CHAPTER 4  mee——_

Dynamic Characteristics of
Instruments

As the name implies, these characteristics describe the behaviour of a system with time whep
some input is given to the system. Suppose a resistor R and a capacitor C' are connected ip
series. If now a voltage source E; is included in the circuit, charge builds up on the capacitor
and the voltage across the resistor slowly builds up. This behaviour of the circuit can aptly be
described by setting up an appropriate differential equation and solving it for certain boundary
conditions. Of course, while setting up the equation, certain simplifying assumptions need be
made to make the problem tractable. Here in the RC circuit, it is tacitly assumed that neither
the capacitor is leaky nor the resistor dissipates any energy in the form of heat. An actual
instrumentation system is rather complex and therefore,
ideal conditions to make mathematical studies tractable. This is called mathematical modelling
of the problem. Once a model has been built, the response of the system, termed the dynamic

response, is studied with respect to a few idealised inputs. Transfer functions of systems are
very useful to study their responses.

4.1 Transfer Function

The generalised relation between a particular input ¢ [= ¢;(t)] and the corresponding output
qo with proper simplifying assumptions, can be written in the form

d™q, dgo _p TG, dg
7 dtn +"'+a1d—t+aoqo—bm dim + +b1 dt +bOQz (41)

where a’s and s are combination of system parameters assumed to be constant. !
Taking Laplace transform? and assuming all initial conditions equal to zero, we get from
Eq. (4.1
S (@ns™ + -+ +a15 +a0)Qo(s) = (bms™ + -+ + bis + bo)Q;(s)
The transfer function G(s) is defined as

Qo(s)  bms™+---+bis+ by (2
S Q) Tt tastag -

G(s)
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Dynamic Characteristics of Instruments

properties of Transfer Function

1. The transfer function is a general relation between the Laplace transforms of the ou't.put
and input quantities Q,(s) and Q;(s). It is not the instantaneous ratio of the t.'mm-
varying quantities q,(t) and g;(t). For example, the relation between the current i and
the emf e in an LCR circuit is given by

' di(t) ) 1 [,
t) = L——= — ] t
e(t)=L & + Ri(t) + = /z(t)d
Taking Laplace transform, we get
I
L{e(t)} = E(s) = sLI(s) + RI(s) + -;%)-

Therefore, the transfer function,

I(s) 1
E(s)  sL+ R+ (1/sC)

G(s) =

9. The transfer function does not give any insight about the structure of the system.

3. Tt offers a symbolic picture about the dynamic characteristics of the system as shown in
Fig. 4.1.

4. If the transfer functions of individual components of the system are known, the overall
characteristics of the system can be determined just by taking their product (Fig. 4.1),
provided the loading effect between connected devices can be neglected.
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Fig. 4.1 Individual transfer functions are multiplied to get the final transfer function.

So far while discussing dynamic characteristics, we have tacitly assumed that the inputs
to the system are time-varying and we want to study the dynamic response of the system at
different intervals of time. Such kind of a study is called a time domatn analysis.

But time domain analysis is rather cumbersome and, of course, not necessary if the input
varies periodically with time, such as ¢; = A;sinwt. The output quantity ¢, in such cases
will also be a sine wave, once the transients die out. The only changes that are expected are
in the amplitude and the phase of the output. Since the input and output frequency are the
same, the output is completely specified by giving the amplitude ratio Ao/A,, and the phase
shift angle ¢. Thus, the response of a system to a periodic input is completely studied if the
amplitude ratio and phase shift are studied as a function of frequen y(thd?) This analysis
S termed frequency domain analysis. s,
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Fig. 4.2 A typical response of a system to a sinusoidal input

While a full-fledged time domain analysis with a sine wave input will also lead to the same
results, much quicker and easier methods are offered by the concept of sinusoidal transfer
function which is obtained simply by substituting jw for s in the operational transfer function,
Thus, the frequency domain transfer function for Eq. (4.2) is given by

Qi(w) ~ an(aw)™ + - + ayw + ag

G(]w) - QO(J(‘U) bm(]w)nt'{" y o syt bl]w + bo

G(w) for a given frequency w is a complex quantity. Any complex quantity, a + 7b, can be
expressed in the polar form M /¢ where M (= Va? +b?) is the magnitude and ¢(= tan™! ﬁ)

is the angle. .It. can be proved that M and ¢ corresponding to G(jw) equal the amplitude l'ataio
and the leading phase angle, respectively. By leading phase angle we mean thag if the output
lags behind the input, ¢ is negative (Fig. 4.3). O
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Fig. 4.3 Frequency response of system.

Thus, the sinusoidal transfer function for an LR circuit is

X(w) 1
F(w) gL+ R+ (1/wC)

G(w) =

4.2 Standard Inputs to Study Time Domain Response

Standard inputs generally used to study the dynamic behaviou. of measurement S
. . ' 3 . s
their Laplace transforms are as follows: and
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step Input
The functional form [Fig. 4.4(a)] is given by

0 ift<o0
t) = =
f®) {A ift>0

The Laplace transform of the step input is

A
ZL{f(t)} = 5
(t A 4‘ A
(@) f® }:4 (/2
A
0 ‘ = 0 > 0 ¢ >
@ ® ©

Fig. 4.4 Standard inputs: (a) step function, (b) ramp function, and (c) impulse function.

Ramp Input
The functional form [Fig. 4.4(b)] and the Laplace transform are

flt)= At and F(s) = %

Impulse Input

The impulse function, [Fig. 4.4(c)] related to the Dirac §-function is defined as

Ft) = As(t)
where,
1
im — <
5(t) = r}l—%s for0<t<e
0 fort > ¢

By definition, f0°° 6(t)dt = 1. Therefore, the corresponding Laplace transform3 is % {6®)} =1
Thus,

F(s)=A
Armed with this background knowledge we will now study dynamic responses of differen

orders of instruments. But before that we will see what characteristics we want to watch. I
other words, what are the dynamic characteristics of instruments. :

%See Appendix C.1 at page 863 for a derivation.
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4.3 Dynamic Characteristics

Like the statie charetertstion, dyvimmie charcteristios can alio be divided: o D
categorion

L. Dawivable

20 Undesivable
Fhe tree looks like My, 4.5,

Dynamie ehatavteristios

Dexivable l l\\«l‘}xiyc\lslx\

Speedolesponse  Pidelity Lag Steady state ertor
Figc 4.5 Dynamic characteristics tree,

Although the names of charactortst tes e selloxplanatory, we brieflly disenss what they
mean,

Speed or vesponse. e speed ol response indieates how quickly the systom roncts to he
input signal,
Fldelity. The tidolity ol o dynamic system donotes how

ithiully the systen outputs the inpul,
signal and what is the distortion, it nny,

Lag.  As the name implies, the kg indicates what time the

: N system takes to outpat. the input
sigual,

Steady state error.  I'ho stondy state ervor iy defined as
Cae = llm e

o f<:\t\_‘( '“

s

whove, fo

I

o -
Here, g, is the input sigual

@i/ IV is the normalised output,

KN is the amplification fetor

[ will be seen that in the ultimate annlysiz, the desirablo

‘ and undesivg e el
Al dopend on the speed of vesponse, which, in turn, s rol

wacloerigtioy
nted to the tim Y

Ceonstant £ of the
[yvstom,
We will study dynnmic chnractoristios of fnstraments neeording to (hejy order,
L3 Al 0 \ I 1] ' (‘( l iN l'
is, what do wo mean by the order of an instrumentation systom? e

Order of a system

The order of a dynamie system s indieated by the highest power of the Laplice
the rationalised denominator of the corvesponding translor function.
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44 Zero Order Instrument

s excent @p and &y in Eq. (4.1 are zexo. degenerating 1t 1o an algobraie

mDDoSE ail a : o =

l'.JI

Gc.@;»,_{ﬂ = E\\Qg \?\ (4 J)

A o order instrument is defined as one which closely obeys this SUATION OVEr iTs TN of
speration. On rearranging Eq. (4.3) we get

Cl

2o = 2as(d) = Kai() (4.4)
Qo

where K = by /ap = static sensitivin- ‘
Equation (4.4) being an aleebraic relation. 1t is apparent that the output g, faithfully
foliows the injmz a; «ith no distortion or time lag of any sort. The zero order instriuent,

therefore. mav be considered as ideal having perfect dynamic response.

A mieﬂﬁ-gme‘{er ased for measuring displacements™ may be shown to be a zero-order
nStrument. In such an arrangement. & wire-wound resistance, provided with a sliding contact,
5 excited with a voltage Assuming that the resistance is distributed linearly along its length
L. we have

Eﬂ = —i—E, = K;I‘ ("\5\

where £ and E. are the output and input voltages, x is the displacement and A" 1s a constant.

e ———

“See Section 6.2 at page 173
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Note: We have made the following tacit assumptions to write Eq. (4.5):

I. The increase in resistance is continuous. But in actuality, for a v_v1re—w01.md type
potentiometer the wound wire has a finite diameter and hence the resistance Increageg
in steps as the sliding contact (called wiper) moves (see Fig. 6.6 a.t pf'ige 175). '

2. The winding is purely resistive, which is not true because all such windings have inductiye
and capacitive effects.

Ry
(e
N

Electric loading by the voltage measuring instrument is negligible. In case there g
loading, the relation will not be linear.

4, There is no mechanical loading by the sliding contact (i.e. wiper ) and, therefor €, N0 hegt
generation during sliding motions.

4.5 First Order Instrument

If the dynamic relation between the input and output of an instrument assumes the form

dq;t(t) + a0qo(t) = bog;(t)

ai

it is called a first order instrum,

ent. However, this relation can be written with two rather
than three coefficients as follows:

(4.6)

HC’I‘Q, K= bg/ao and 7 = ai

time in physical processes.
Taking Laplace transform of Eq. (4.6), we get

/ao. 7 is called the time constant because it has the dimension of

75Qo(s) + Qo(s) = KQ;(s)
or (14 75)Qu(s) = KQi(s)

Therefore, the transfer function is given by

=Q06) K
=) " T

The familiar RC circuit is an example of a first order arrangement.
between ¢; (= voltage, input) and @ (= charge, output) is given by,

Here the relation

aQ  Q
@ to=e
dQ

or TF['*'Q:KG"

where, 7 = RC and K = C.




gxamples of First Order Instruments
Mercury-in-glass thermometor

e (U o WTONIYVain-otlace  Juce . . 5
The ComImon e 1TVv-in L'!-‘..\w e Inometer, ti“f: 1.6) behaves ae a fest order instrnment
can be seen from the analywis given bel

dw

=10 mark

e J

Fig. 4.6 Mercury-in-glass thermometer.

Let V' be the volume of the bulb
Ay be the area of the bulb conducting heat
Yo be the coefficient of apparent expansion of mercury
#n be the temperature attained by mercury at any instant
x be the corresponding height of the mercury column (output)
A be the area of cross-section of the capillary tube
K, be the thermal conductivity of glass
p be the density of mercury
¢ be the specific heat of mercury
0; be the temperature of the liquid (input)
0  Dbe the wall thickness of the glass bulb,

Ya V 0,"

then = "
Ve
m Ax
which gives O = v
av

Now, the heat conducted from the liquid to mercury through the bulb (i.c. heat lost by the
li‘luid) during the interval dt equals

(0,‘ -~ Om)dt

Al . o HY
The corresponding heat gained by mereury in the bulb is

(pcV) dby,
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du
" e af O /({}
i dl = 7
o pevo
where, U K,A,
_ 1V
K = Y
Thermocouple

are
we consider a thermocouple which is di pped into g b

The other common temperature measuring devices, such as thermocouple and thermistor,
also first order systems, To verify that,

liquid. For simplicity, we assumne that
(a) the heat, transfer takes place only by conduction
(b) the emf vs temperature

curve of the thermocouple is linear
(¢) the other junct

ion of the thermocouple is kept at room temperature
It Ais the heat transfer arca of the thermocouple
Ky is the thermal conductivity of the

thermocouple material
0 is the temperature

attained by the thermocouple at, any instant,
0; is the temperature of the hot, liquid

m is the mass of the thermocouple Jjunction
¢ is the specific heat, of the junction materia]
E is the developed emf in the thermocouple
we have

E =Ko

where K is a constant. Heat conducted from the
a small time interval dt is

(4.7)

liquid to the thcrmocouplc Junction during

K A(0; - 0)dt

The corresponding heat gained by the thermocouple junction ig

me do
Thus, medf = K, A(0; — 0)dt
me dE .
which gives KAd +E=K0; [applying Eq. (4.7)] (4.8)
dF

or it i (4.9)

me
where T = KA

Equation (4.9) shows that the thermocouple is a first order system.
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Dynamic Response of First Order Instruments
Step response

As shown before, here Q;(s) = A/s. Therefore,

Q49=G®W%ﬁ=—JEL7=KA(l— d >=KA<%—Si ) (4.10)

S 1=

Taking inverse Laplace transform of Eq. (4.10), we get
qo(t) = KA[1l — exp(—t/7)] (4.11)

On non-dimensionalising, Eq. (4.11) becomes

Ig(;l =1—exp(—t/T) (4.12)

Measurement error. The measurement error e,, is

em = g — 72 = A= All - exp(~t/7)]

= %n = exp(—t/7) (4.13)

Steady-state error. From Eq. (4.13) we find that the steady-state error for the step input of
a first order instrument is

ess = lim e, =0
t— o0

An idea about the growth of the output with time can be obtained from Table 4.1 which has
been shown in graphical form in Fig. 4.7.

Table 4.1 Values of non-dimensionalised parameters for step response of the first order instrument

t/T 0 1 2 3 4 5] 00
qo/KA 0.000 0.632 0.865 0.950 0.982 0.993 1.0007

From these analyses we can infer that
1. The speed of response depends only on the value of 7.

2. The response reaches within 5% of its final value at 3.

3. The steady-state value can be assumed to have reached around 5.

Going back to the case of mercury-in-glass thermometer, we find that

1. Reducing 7 means reducing p, c and V, and increasing K4 and Ap; but reducing V means
reducing A, as well!

2. p,c can be reduced by choosing an appropriate fluid for the thermometer;

3. By lowering V/, the static sensitivity is lowered. This, in turn, means that a fast
responding thermometer is less sensitive.
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Fig. 4.7 Step response of the first order instrument.

Example 4.1

A thermometer, initially at 70°C, is suddenly dipped in a liquid at 300°C. After 3 s, the
thermometer indicates 200°C. After what time is the thermometer expected to give a reliable
reading, say well within 1% of the actual value?

Solution

This is obviously a case of a step input, the step being not from an initial zero value, but &

finite value of 6y = 70°C. So if we denote 63 as the thermometer reading after 3 s, our equation
is

63 = (300 — 70) [1 — exp ( - 3)] +70 = 200°C (given)

T

o (_§) _ 230 —-130 _ 10
or P\77) T 7330 T 33
3
. —= = In10 — In 23 = —0.8329
- T=36s

Since a reliable reading can be obtained at 57, the required time is 18 S.

Ramp response

Here Q;(s) = A/s®. Therefore,

KA 1 T 7'2
Qo(s) = G(8)Qils) = gy = K4 (— ==ty +TS>
On taking inverse Laplace transform, we get

0 (t) = KA [t —~ T{l — exp ( - -:-) }J (4.14)
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Measurement error. The measurement error is

em = Al - A [’ - ‘”{1 =R ( ’)}l

-iefi-on( 1)
= —ATexp ( - 1) + A7 (4.15)

-

{

transient error steady-state error

gteady-state error.  The steady-state error is
ess = lime,, = AT
t—oo

The steady-state error obviously depends on 7 which means that a small 7 instrument 1s

desirable.

Lag. An intriguing revelation is that the instrument reading always lags behind the actual
value as if the instrument shows a value what the input was 7 seconds ago (see Fig. 4.8). The
situation will be clear from Example 4.2

1.0

16 A
T Time lag at steady 9 ) 0.8 7
state = 7 A e,

/// %i 0'6 / em..u
Ppra 0.4 T
e /

—y
[\

— Amplitude
o0

4 // em,s.\' 02
e
0 0.0 :
o 2 4 6 8 10 0 2 4. 6 8
— Time ’
(a) (b)

Fig. 4.8 Ramp response of the first order instrument: (a) actual response, and (b) error plot.

Example 4.2 gl o
A balloon carrying a first order thermometer (7 = 10 s) rises through the atmosphere at

the rate of 10 m/s and radios the temperature and altitude readings back to the ground. At
3500 m the balloon says the temperature is 0°C. What is the true altitude at which 0°C occurs,

provided the variation of temperature with altitude is 0.15°C per 30 m?

Solution
We assume that
(i) there is no lag in the altimeter reading,
(ii) the time lag for radio wave propagation is neg
(iii) the only lag is in the thermometer reading.

ligibly small, and



