Fourier Series

Periodic Functions:

A function f(x) is said to have a period T or to be periodic with period T if for all x, f(x + T) = f(x), where T is a positive constant. The least value of T> 0 is called the least period or simply the period of f(x).

Ex 1.

The function sin x has periods 2π , 4π , 6π , ..., since sin $(x2\pi)$, sin $(x4\pi)$, sin $(x6\pi)$, ... all equal sin x. However, 2π is the least period or the period of sin x.

Ex 2.

The period of sin nx or cos nx, where n is a positive integer, is $2\pi / n$.

Ex 3. The period of tan x is π .

Ex 4.

A constant has any positive number as a period.

If the value of each ordinate f(x) repeats itself at equal intervals in the abscissa, then f(x) is said to be a periodic function.

Orthogonality of sine and cosine functions:

A set of functions $\{\varphi_1(x), \varphi_2(x), \dots\}$ is an orthogonal set of functions in the interval [a,b] if any two functions in the set are orthogonal to each other.

i.e.
$$(\varphi_m(x), \varphi_n(x)) = \int_a^b \varphi_m(x) \varphi_n(x) dx = 0$$
 for $m \neq n$

Show that $\{1, \cos x, \sin x, \cos 2x, \sin 2x,\}$ form an orthogonal set in $(-\pi, \pi)$.

The following integrals are useful in Fourier Series:

1. $\int_{0}^{2\pi} \sin mx \sin nx \, dx = \begin{cases} 0, & \text{if } m \neq n \\ \pi, & \text{if } m = n \\ 0, & \text{if } m = n = 0 \end{cases}$ 2. $\int_{0}^{2\pi} \cos mx \cos nx \, dx = \begin{cases} 0, & \text{if } m \neq n \\ \pi, & \text{if } m = n \\ 2\pi, & \text{if } m = n = 0 \end{cases}$ 3. $\int_{0}^{2\pi} \sin mx \cos nx \, dx = 0, & \text{for any integer values of } m \text{ and } n \end{cases}$

Dirichlet Conditions (Statement only):

If a function is periodic or non-periodic and satisfies some specific conditions then it can be expanded by an infinite series of sine and cosine terms, as

 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx \qquad -----(1)$

This infinite series is called Fourier Series. Where a_0 , a_n , b_n are called Fourier Coefficients or Fourier Constants or Euler's formulae.

The specific conditions, mentioned above are known as Dirichlet's conditions. These conditions are as follows:

- 1. The function f(x) is periodic, single valued and bounded
- 2. The function f(x) should has finite number of discontinuities in one period (or f(x) should be piecewise continuous).
- 3. The function f(x) should has finite number of extrema (i.e. maxima and minima) in a period.

These conditions are sufficient conditions for expansion of a function in Fourier Series.

#Note:

A function f(x) is said to be piecewise continuous in an interval if

(i) the interval can be divided into a finite number of subintervals in each of which f(x) is continuous and

(ii) the limits of f(x) as x approaches the endpoints of each subinterval are finite.

Another way of stating this is to say that a piecewise continuous function is one that has at most a finite number of finite discontinuities. An example of a piecewise continuous function is shown in the figure below.

Expansion of periodic functions in a series of sine and cosine functions:

Now we know that, if f(x) satisfies Dirichlet's conditions and exist in the interval $(-\pi, \pi)$, then function f(x) can be expanded as infinite Fourier Series as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

$$f(x) = \frac{a_0}{2} + (a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \dots + a_n \cos nx + \dots)$$

$$+ (b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \dots + b_n \sin nx + \dots)$$

Where Euler's formulae can be expressed as

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \text{ and}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

Note that

 $\frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$ signifies the average value of function f(x) in the interval (- π , π). **rmination of Fourier coefficients:**

Determination of Fourier coefficients: We have $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$ -----(1)

- 1) To determine the value of Fourier Coefficient a_0 , let multiply both sides of equation (1) by dx and then taking average over 2π as $\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{a_0}{2}dx + \sum_{n=1}^{\infty}\frac{1}{2\pi}\int_{-\pi}^{\pi}a_n\cos nx \, dx + \sum_{n=1}^{\infty}\frac{1}{2\pi}\int_{-\pi}^{\pi}b_n\sin nx \, dx$ Second and third term of RHS in the above equation become zero (due to orthogonality relations as derived earlier). Therefore, $\int_{-\pi}^{\pi}f(x)dx = \frac{a_0}{2}\int_{-\pi}^{\pi}dx = \frac{a_0}{2} \times 2\pi = \pi a_0$ And $a_0 = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)dx$ ------(2)
- 2) To determine the value of Fourier Coefficient a_n , let multiply equation (1) by cos(nx)dxand then taking average over 2π as

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{a_0}{2} \cos nx \, dx + \sum_{n=1}^{\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} a_n \cos nx \cos nx \, dx + \sum_{n=1}^{\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} b_n \sin nx \cos nx \, dx$$

First and third term of RHS in the above equation become zero (due to orthogonality relations as derived earlier).

Therefore,
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \sum_{n=1}^{\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} a_n \cos nx \cos nx \, dx$$

 $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} a_n \cos nx \cos nx \, dx$
 $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{2\pi} a_n \times \pi = \frac{a_n}{2}$
Therefore, $a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$ -----(3)

3) To determine the value of Fourier Coefficient b_n , let multiply equation (1) by sin(nx)dxand then taking average over 2π as

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{a_0}{2} \sin nx \, dx + \sum_{n=1}^{\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} a_n \cos nx \sin nx \, dx + \sum_{n=1}^{\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} b_n \sin nx \sin nx \, dx$$

First and second term of RHS in the above equation become zero (due to orthogonality relations as derived earlier).

Therefore, $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \sum_{n=1}^{\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} b_n \sin nx \sin nx \, dx$ $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} b_n \sin nx \sin nx \, dx$ $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{2\pi} b_n \times \pi = \frac{b_n}{2}$ Therefore, $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$ ------(4)

Q.1. Expand the function $f(x) = \begin{cases} 0 \text{ for } -\pi < x < 0 \\ 1 \text{ for } 0 < x < \pi \end{cases}$ in Fourier series.

Even and odd functions and their Fourier expansions:

1. A function is said to be even function (symmetric with respect to y-axis or function axis) if, f(-x) = f(x). Here function-axis (y axis) is mirror for the reflection of the curve.

The area under such a curve from $-\pi$ to π is double the area from 0 to π .

i.e. $\int_{-\pi}^{\pi} f(x) dx = 2 \int_{0}^{\pi} f(x) dx$

Therefore,

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \left\{ \int_{-\pi}^{0} f(x) \sin nx \, dx + \int_{0}^{\pi} f(x) \sin nx \, dx \right\}$$
$$= \frac{1}{\pi} \left\{ \int_{\pi}^{0} f(-x) \sin(-nx) \, d(-x) + \int_{0}^{\pi} f(x) \sin nx \, dx \right\}$$
$$= \frac{1}{\pi} \left\{ \int_{\pi}^{0} f(x) \sin(-nx) \, d(-x) + \int_{0}^{\pi} f(x) \sin nx \, dx \right\} as f(-x) = f(x)$$
$$= \frac{1}{\pi} \left\{ \int_{\pi}^{0} f(x) \sin nx \, dx + \int_{0}^{\pi} f(x) \sin nx \, dx \right\}$$

$$= \frac{1}{\pi} \left\{ -\int_{0}^{\pi} f(x) \sin nx \, dx + \int_{0}^{\pi} f(x) \sin nx \, dx \right\} = 0$$

So for an even function we have to calculate only a_0 and a_n . Here, $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left\{ \int_{-\pi}^{0} f(x) dx + \int_{0}^{\pi} f(x) dx \right\}$

$$=\frac{1}{\pi}\left\{\int_{\pi}^{0} f(-x)d(-x) + \int_{0}^{\pi} f(x)dx\right\} = \frac{1}{\pi}\left\{\int_{0}^{\pi} f(x)dx + \int_{0}^{\pi} f(x)dx\right\} = \frac{2}{\pi}\int_{0}^{\pi} f(x)dx$$

Similarly, $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$, since f(x) and $\cos(nx)$ are both even functions, therefore product $f(x)\cos(nx)$ is also an even function.

2. A function is said to be odd function (symmetric with respect to origin or skew-symmetric) if, f(-x) = -f(x). Here area under such a curve from -π to π is zero, i.e. ∫^π_{-π} f(x)dx = 0 Here, a₀ = 1/π ∫^π_{-π} f(x)dx = 0, since f(x) is odd function a_n = 1/π ∫^π_{-π} f(x) cos nx dx = 0, as product of odd and even functions is odd And b_n = 1/π ∫^π_{-π} f(x) sin nx dx = 2/π ∫^π₀ f(x) sin nx dx, as product of two odd functions is even function.

Q.2. Expand the following functions in Fourier series:

i) f(x) = sinx, $for - \pi < x < \pi$ ii) f(x) = cos2x, $for - \pi < x < \pi$ iii) $f(x) = x^2$, $for - \pi < x < \pi$ iv) f(x) = |x|, $for - \pi < x < \pi$