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3.1 Definition of Parameters

The parameters we need to define are
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If X,, is the measured value of the quantity, and X is the true value of the quantity then the
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absolute static error is defined as

Often 2 relative static error is reported. Its definition is
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Mostly, an error is much less than the true value makin
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e static errors. we have used the term frue value. The

Whi the absolute and relativ
le defining ©1° & physical quantity and how do we know it? It is said

questions are, what is the true value of 2
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Introduction to Measurements and Instrumentation

3 calibrated measurin
that if we make an infinite number of measurements with the help of a ca g
Instrument and observe that th

e individual measurements agree betWe.ent;tegzzl‘f;slu":g;lilh:
specified degree of accuracy, we may assume that the measured value is
quantity.

Scale Range

The terms scale ran

ge is defined as follows. If X min and X,
values that an instr

inimum and maximum
max are the minim
ument can measure, then

Scale range = Between Xmin and Xnax
Sometimes, the dynamic range of an instrument is s

pecified.
Dynamic range

The dynamic range is defined ag

. Range of operation

‘Dynamic range N — —_—
y = Resolution

n dB ag

Dynamic range = 20log,, N

It is a common practice to specify dynamic range i

Example 3.1

A voltmeter has a range of

4V, 20 V]
instrument is

a) 21 dB b) 60 dB ¢) 72 dB
(2) (b) (c) (d) 84 qp

Solution
The range of operation of the instrument is (20 — 4)=16V and
So, . the Tesolution jg 1 X 103 v/

Dynamic range = 2010 = :

_ y ge = € 1% 10=3 = 84dR
Therefore, the answer is (d).
Scale Span
If Xmin and Xy, are the minimum and maximum values that ap inst
is defined Flmeny
then the scale span is defined as Can Meagy,
e
Scale span = Xmax — Xmin ’
Example 3.2
A voltmeter is calibrated between 10 V and 250 V. The scale span anq
c
respectively ale Tang, _
e
(a) 250, 250 (b) 240, 250 (c) 250, 240 (d) 24¢ e

Solution

The nearest answer is (d). But it is better said that the scale range ig 10 to 250 y,
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3.2 Limiting Error

S“I.’Poff‘-.ﬂ“‘ length of a rod is being measured with the help of a vernier scale which has
a ‘;‘r“}“ _‘;0“5{'31“ of 0.1 mm. One may measure the length only once by the vernier scale
;‘:1‘1‘19(‘;‘3?; éi::it;:qa:r;iri(ool:l ml‘n, if the measured \"ﬂhl'(‘. .is L mm. This 1'0portn<} error is

9 quarantee error), because this is the maximum error which might
have occurred during the measurement, assuming that the vernier scale has no calibration
SRS Many components (e.g. resistor, capacitor) or instruments are sold by manufacturers
Wlt}l some limits in their values or readings and indicated by gold or silver bands. These are
limiting errors of the components. ‘

Probable Error

Alterna‘tive.ly, in the foregoing example, one may measure the same length a number of times,
take the arithmetic mean of the values obtained, calculate the error by one of the statistical
methods (discussed later) and report the value as L = AL mm. This error may be termed
probable error.

Estimation of limiting error for a single measurand is pretty simple, though it may be a
bit involved for a measurement involving many measurands ecach having its own limiting error,
while for probable errors even a single measurand demands attention.

We will take up both these methods of estimation one after another. It will be seen that
the statistical treatment offers a more optimistic picture in the final analysis.

Combination of Limiting Errors

Suppose u and v are measurands and X is the final result. For simplicity we consider two
measurands only though it is easy to generalise the results for many measurands. A few
fundamental mathematical operations such as addition, subtraction, multiplication, division,
raising to powers which connect the measurands to the final result are individually considered

below.

Addition and subtraction. Here, X =u=£v. Then
dX _du b _udu, v
X X X Xu Xv
e 4+§u and £6v, we have for both addition and subtraction,

§X udu v v
i<§Z+Xv>

But because errors ar

——

X

Multiplication and division. Here, either X = v Or X = u/v. Taking logarithm of both sides,

the two cases can be written as
nX =lhuxlnv

Taking differentials, we get dX _du + dv
X u v
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[ before,
But, because of the nature of the errors as Stz_it

o
Xy (e )
X u

ic di iation
Indices. Say, X = ymym. Op logarithmic differentiation,

dv
By S
X U Y
Hence,
ence ix o +n@)
TX— =+ m; v
Example 3.3

Three resistops have the following valyes: Ry =200 Q) + 10%,
R3 =50 04 59 nitude of the res
"if they aye connected in (a) series, and (b) paralle].

Solution

(a) R=R; TRy + Ry =350 0, @=0.1 and 5&=5£§=005
Ry R, R, e
‘Therefore,

5
ﬁ(ﬂ.%) S 0.079
Thus, R = 350 0 + 7.9%.

1 1 1 1 7
(b) Here 7=

— tn = =—.H o
200 " 100 T 50 200" ONCe R=286

. Yo, (1 1
Again, | d(R)‘d(Rl)”(R\z)w(i)

dR _ de dR2 R 3
which gives RT gt R\g . R23
Therefore,

SR _ ROy | RoR, | R og,
R:—R—lR—l Ry R, R3 R,

28.6 28.6 28.6
= 500 (01 + 755 (0:05) + =2 (0,05 2
200 1)+ 150 50 * i g
Thus,

R=2860Q+57%

ultant resistances and the limitine
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Example 3.4

The following are the data for o Hog's ne beidges 2 = 1000 2 4 1 part in 10,000,
Ry = 16,800 Qb L paet in 10 00, Ry = 833025 Q, ' = 143 £ 0,000 b, If frequency of

the supply voltagoe s 50 < 0.1 Hyz and the formulae for 1, and 1t in the halanced condition of
the bridge ave

- ( 1\1/1; od = H|l{r‘»/f;( "w”
Thercarg M T TGy
dotermine the values of 2, and R of tho coil and their limits of error.
Solution
Wi (” Y 1y .
Givow [‘ll' = ﬁi,;[n = | part in 10,000 = 0.01%
Vg 0.25
= = -»—»’ x 100% = 0.08%
Ry 8.33
5C 0,001 (
- o 70
T T X 100% & 0.07%
) 0.1
8 o 2 100% = 0.2%
W 50
| 143 x 107%)(1000)(16800)
Thus, L= ( =211 H
™ U (1007)2 (1,43 % 10-6)2(833)2 Al e
(}.{i ;9“(: + o, N O Ry -2 (S[\’; |~26w
L ' ¢ Rl Rz ]?‘; w
= [(3 % 0.07) ++ 0.01 ++ 0.01 + (2 % 0.03) - (2 % 0.2)]% = 0.69%
Therefore, L =21 H £ 0.69%
| 1000)(16800)(833)(1.43 x 10=0)2(10
Siilaxly, e (1000) (16500} (853)(1:48 X 10— ) (1008)° _ 0

’ , [ 1 -+ (1007)2(1.43 x 10-6)2(833)2

JR ORy  ORe 0y oC ow
S = s ST i g
TR TR A G

= [0.01 4 0.01 + (3 x 0.03) -+ (4 x 0.07) + (4 x 0.2)]% = 1.19%
’ Thevefore, R =2477 Q & 1.19%
Example 3.5
b A 0-10 ampere ammeter has a guaranteed accuracy of 1% of the full-scale deflection. The
: limiting error while reading 2.5 A is
: (@) 1% (b) 2%
(¢) 4% (d) none of the above

WA
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Suppose, we have measured the heights of 200 students of a college with the height of ench
student recorded in inches. A student’s height may be any value such ng 62,85 inches, I
does not make sense to figure out how many students have heights of 62,35 inches, 6 may so
happen that we may not find another student exactly 62.35 inches tall, 16 s botter if we divide
heights within a few ‘class’es or ‘cell’s such as 56-58 inches, 5861 inches aud so on. The cell
demarcation is arbitrary, but we care to see that cach cell possesses a midpoint which is n
convenient whole number. Let the grouped data so obtained be graphed ns given in Fig, 3.1,
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Fig. 3.1 Frequency distribution of the height of 200 students.

This graph is called the frequency distribution or histogram. Next, the question arises as
to how we can characterise the frequency distribution of a sample with a single descriptive
measure, or simple statistic. In fact, there are two highly useful descriptions: one is the central
point of the distribution and the other is the spread.

Measures of Central Tendency

Statistically speaking, a central point or average is a value which is typical or representative of
a set of data. Since the average tends to lie centrally within a set of data arranged according
to magnitude, it is also called the central point or a measure of central tendency.

Generally six types of averages are defined. They are:

Mode

Median

Arithmetic mean or simply, mean
Geometric mean

Harmonic mean, and

e SN (e Tt SIS

Root mean square
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Example 3.7 ‘ o
What are the mode vatues foe the following thiee setss

2080 860010, 10, 10 L LN

(Y 300060, 10 110 1IN

WO 20N B RCH G010, T T I, 1,
Solution , 5 oand L1
in i . T ywon, 9 .
Phie mode o set (1) s 10, Set () las no mode, Set () las tvo i L
Median

Phe madian i the value below which hall the values i the sanple fall, So, i the auboep
of data N\, arrangad acconding to nnguitnde, s odd, 1 the value corresponding to the
LV 226 0. data, 1Y A oven, the wedia s reprasontid by the average of the (V4
and \\ 24 Dth pointy,
Example 3.8
Find the madinne of the atven sets of datae

\“\ ‘-\\ : \ l "l l;\ ?\ T\ ‘;\ \)

() 38078 WL 16, 1

Solution

(@) The number of data points is 9 which is odd

30, the (94N a i
the medinn, D¥Ytos s S potut, Lo G, in
(1) Here the number of data points, 8, is oven, So. the mediag 3 W the
and dth points, e, (84 12) 2 2 == 0. ¢ Werge of the 849 = SETAN
Arithmetic mean

Of all these types of averages, the avithwetic mean g s consida
he measurand and is defined as T g
the mensurand and is defined as

" Doty
‘ | . AN Value of
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Example 3.9

If 10, 16, 12 and 4 occur with frequencies 5, 3, 4 and 2 respectively then what is the arithmetic
mean?

Solution
The arithmetic mean is

_ (5)(10) + (3)(16) + (4)(12) + (2)(4)

1 = ~ =.J1
5+3+4+2
Geometric mean
The geometric mean g,,, of a set of n numbers 1, g, 3, - .-, Zn is the nth root of the product
of number. Written mathematically
Example 3.10 Oin =. YT1T5%3 - Ty

The mass of a substance is being measured in a faulty common balance having unequal arm
lengths. Show that the true mass of the substance is the geometric mean of the masses
determined by placing the substance once on the left pan and next time on the right pan of
the balance.

Solution

Let the true mass of the substance be m and the lengths of the left and right arms of the

balance be z; and x5 respectively. Initially, the substance is placed on the left pan and a mass
my on the right pan balances it. Then

or m=m;—

Next, the mass is placed on the right pan and a mass my on the left pan balances it. Then

mIqo = Mol
m2

or T9 = —I1
m

Substituting this value of 2, in the first equation, we get

T2 M1 Mg

or m2 =mimo

or m = +/Mmyims

Harmonic mean

The harmonic mean h,, of a set of n numbers z;, z3, z3, ...,z, is the reciprocal of the

arithmetic mean of the reciprocals of number. Written mathematically,
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Example 3.11
) ; 1 and returns by the <.
A person travels from X to Y at an average speed of 60 km/h : S by the Same

: » speed for the round trip. Olite
At an average speed of 50 km/h. Find the average spee

Solution .
Let the distance between the two places be x km. Then, if ; and ¢5 be the time (in h) taker,
for the onward and return trips, we have

z
t) = ’6'6
T
ty = 50
Therefore, the average speed v,, for the round trip is
V. — total distance 2 _ 2
total time t1 + 1ty N z 1 1

Root mean Square

The root mean
‘an square (rms) or uadratic
defined as q mean of a set of o, numbers Ty,

Z2, 3, e Ty is

Measures of Spread

The average height, in oyr earlier example, may be ¢},
of the students. However, it s also equally import e:no
1

out or disperse around the average value. 1j)q, the no
several measures of spread or dispersjop: ¢ Meagy,

1. Deviation

2. Mean absolute deviation
3. Variance, and

4. Standard deviation

Deviation

Usually written as d;, deviation is the scattey

of 4
Symbolically, n

Obviously,
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Mean absolute deviation

The mean absolate deviation! D of a set of data is defined as the average of absolute values
1 a set of data s «
of deviations, Lo,

1 4] l [
com . ;
D= - \, i, | = - \ Ly =
val pul

I £y 72, 2y ooenr with frequencies fy, fi. ..., fo respectively, then

| " )
D= ";Z]:h\ - I'i

=1

Example 3.12

Find the mean absolute deviation of heights of 100 male students of a class as given in table
below,

Herght (in) 60-62 63-65 66-68 69-71 T2-7Td

No. of students 5 18 42 27 8

Solution
Here, the arithmetic mean

(61 x 5) + (64 x 18)+ (67 x 42) + (70 x 27) + (73 x ¥)
54 18 + 42+ 27 + 8

il

H

= (745 In

H

The rest of the caleulation is presented in the following table:

Height (in) |z = pl = |o, = 67.45| i files = pl
60-62 6.45 5 32.25
63-65 3.45 18 6G2.10
6668 0.45 42 18,90
69~-T71 2.55 27 68.85
72-74 5.55 8 44.40

Y= 100 226.50

- .o 22650 0
Iherefore, the mean absolute deviation D = - Tk 2.26 in

Variance

Intuitively, the mean absolute deviation is a good measure of spread; but it is mathematicall
intractable. One difficulty is the problem of differentiating an absolute value function

'Often referred to as average deviation,
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] 1 b € mean squared devirltio .
1 T-innc(i Whic iS nothlllg ut‘ t’h q d n’ W )
i & ] ] ‘(' / e va “y

Ob\'lat thlS dlfh ult}, the A,

defined as 1< o
Variance = — Z(lz 1)
S =1

nd a population of data. The sam
isti ies distinguish between a sample and hﬁelthe population indicags. rI;le
G saistical thelorlesfd ta is less than or equal to 20 W} th‘ variance or MSD ig 5 g ‘ 13
S r of date ) | the : o0
d.onmeb.th?}lt- th;onufr\ri():zrdinu to the statistical f;heorleS, Igl?;(ljg(n _ 1) rather than m o o
e E’ldd'n i n for a ;opulation, the divisor shou ,
measure of dispersio

an unbiased estimator for a sample.

Standard deviation

: ays—one for a sample (n < 20) ang
Denoted by ¢ or s, standard deviation is defined in two ways
enoted by . ‘
the other for a population (n > 20) as follows

[S8
o = T Tl>20

2

n —

n < 20

»
I

: 2 2
iation is s written as o“ or s<.
Variance which is just the squared standard deviation is thus
Le »

[»:-\xanlfel?).:ilr?dependent measurements were made to determine the diameter of 1,11;3717)0}]) :)éoa
l ‘ ‘ [~ 1 RR ! . K ,
;inbli)loopendulum. The measured values in ¢m were: 1.570, 1.597, 1.591, 1.562, 1.5 , 1.5

1.564. 1.586. 1.550 and 1.575. Determine (a) the arithmetic mean, (b) the average deviation,
(c) the standard deviation, and (d) the variance.

Solution '
The calculation is presented in a tabular form

below with the last row in bold face letters
indicating sums of corresponding columns:

550 0.025

T | d| d?
1.570 0.005 0.000025
1.597 0.022 0.000484
1.591 0.016 0.000256
1.562 0.013 0.000169
1.577 0.002 0.000004
1.580 0.005 0.000025
1.564 0.011 0.000121
1.586 0.011 0.000121
1
1.

5.

I
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The measurement can thug he reported as 1.575 4 0.014 cm where the indicated error is the
standard deviation.

3.4 Error Estimates from the Normal (or Gaussian)
Distribution

If a rather large number of careful measurements are carried out of a measurand, and the
frequency of occurrence of a particular value is plotted against the corresponding values, the
resulting histogram usually assumes the form of a bell-shaped curve called the normal or
Gaussian® curve as shown in Fig. 3.2. Here we have plotted the Gaussian distribution curve
for a typical height measurement of students of a class as given in Example 3.12 at page 39.

40 — .
Gaussian curve

- \

10 — // \

| 4\\4

60 ' 65 ' 70 75
Height (in)

Fig. 3.2 Height vs. number of students of a class showing a Gaussian distribution.
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1

Errors that are made in physical measurements do often have a normal distribution. This
distribution is defined by the equation

_ 1(z~p)?
y~0 27 exp{ 2 o2 (3.3)

where p is the mean, o is the standard deviation, and 7 = 3.14159.

It is easily seen from the following calculation that the total area bounded by the
distribution curve and the abscissa is 1.

ydzr = / expq —= (i—al—l-)—- dz
- oV2n J- 2 o2

3 i 2 w
= ———/ exp(—u~)du where u = = i
VTS oo ov'2

normal

I'(1/2)
NG

2Named after (Johann) Karl Friedrich Gauss (1777-1853), German mathematician. His contribution to

electrostatics gave birth to the electromagnetic field theory apart from his seminal contributions to probability
theory and other branches of mathematics.
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