

C++ Programming
For BCA 4th Semester

Lecture 3
[Function, Call by Value Call by Reference, Inline

Function, Const. Reference, Function Overloading]

Compiled
By

Subhadip Mukherjee
Dept. of Computer Science and BCA

Kharagpur College,
Kharagpur 721305

Function in C++

Functions allow to structure programs in segments of code to perform individual tasks.

In C++, a function is a group of statements that is given a name, and which can be called from some

point of the program. The most common syntax to define a function is:

type name (parameter1, parameter2, ...) { statements }

Where:

- type is the type of the value returned by the function.

- name is the identifier by which the function can be called.

- parameters (as many as needed): Each parameter consists of a type followed by an identifier,

with each parameter being separated from the next by a comma.

- statements is the function's body. It is a block of statements surrounded by braces { } that

specify what the function actually does.

Let's have a look at an example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// function example

#include <iostream>

using namespace std;

int addition (int a, int b)

{

 int r;

 r=a+b;

 return r;

}

int main ()

{

 int z;

 z = addition (5,3);

 cout << "The result is " << z;

}

The result is 8

In the example above, main begins by declaring the variable z of type int, and right after that, it

performs the first function call: it calls addition. The call to a function follows a structure very

similar to its declaration. In the example above, the call to addition can be compared to its

definition just a few lines earlier:

http://www.cplusplus.com/doc/tutorial/functions/

Recursive Function

Recursivity is the property that functions have to be called by themselves. It is useful for some tasks,

such as sorting elements, or calculating the factorial of numbers. For example, in order to obtain the

factorial of a number (n!) the mathematical formula would be:

n! = n * (n-1) * (n-2) * (n-3) ... * 1

More concretely, 5! (factorial of 5) would be:

5! = 5 * 4 * 3 * 2 * 1 = 120

And a recursive function to calculate this in C++ could be:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

// factorial calculator

#include <iostream>

using namespace std;

long factorial (long a)

{

 if (a > 1)

 return (a * factorial (a-1));

 else

 return 1;

}

int main ()

{

 long number = 9;

 cout << number << "! = " <<

factorial (number);

 return 0;

}

9! = 362880

Notice how in function factorial we included a call to itself, but only if the argument passed was greater

than 1, since, otherwise, the function would perform an infinite recursive loop, in which once it arrived to

0, it would continue multiplying by all the negative numbers (probably provoking a stack overflow at

some point during runtime).

Call by value
In call by value, original value can not be changed or modified. In call by value, when you passed

value to the function it is locally stored by the function parameter in stack memory location. If you

change the value of function parameter, it is changed for the current function only but it not change

the value of variable inside the caller function such as main().

#include<iostream.h>

#include<conio.h>

void swap(int a, int b)

{

 int temp;

 temp=a;

 a=b;

 b=temp;

}

void main()

{

 int a=100, b=200;

 clrscr();

 swap(a, b); // passing value to function

 cout<<"Value of a"<<a;

 cout<<"Value of b"<<b;

 getch();

}

Output

Value of a: 200

Value of b: 100

Call by reference

In call by reference, original value is changed or modified because we pass reference (address). Here,

address of the value is passed in the function, so actual and formal arguments shares the same address

space. Hence, any value changed inside the function, is reflected inside as well as outside the function.

#include<iostream.h>

#include<conio.h>

void swap(int *a, int *b)

{

 int temp;

 temp=*a;

 *a=*b;

 *b=temp;

}

void main()

{

 int a=100, b=200;

 clrscr();

 swap(&a, &b); // passing value to function

 cout<<"Value of a"<<a;

 cout<<"Value of b"<<b;

 getch();

}

Inline functions

Calling a function generally causes a certain overhead (stacking arguments, jumps, etc...), and thus for

very short functions, it may be more efficient to simply insert the code of the function where it is called,

instead of performing the process of formally calling a function.

Preceding a function declaration with the inline specifier informs the compiler that inline expansion is

preferred over the usual function call mechanism for a specific function. This does not change at all the

behavior of a function, but is merely used to suggest the compiler that the code generated by the

function body shall be inserted at each point the function is called, instead of being invoked with a

regular function call.

For example, the concatenate function above may be declared inline as:

1

2

3

4

inline string concatenate (const string& a, const string& b)

{

 return a+b;

}

This informs the compiler that when concatenate is called, the program prefers the function to be

expanded inline, instead of performing a regular call. inline is only specified in the function declaration,

not when it is called.

Note that most compilers already optimize code to generate inline functions when they see an

opportunity to improve efficiency, even if not explicitly marked with the inline specifier. Therefore, this

specifier merely indicates the compiler that inline is preferred for this function, although the compiler is

free to not inline it, and optimize otherwise. In C++, optimization is a task delegated to the compiler,

which is free to generate any code for as long as the resulting behavior is the one specified by the code.

Efficiency considerations and const references

Calling a function with parameters taken by value causes copies of the values to be made. This is a

relatively inexpensive operation for fundamental types such as int, but if the parameter is of a large

compound type, it may result on certain overhead. For example, consider the following function:

1

2

3

4

string concatenate (string a, string b)

{

 return a+b;

}

This function takes two strings as parameters (by value), and returns the result of concatenating them.

By passing the arguments by value, the function forces a and b to be copies of the arguments passed to

the function when it is called. And if these are long strings, it may mean copying large quantities of data

just for the function call.

But this copy can be avoided altogether if both parameters are made references:

1

2

3

4

string concatenate (string& a, string& b)

{

 return a+b;

}

Arguments by reference do not require a copy. The function operates directly on (aliases of) the strings

passed as arguments, and, at most, it might mean the transfer of certain pointers to the function. In this

regard, the version of concatenate taking references is more efficient than the version taking values,

since it does not need to copy expensive-to-copy strings.

On the flip side, functions with reference parameters are generally perceived as functions that modify the

arguments passed, because that is why reference parameters are actually for.

The solution is for the function to guarantee that its reference parameters are not going to be modified

by this function. This can be done by qualifying the parameters as constant:

1

2

3

4

string concatenate (const string& a, const string& b)

{

 return a+b;

}

By qualifying them as const, the function is forbidden to modify the values of neither a nor b, but can

actually access their values as references (aliases of the arguments), without having to make actual

copies of the strings.

Therefore, const references provide functionality similar to passing arguments by value, but with an

increased efficiency for parameters of large types. That is why they are extremely popular in C++ for

arguments of compound types. Note though, that for most fundamental types, there is no noticeable

difference in efficiency, and in some cases, const references may even be less efficient!

Function Overloading

In C++, two different functions can have the same name if their parameters are different; either because

they have a different number of parameters, or because any of their parameters are of a different type.

For example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

// overloading functions

#include <iostream>

using namespace std;

int operate (int a, int b)

{

 return (a*b);

}

double operate (double a, double b)

{

 return (a/b);

}

int main ()

{

 int x=5,y=2;

 double n=5.0,m=2.0;

 cout << operate (x,y) << '\n';

 cout << operate (n,m) << '\n';

10

2.5

21

22

 return 0;

}

In this example, there are two functions called operate, but one of them has two parameters of

type int, while the other has them of type double. The compiler knows which one to call in each case by

examining the types passed as arguments when the function is called. If it is called with

two int arguments, it calls to the function that has two int parameters, and if it is called with

two doubles, it calls the one with two doubles.

