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55 Simulation Modeling

Introduction
In many situations amodeler is unable to construct an analytic (symbolic) model adequately
explaining the behavior being observed because of its complexity or the intractability of the
proposed explicativemodel. Yet if it is necessary tomake predictions about the behavior, the
modeler may conduct experiments (or gather data) to investigate the relationship between
the dependent variable(s) and selected values of the independent variable(s) within some
range. We constructed empirical models based on collected data in Chapter 4. To collect
the data, the modeler may observe the behavior directly. In other instances, the behavior
might be duplicated (possibly in a scaled-down version) under controlled conditions, as we
will do when predicting the size of craters in Section 14.4.

In some circumstances, it may not be feasible either to observe the behavior directly
or to conduct experiments. For instance, consider the service provided by a system of
elevators during morning rush hour. After identifying an appropriate problem and defining
what is meant by good service, we might suggest some alternative delivery schemes, such
as assigning elevators to even and odd floors or using express elevators. Theoretically, each
alternative could be tested for some period of time to determine which one provided the
best service for particular arrival and destination patterns of the customers. However, such
a procedure would probably be very disruptive because it would be necessary to harass
the customers constantly as the required statistics were collected. Moreover, the customers
would become very confused because the elevator delivery system would keep changing.
Another problem concerns testing alternative schemes for controlling automobile traffic in
a large city. It would be impractical to constantly change directions of the one-way streets
and the distribution of traffic signals to conduct tests.

In still other situations, the system for which alternative procedures need to be tested
may not even exist yet. An example is the situation of several proposed communications
networks, with the problem of determining which is best for a given office building. Still
another example is the problem of determining locations of machines in a new industrial
plant. The cost of conducting experiments may be prohibitive. This is the case when an
agency tries to predict the effects of various alternatives for protecting and evacuating the
population in case of failure of a nuclear power plant.

In cases where the behavior cannot be explained analytically or data collected directly,
the modeler might simulate the behavior indirectly in somemanner and then test the various
alternatives under consideration to estimate how each affects the behavior. Data can then
be collected to determine which alternative is best. An example is to determine the drag
force on a proposed submarine. Because it is infeasible to build a prototype, we can build
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a scaled model to simulate the behavior of the actual submarine. Another example of this
type of simulation is using a scaled model of a jet airplane in a wind tunnel to estimate the
effects of very high speeds for various designs of the aircraft. There is yet another type of
simulation, which we will study in this chapter. ThisMonte Carlo simulation is typically
accomplished with the aid of a computer.

Suppose we are investigating the service provided by a system of elevators at morning
rush hour. In Monte Carlo simulation, the arrival of customers at the elevators during the
hour and the destination floors they select need to be replicated. That is, the distribution
of arrival times and the distribution of floors desired on the simulated trial must portray a
possible rush hour. Moreover, after we have simulated many trials, the daily distribution
of arrivals and destinations that occur must mimic the real-world distributions in proper
proportions. When we are satisfied that the behavior is adequately duplicated, we can
investigate various alternative strategies for operating the elevators. Using a large number
of trials, we can gather appropriate statistics, such as the average total delivery time of a
customer or the length of the longest queue. These statistics can help determine the best
strategy for operating the elevator system.

This chapter provides a brief introduction toMonte Carlo simulation. Additional studies
in probability and statistics are required to delve into the intricacies of computer simulation
and understand its appropriate uses. Nevertheless, you will gain some appreciation of this
powerful component of mathematical modeling. Keep in mind that there is a danger in
placing too much confidence in the predictions resulting from a simulation, especially if
the assumptions inherent in the simulation are not clearly stated. Moreover, the appearance
of using large amounts of data and huge amounts of computer time, coupled with the fact
the lay people can understand a simulation model and computer output with relative ease,
often leads to overconfidence in the results.

When any Monte Carlo simulation is performed, random numbers are used. We discuss
how to generate random numbers in Section 5.2. Loosely speaking, a ‘‘sequence of random
numbers uniformly distributed in an interval m to n’’ is a set of numbers with no apparent
pattern, where each number betweenm and n can appear with equal likelihood. For example,
if you toss a six-sided die 100 times andwrite down the number showing on the die each time,
you will have written down a sequence of 100 random integers approximately uniformly
distributed over the interval 1 to 6. Now, suppose that random numbers consisting of six
digits can be generated. The tossing of a coin can be duplicated by generating a random
number and assigning it a head if the random number is even and a tail if the random number
is odd. If this trial is replicated a large number of times, you would expect heads to occur
about 50% of the time. However, there is an element of chance involved. It is possible that a
run of 100 trials could produce 51 heads and that the next 10 trials could produce all heads
(although this is not very likely). Thus, the estimate with 110 trials would actually be worse
than the estimate with 100 trials. Processes with an element of chance involved are called
probabilistic, as opposed to deterministic, processes. Monte Carlo simulation is therefore
a probabilistic model.

The modeled behavior may be either deterministic or probabilistic. For instance, the
area under a curve is deterministic (even though it may be impossible to find it precisely).
On the other hand, the time between arrivals of customers at the elevator on a particular day
is probabilistic behavior. Referring to Figure 5.1, we see that a deterministic model can be
used to approximate either a deterministic or a probabilistic behavior, and likewise, aMonte
Carlo simulation can be used to approximate a deterministic behavior (as you will see with
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The behavior and the model
can be either deterministic
or probabilistic.

Deterministic

Probabilistic

Deterministic

Probabilistic

Behavior Model

©
 C

en
ga

ge
 Le

ar
ni

ng

a Monte Carlo approximation to an area under a curve) or a probabilistic one. However, as
we would expect, the real power of Monte Carlo simulation lies in modeling a probabilistic
behavior.

A principal advantage of Monte Carlo simulation is the relative ease with which it can
sometimes be used to approximate very complex probabilistic systems. Additionally,Monte
Carlo simulation provides performance estimation over a wide range of conditions rather
than a very restricted range as often required by an analytic model. Furthermore, because
a particular submodel can be changed rather easily in a Monte Carlo simulation (such as
the arrival and destination patterns of customers at the elevators), there is the potential of
conducting a sensitivity analysis. Still another advantage is that themodeler has control over
the level of detail in a simulation. For example, a very long time frame can be compressed or
a small time frame expanded, giving a great advantage over experimental models. Finally,
there are very powerful, high-level simulation languages (such as GPSS, GASP, PROLOG,
SIMAN, SLAM, and DYNAMO) that eliminate much of the tedious labor in constructing
a simulation model.

On the negative side, simulation models are typically expensive to develop and operate.
Theymay require many hours to construct and large amounts of computer time andmemory
to run. Another disadvantage is that the probabilistic nature of the simulation model limits
the conclusions that can be drawn from a particular run unless a sensitivity analysis is
conducted. Such an analysis often requires many more runs just to consider a small number
of combinations of conditions that can occur in the various submodels. This limitation
then forces the modeler to estimate which combination might occur for a particular set of
conditions.

5.15.1 Simulating Deterministic Behavior:
Area Under a Curve

In this section we illustrate the use of Monte Carlo simulation to model a deterministic
behavior, the area under a curve. We begin by finding an approximate value to the area
under a nonnegative curve. Specifically, suppose y D f .x/ is some given continuous
function satisfying 0 � f .x/ �M over the closed interval a � x � b. Here, the numberM
is simply some constant that bounds the function. This situation is depicted in Figure 5.2.
Notice that the area we seek is wholly contained within the rectangular region of heightM
and length b � a (the length of the interval over which f is defined).

Now we select a point P.x; y/ at random from within the rectangular region. We will
do so by generating two random numbers, x and y, satisfying a � x � b and 0 � y �M ,
and interpreting them as a point P with coordinates x and y. Once P.x; y/ is selected, we
ask whether it lies within the region below the curve. That is, does the y-coordinate satisfy
0 � y � f .x/? If the answer is yes, then count the point P by adding 1 to some counter.
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J Figure 5.2
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Two counters will be necessary: one to count the total points generated and a second to count
those points that lie below the curve (Figure 5.2). You can then calculate an approximate
value for the area under the curve by the following formula:

area under curve
area of rectangle

�
number of points counted below curve

total number of random points

As discussed in the Introduction, the Monte Carlo technique is probabilistic and typically
requires a large number of trials before the deviation between the predicted and true values
becomes small. A discussion of the number of trials needed to ensure a predetermined level
of confidence in the final estimate requires a background in statistics. However, as a general
rule, to double the accuracy of the result (i.e., to cut the expected error in half), about four
times as many experiments are necessary.

The following algorithm gives the sequence of calculations needed for a general com-
puter simulation of this Monte Carlo technique for finding the area under a curve.

Monte Carlo Area Algorithm

Input Total number n of random points to be generated in the simulation.

Output AREA D approximate area under the specified curve y D f .x/ over the given interval
a � x � b, where 0 � f .x/ < M .

Step 1 Initialize: COUNTER D 0.

Step 2 For i D 1; 2; : : : ; n, do Steps 3–5.

Step 3 Calculate random coordinates xi and yi that satisfy a � xi � b and 0 � yi < M.

Step 4 Calculate f .xi/ for the random xi coordinate.

Step 5 If yi � f .xi/, then increment the COUNTER by 1. Otherwise, leave COUNTER as is.

Step 6 Calculate AREA DM.b � a/ COUNTER=n.

Step 7 OUTPUT (AREA)

STOP

Table 5.1 gives the results of several different simulations to obtain the area beneath
the curve y D cos x over the interval ��=2 � x � �=2, where 0 � cos x < 2.

The actual area under the curve y D cos x over the given interval is 2 square units.
Note that even with the relatively large number of points generated, the error is significant.
For functions of one variable, the Monte Carlo technique is generally not competitive with
quadrature techniques that you will learn in numerical analysis. The lack of an error bound
and the difficulty in finding an upper boundM are disadvantages as well. Nevertheless, the

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_05_ch05_p185-223 January 23, 2013 19:40 189

5.1 Simulating Deterministic Behavior: Area Under a Curve 189

Table 5.1 Monte Carlo approximation to the area under
the curve y D cosx over the interval �ı=2 � x � ı=2

Number Approximation Number Approximation
of points to area of points to area

100 2.07345 2000 1.94465
200 2.13628 3000 1.97711
300 2.01064 4000 1.99962
400 2.12058 5000 2.01429
500 2.04832 6000 2.02319
600 2.09440 8000 2.00669
700 2.02857 10000 2.00873
800 1.99491 15000 2.00978
900 1.99666 20000 2.01093

1000 1.96664 30000 2.01186
© Cengage Learning

Monte Carlo technique can be extended to functions of several variables and becomes more
practical in that situation.

Volume Under a Surface
Let’s consider finding part of the volume of the sphere

x2
C y2

C z2
� 1

that lies in the first octant, x > 0, y > 0, z > 0 (Figure 5.3).
The methodology to approximate the volume is very similar to that of finding the area

under a curve. However, nowwewill use an approximation for the volume under the surface
by the following rule:

volume under surface
volume of box

�
number of points counted below surface in 1st octant

total number of points

The following algorithm gives the sequence of calculations required to employMonte Carlo
techniques to find the approximate volume of the region.

J Figure 5.3
Volume of a sphere
x 2 C y 2 C z 2 � 1 that lies in
the first octant, x > 0, y > 0,
z > 0
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Monte Carlo Volume Algorithm

Input Total number n of random points to be generated in the simulation.

Output VOLUME D approximate volume enclosed by the specified function, z D f .x; y/ in the
first octant, x > 0, y > 0, z > 0.

Step 1 Initialize: COUNTERD 0.

Step 2 For i D 1; 2; : : : ; n, do Steps 3–5.

Step 3 Calculate random coordinates xi , yi , zi that satisfy 0 � xi � 1, 0 � yi � 1, 0 � zi � 1.
(In general, a � xi � b, c � yi � d , 0 � zi �M .)

Step 4 Calculate f .xi ; yi/ for the random coordinate .xi ; yi/.

Step 5 If random zi � f .xi ; yi/, then increment the COUNTERby 1. Otherwise, leaveCOUNTER
as is.

Step 6 Calculate VOLUME DM.d � c/.b � a/COUNTER=n.

Step 7 OUTPUT (VOLUME)

STOP

Table 5.2 gives the results of several Monte Carlo runs to obtain the approximate volume of

x2
C y2

C z2
� 1

that lies in the first octant, x > 0, y > 0, z > 0.

Table 5.2 Monte Carlo approximation
to the volume in the first octant under
the surface x 2 C y 2 C z 2 � 1

Number of points Approximate volume

100 0.4700
200 0.5950
300 0.5030
500 0.5140

1,000 0.5180
2,000 0.5120
5,000 0.5180

10,000 0.5234
20,000 0.5242

© Cengage Learning

The actual volume in the first octant is found to be approximately 0:5236 cubic units
.�=6/. Generally, though not uniformly, the error becomes smaller as the number of points
generated increases.

5.15.1 PROBLEMS

1. Each ticket in a lottery contains a single ‘‘hidden’’ number according to the following
scheme: 55% of the tickets contain a 1, 35% contain a 2, and 10% contain a 3. A
participant in the lottery wins a prize by obtaining all three numbers 1, 2, and 3. Describe
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an experiment that could be used to determine how many tickets you would expect to
buy to win a prize.

2. Two record companies, A and B, produce classical music recordings. Label A is a budget
label, and 5% of A’s new compact discs exhibit significant degrees of warpage. Label B
is manufactured under tighter quality control (and consequently more expensive) than
A, so only 2% of its compact discs are warped. You purchase one label A and one label
B recording at your local store on a regular basis. Describe an experiment that could be
used to determine how many times you would expect to make such a purchase before
buying two warped compact discs for a given sale.

3. Using Monte Carlo simulation, write an algorithm to calculate an approximation to �
by considering the number of random points selected inside the quarter circle

Q W x2
C y2

D 1; x � 0; y � 0

where the quarter circle is taken to be inside the square

S W 0 � x � 1 and 0 � y � 1

Use the equation �=4 D areaQ=area S .

4. Use Monte Carlo simulation to approximate the area under the curve f .x/ D
p
x, over

the interval 1

2
� x � 3

2
.

5. Find the area trapped between the two curves y D x2 and y D 6 � x and the x- and
y-axes.

6. Using Monte Carlo simulation, write an algorithm to calculate that part of the volume
of an ellipsoid

x2

2
C
y2

4
C
z2

8
� 16

that lies in the first octant, x > 0, y > 0, z > 0.

7. Using Monte Carlo simulation, write an algorithm to calculate the volume trapped be-
tween the two paraboloids

z D 8 � x2
� y2 and z D x2

C 3y2

Note that the two paraboloids intersect on the elliptic cylinder

x2
C 2y2

D 4

5.25.2 Generating Random Numbers
In the previous section, we developed algorithms for Monte Carlo simulations to find areas
and volumes. A key ingredient common to these algorithms is the need for random numbers.
Random numbers have a variety of applications, including gambling problems, finding an
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area or volume, andmodeling larger complex systems such as large-scale combat operations
or air traffic control situations.

In some sense a computer does not really generate randomnumbers, because computers
employ deterministic algorithms. However, we can generate sequences of pseudorandom
numbers that, for all practical purposes, may be considered random. There is no single best
random number generator or best test to ensure randomness.

There are complete courses of study for random numbers and simulations that cover
in depth the methods and tests for pseudorandom number generators. Our purpose here is
to introduce a few random number methods that can be utilized to generate sequences of
numbers that are nearly random.

Many programming languages, such as Pascal and Basic, and other software (e.g.,
Minitab, MATLAB, and EXCEL) have built-in random number generators for user
convenience.

Middle-Square Method
The middle-square method was developed in 1946 by John Von Neuman, S. Ulm, and
N. Metropolis at Los Alamos Laboratories to simulate neutron collisions as part of the
Manhattan Project. Their middle-square method works as follows:

1. Start with a four-digit number x0, called the seed.

2. Square it to obtain an eight-digit number (add a leading zero if necessary).

3. Take the middle four digits as the next random number.

Continuing in this manner, we obtain a sequence that appears to be random over the
integers from 0 to 9999. These integers can then be scaled to any interval a to b. For example,
if we wanted numbers from 0 to 1, we would divide the four-digit numbers by 10,000. Let’s
illustrate the middle-square method.

Pick a seed, say x0 D 2041, and square it (adding a leading zero) to get 04165681. The
middle four digits give the next random number, 1656. Generating 13 random numbers in
this way yields

n 0 1 2 3 4 5 6 7 8 9 10 11 12

xn 2041 1656 7423 1009 0180 0324 1049 1004 80 64 40 16 2

We can use more than 4 digits if we wish, but we always take the middle number of
digits equal to the number of digits in the seed. For example, if x0 D 653217 (6 digits), its
square 426,692,449,089 has 12 digits. Thus, take the middle 6 digits as the random number,
namely, 692449.

The middle-square method is reasonable, but it has a major drawback in its tendency
to degenerate to zero (where it will stay forever). With the seed 2041, the random sequence
does seem to be approaching zero. Howmany numbers can be generated until we are almost
at zero?

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Giordano-5166 50904_05_ch05_p185-223 January 23, 2013 19:40 193

5.2 Generating Random Numbers 193

Linear Congruence
The linear congruence method was introduced by D. H. Lehmer in 1951, and a majority
of pseudorandom numbers used today are based on this method. One advantage it has over
other methods is that seeds can be selected that generate patterns that eventually cycle (we
illustrate this concept with an example). However, the length of the cycle is so large that the
pattern does not repeat itself on large computers for most applications. The method requires
the choice of three integers: a, b, and c. Given some initial seed, say x0, we generate a
sequence by the rule

xnC1 D .a � xn C b/mod.c/

where c is the modulus, a is the multiplier, and b is the increment. The qualifier mod.c/ in
the equation means to obtain the remainder after dividing the quantity .a � xn C b/ by c.
For example, with a D 1, b D 7, and c D 10,

xnC1 D .1 � xn C 7/mod.10/

means xnC1 is the integer remainder upon dividing xn C 7 by 10. Thus, if xn D 115, then
xnC1 D remainder . 122

10
/ D 2.

Before investigating the linear congruence methodology, we need to discuss cycling,
which is a major problem that occurs with random numbers. Cycling means the sequence
repeats itself, and, although undesirable, it is unavoidable. At some point, all pseudorandom
number generators begin to cycle. Let’s illustrate cycling with an example.

If we set our seed at x0 D 7, we find x1 D .1� 7C 7/mod.10/ or 14mod.10/, which
is 4. Repeating this same procedure, we obtain the sequence

7; 4; 1; 8; 5; 2; 9; 6; 3; 0; 7; 4; : : :

and the original sequence repeats again and again. Note that there is cycling after 10 numbers.
The methodology produces a sequence of integers between 0 and c � 1 inclusively before
cycling (which includes the possible remainders after dividing the integers by c). Cycling
is guaranteed with at most c numbers in the random number sequence. Nevertheless, c can
be chosen to be very large, and a and b can be chosen in such a way as to obtain a full set of
c numbers before cycling begins to occur. Many computers use c D 231 for the large value
of c. Again, we can scale the random numbers to obtain a sequence between any limits a
and b, as required.

A second problem that can occur with the linear congruencemethod is lack of statistical
independence among the members in the list of random numbers. Any correlations between
the nearest neighbors, the next-nearest neighbors, the third-nearest neighbors, and so forth
are generally unacceptable. (Because we live in a three-dimensional world, third-nearest
neighbor correlations can be particularly damaging in physical applications.) Pseudoran-
dom number sequences can never be completely statistically independent because they are
generated by a mathematical formula or algorithm. Nevertheless, the sequence will appear
(for practical purposes) independent when it is subjected to certain statistical tests. These
concerns are best addressed in a course in statistics.
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5.25.2 PROBLEMS

1. Use the middle-square method to generate

a. 10 random numbers using x0 D 1009.

b. 20 random numbers using x0 D 653217.

c. 15 random numbers using x0 D 3043.

d. Comment about the results of each sequence. Was there cycling? Did each sequence
degenerate rapidly?

2. Use the linear congruence method to generate

a. 10 random numbers using a D 5, b D 1, and c D 8.

b. 15 random numbers using a D 1, b D 7, and c D 10.

c. 20 random numbers using a D 5, b D 3, and c D 16.

d. Comment about the results of each sequence. Was there cycling? If so, when did it
occur?

5.25.2 PROJECTS

1. Complete the requirement for UMAP module 269, ‘‘Monte Carlo: The Use of Random
Digits to Simulate Experiments,’’ by Dale T. Hoffman. The Monte Carlo technique is
presented, explained, and used to find approximate solutions to several realistic problems.
Simple experiments are included for student practice.

2. Refer to ‘‘RandomNumbers’’ by Mark D. Myerson, UMAP 590. This module discusses
methods for generating random numbers and presents tests for determining the random-
ness of a string of numbers. Complete this module and prepare a short report on testing
for randomness.

3. Write a computer program to generate uniformly distributed random integers in the
interval m < x < n, where m and n are integers, according to the following algorithm:

Step 1 Let d D 231 and choose N (the number of random numbers to generate).

Step 2 Choose any seed integer Y such that

100000 < Y < 999999

Step 3 Let i D 1.

Step 4 Let Y D .15625 Y C 22221/mod.d/.

Step 5 Let Xi D mC floorŒ.n �mC 1/Y=d�.

Step 6 Increment i by 1: i D i C 1.

Step 7 Go to Step 4 unless i D N C 1.

Here, floor Œp� means the largest integer not exceeding p.
For most choices of Y , the numbersX1; X2; : : : form a sequence of (pseudo)random

integers as desired. One possible recommended choice is Y D 568731. To generate
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