maximum number of vertices on level n of a binary tree is 2

- . f:‘ .
4 yhere! : :

proof. The root of a.bmary tree is on level 0 and there can only one vertex at this level. The
pimum number of vertices on level 1 is 2, op level 2 is 4 =
b.rmalhcn'l;llical induction.

) gasis of induction : When n =

sonlevel n=01is2% =1,

2% and so on. We prove the theorem

0, the only vertex is the root. Thus the maximum number of
yertice .
b Induction hypothesis : We assume that the theorem is true for level k, where n > k 2 0. So,
the maximum number of vertices on level & is 2

| Induction Step : Since each vertex in binary tree has maximum degree 2, then the maximum
| mber of vertices on level X + 1 is twice the maximum number of level k. Hence, the maximum
acon 4 mber of vertices at level k= 1 is 2.2 = 2. Hence, the theorem is proved.

and f Theorem 16.13 Prove that the maximum number of vertices in a binary tree of height A4 is
1 2-1,h20.
‘ Proof. It is known that the maximum number of vertices on level n of a binary tree is 2". So,
the maximum number of vertices in a binary of height 4 is
2h+| -1
2-1

= 2
Theorem 16.14. Show that the minimum height of a binary tree on n vertices is log, (7 + 1)
n-—1

~land maximum possible height is B3

4 _PmOf. Let T be a binary tree of n vertices. The maximum number of vertices in the binary tree
| Mheight g s hr 1. But T has n vertices.

W _ ] > n
Le., h > log,(n+ H-1
1 But h is an integer, hence the minimum possible height of an n-vertex binary tree is min
E hogz(,, + 1) — 1] where [ ] denotes the smallest integer greater than or equalton.

I 2 4. 28 . W 2P =




r

ave the rool of T at zerg |,

614 it ible height of T “lcxt:'c have at least 1 + (2 + 1\‘C|~ v .Z
ximum p0>5l ~ices Bl ]cu" : - Nig,
Let / denotes the ma! 7 yertic i3
at level /, 2 vertices al Iev;le,s. ...... 0 \
=1 +2 has n vertic N o
| +2/.But T 1*71 TS / ;
So
n=1 . integer
- M~ " isanmits
But n is odd. sO 5 ! i
) , sy
- The number of possnble value of 2
nl
max h = 2
= @ VE| Q
For example : For n= 13
[ Lev el 1
-—’—"“""‘"'Leve! 0 [ Y Lev el 2
——Level 1 — ~Level 3
_ _gda - = AT Level 4
Level 3 R Leve‘ 5
......... Leve' 6

(a) 3-level, 13-vertex binary tree (b) 6-level, lf}-VC;tcx binary tree
min & =[(log, 14) = 11=3 max h=——=6

Theorem 16.15. If T is full binary tree with 7 internal vertices, then T has 7 + 1 terminal ver.

tices and 2i + 1 total vertices.

Proof. The vertices of T consists of the vertices that are children (of some parent 0) and the

vertices that are not children (of any parent). There is one nonchild — the root. Since there are |
internal vertices, each parent having two children, there are 2i children, thus there are total 2i + |
vertices and the number of terminal vertices is (2i + H-i=i+1l

Complete binary tree

If all the leaves of a full binary tree are at level d, then we call such a tree as a complete binary
tree of depth d. A complete binary tree of depth of 3 is shown in Fig. 16.20. If T is a complete binary
tree with 1 vertices, then the vertices at any level / are given the label numbers ranging from 210
2 — 1 or from 2' to n if n is less than 27! - 1.

Fig. 16.20. A complete binary tree

16.5. Tree Traversal
at each vert™

d inorde” "

4

ki A traversal of a tree is a process to traverse
is ws_ned exactly once. Three commonly used tra
describe here these three process that may be use

a tree in a systematic way 50 th
versals are preorder, postorder an
d to traverse a binary tree.




: (if) Here edges = | X5+2x 1 +3x
=20 =21~ 1) =2 x (9 _ 1= 1)
{uisfied. Hence these does not exist a tr

[+4x2=13 and the number of
So, the condition Edges = 2(» - 1) is not

; Fig. 16.38
¢¢ with degree sequence given in (ii), 3
g 32 edges. On removin

| Solution, Given tree I"has 32 edges. We know that removal of an edge does not affect the total
1 Mber of verticeg of a graph. Let n be the number of vertices of the tree T,
Then the number of vertices of T, is 2n. Hence, the numbe
e~ 1 fespectively,
B Ci-Dien=12 > =1l |
. Hene e number of vertices of T, is 11 and that of T, is 22. Consequently, the number of
ATy =21, and that of T, is 21 - 11 = 10, i
| Mample 5y Which trees are complete bipartite grap Y. )
1, oy, ich is a complete bipartite graph. Let 7?— K. . Then’the number
“"fni ON. Let T be a tree whic _ 1 number of edges. Again the graph K, , has m x
-, 'nurnbces "0 T'is m + n. Hence it has m + 1
| Tofedgeg

B . = :>m=1,"=1'
o '"”=m+n_1_—_>(m~1)("'1) 0

r of edges of T and T,and 2 — |
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D =

1L follows that T is cither &0

C Q
//
Ki,5
At '
Fig. 16.39
¢ Complete Bipartite Trees : y
¢ of the following graph usin
Example 28. Obtain @ minimal spanning mﬁ ; g Kruskalas al 1
6 ' g°rithm’f{
14 14
7 15 8
Fig. 16.40
Solution. Here the given connected weighted graph G (say) contains 8 vertices, So i |
mg| |

spanning tree has 7 edges.

Step 1. List all edges (except self-loops, if any)
‘L“;Zh' : "
lEdges - |(1,2)|G.9](1,6)]A3) 2,D[G.8[6. DG 8|6, 0)[(78)|(1, 43
e ]2 B B[] M55 ] e 1’6’

Step 2. Select the smallest edge (1, 2), as shown below:

of the graph G in order of nondec,
gas

o1
12
b
Step 3. Select the next smallest edg1e (3, 4), because it does not form any cycle with (1, 2)
4 ol
12 12 7
2 3

Step 4. Select the next smallest edge (1, 6), since it does not form any cycle with the previ-

cusly selected edges

6
13
1 4
12 12 3
2 3

;
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;;, & /5 A the next amnllest ed - .
e cl e (4 ¢ ‘ i i
% "1 E )CIC ' ’1 “”“'C ” ('flLli nt" "“Nn uny CI{CI"' \Vl[h (he p
1 ’r Abl‘lt (3._ |
1/ N3 A
:
ke’ 1
12
12
A : :

et the next smallest edge (2, vi-

- 4.5l 7). because it does not form any cycle with the pre

« . lccl

Ba .
x i 13 1

k& ’

/

¥

12 {2

14

gep 7. Select the next smallest edge (3, 8), because it docs not form any cycle with the previ-

6
13 13
1
4
12 12
2 3
14
14 8
7

) and (5, 8), since each of these edges forms a

ly Se]eCth cdgcs

‘4‘!’-!1’""’

ST et

] e b
Koot v o

? :;-f L

Pl

Slep 8. We reject the next smallest edges (6, 7

j !yclc with the previously selected edges.

| i?

.
.-,
ok
ks
M
7
3
P
<
b
} 2§

| Weight of this
E this is the required mlnlmal spanning tree. eight o
i

14+15=93

g % \.
A ST SR

A%

Since this tree has 7 (= 8 - 1) edges, ;
] ma] *Panmng tree = 12 + 12 + 13+ 14
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m’s algorithm a minimal spanning tree from e follow-\ A "
In

Example 29. Find by Pri

weighted graph: S
gr p G 20 A ng%

Fig. 16.41

N Solution. The given graph is connected weighted graph having 7 vertices, 5, am;

Iﬂimal Spa,] P it
X g

ning tree of this graph has 6 (= 7 - 1) edges.
Step 1. The tabulated form of the weights of its edges are given below:

A B C D E F G

- 12 o o 14 o 20

12 - 12 10 6

o 12 4 o

o 10 = . 0

14 6

o

w_
6 6 -
G|20 © o o 8§ 4 - A fol

Step 2. Start from the vertex 4. The smallest entry in A-row, i.e., the 1st row i in
of the table is 12 which corresponds to the vertex B. Thus the tree AB is formed <
as shown below: 5

I T o o Y - TR
o o 8 8
&~ oo 8 8 8§

8 8 &

Step 3. Smallest entry in A-row and B-row, i.e., in 1 st and 2nd 2 P
rows is 6 which corresponds to the vertex E. Thus the tree ABC is B
formed as shown below: 6

Step 4. Smallest entry in A-row, B-row and E-row, ie,in lIst, E
2nd and 5th rows is 6 which corresponds o the vertex F (except B and E which
selected). Thus the tree ABEF is formed.

are alresd! | Pr
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65/’—‘——‘ e ———
- allest entry in A-row ———
Sm Ty i A-1ow, Brow, £, ——

L oieP ” res nds to the v W and Forow 15
. ch €0 po €Tiex G. Hence (s t,';fd ]"_”_”, Le. in 1st, 2nd, Sth and 6th 1O%
¢ ABEFG is formed.

g4 since

SR

~ Step 6&???2.?; E:Gnt‘:yh::: ;::'lriiiow' E-tow Frow and G-row is 6 (we are not takin
y selected) which corresponds to D in F-row (€xcep! B, E

e R
e  which ar€ 3 ready selected). Thus the following tree is formed:

3

T
i 1
L S
i,
=
t

i

. Step 7. Smallest entry in A-row, B-row, D-row E-row,
Frow and G-TOW is 4 which corresponds 0 the vertex C
n D-row (except the vertices F and G which are already

: gkcted). Hence the following tree is formed:

Since this tree has 7 vertices and6(=7-1) edge_s..this
i the required minimal spanning free. Weight of this mint

FM%U&=12+6+6+4+6*4=%.

4wy
1 Which of the following graphs a5 €0
p p
()
(b
¥
p
()
() /
L4




