

System Programming
For BCA 3rd Semester

Unit 3

Compiled
By

Sakhi Bandyopadhyay
Dept. of Computer Science & BCA,

Kharagpur College,
Kharagpur 721305

Macro and Macro Processor

Macro

• Formally, macro instructions (often called macro) are single-line abbreviations for

groups of instructions.

• For every occurrence of this one-line macro instruction within a program, the

instruction must be replaced by the entire block.

• The advantages of using macro are as follows:

o Simplify and reduce the amount of repetitive coding.

o Reduce the possibility of errors caused by repetitive coding.

o Make an assembly program more readable.

Macro Processors

• A processor can be any program that processes its input data to produce output,

which is used as an input to another program.

• The outputs of the macro processors are assembly programs that become inputs to

the assembler.

• The macro processor may exist independently and be called during the assembling

process or be a part of the assembler implementation itself.

Difference between Macro and Subroutine

Macro Subroutine
Macro name in the mnemonic field leads to
expansion only.

Subroutine name in a call statement in the
program leads to execution.

Macros are completely handled by the
assembler during assembly time.

Subroutines are completely handled by the
hardware at runtime.

Macro definition and macro expansion are
executed by the assembler. So, the
assembler has to know all the features,
options, and exceptions associated with
them.
The hardware knows nothing about
macros.

Hardware executes the subroutine call
instruction. So, it has to know how to save
the return address and how to branch to
the subroutine. The assembler knows
nothing about subroutines.

The macro processor generates a new copy
of the macro and places it in the program.

The subroutine call instruction is assembled
in the usual way and treated by the
assembler as any other instruction.

Macro processing increases the size of the
resulting code but results in faster
execution of program for expanded
programs.

Use of subroutines does not result into bulk
object codes but has substantial overheads
of control transfer during execution.

Macro Definition and Call

• It has been aforementioned that a macro consists of a name, a set of formal

parameters, and a body of codes.

• A macro can be defined by enclosing a set of statements between a macro header

and a macro end statement.

• The formal structure of a macro includes the following features:

o Macro prototype statement: Specifies the name of the macro and name and

type of formal parameters.

o Model statements: Specify the statements in the body of the macro from which

assembly language statements are to be generated during expansion.

o Macro preprocessor statement: Specifies the statement used for performing

auxiliary function during macro expansion.

• A macro prototype statement can be written as follows:

<name_of_macro> [<formal parameter spec> [,...]]

where [<formal parameter spec> [,...]] defines the parameter name and its kind,

which are of the following form:

 &<name_of_parameter> [<parameter_type>]

• A macro can be called by writing the name of the macro in the mnemonic field of the

assembly language. The syntax of a typical macro call can be of the following form:

<name_of_macro> [<actual_parameter_spec> [,…]]

• The MACRO directive in the mnemonic field specifies the start of the macro

definition and it should compulsorily have the macro name in the label field.

• The MEND directive specifies the end of the macro definition.

• The statements between MACRO and MEND directives define the body (model

statements) of the macro and can appear in the expanded code.

 • Eg.

 Macro Definition

MACRO

INCR &MEM_VAL, &INC_VAL, ®

MOVER ® &MEM_VAL

ADD ® &INC_VAL

MOVEM ® &MEM_VAL

MEND

 Macro Call

INCR A, B

Macro Expansion

A macro call in a program leads to macro expansion. To expand a macro, the name of the

macro is placed in the operation field, and no special directives are necessary. During macro

expansion, the macro name statement in the program is replaced by the sequence of

assembly statements. Let us consider the following example:

 START 100

 A DS 1

 B DS 1

 + MOVER REG A

 + ADD REG B

 + MOVEM REG A

 PRINT A

 STOP

 END

The statements marked with a ‘+’ sign in the preceding label field denote the expanded

code and differentiate them from the original statements of the program.

Attributes of formal parameter

• An attribute is written using the syntax

 <attribute name> ’ <formal parameter spec>

• It represents information about the value of the formal parameter, i.e. about the

corresponding actual parameter.

• The type, length and size attributes have the names T, L and S.

• Example

 MACRO

 DCL_CONST &A

 AIF (L'&A EQ 1) .NEXT

 --

.NEXT --

 --

 MEND

Here expansion time control is transferred to the statement having .NEXT field only if the

actual parameter corresponding to the formal parameter length of ' 1'.

Design of Macro Preprocessor

Macro preprocessors are vital for processing all programs that contain macro definitions

and/or calls. Language translators such as assemblers and compilers cannot directly

generate the target code from the programs containing definitions and calls for macros.

Therefore, most language processing activities by assemblers and compilers preprocess

these programs through macro processors. A macro preprocessor essentially accepts an

assembly program with macro definitions and calls as its input and processes it into an

equivalent expanded assembly program with no macro definitions and calls. The macro

preprocessor output program is then passed over to an assemble to generate the target

object program.

The general design semantics of a macro preprocessor is shown as below

The design of a macro preprocessor is influenced by the provisions for performing the

following tasks involved in macro expansion:

• Recognize macro calls: A table is maintained to store names of all macros defined in a

program. Such a table is called Macro Name Table (MNT) in which an entry is made for

every macro definition being processed. During processing program statements, a match is

done to compare strings in the mnemonic field with entries in the MNT. A successful match

in the MNT indicates that the statement is a macro call.

• Determine the values of formal parameters: A table called Actual Parameter Table (APT)

holds the values of formal parameters during the expansion of a macro call. The entry into

this table will be in pair of the form (,). A table called Parameter Default Table (PDT)

contains information about default parameters stored as pairs of the form (,) for each

macro defined in the program. If the programmer does not specify value for any or some

parameters, its corresponding default value is copied from PDT to APT.

• Maintain the values of expansion time variables declared in a macro: A table called

Expansion time Variable Table (EVT) maintains information about expansion variables in the

form (,). It is used when a preprocessor statement or a model statement during expansion

refers to an EV.

• Organize expansion time control flow: A table called Macro Definition Table (MDT) is used

to store the body of a macro. The flow of control determines when a model statement from

the MDT is to be visited for expansion during macro expansion. MEC {Macro Expansion

Counter) is defined and initialized to the first statement of the macro body in the MDT. MDT

is updated following an expansion of a model statement by a macro preprocessor.

• Determine the values of sequencing symbols: A table called Sequencing Symbols Table

(SST) maintains information about sequencing symbols in pairs of the form

(<sequencing symbol name>, <MDT entry #>)

Where <MDT entry #> denotes the index of the MDT entry containing the model statement

with the sequencing symbol. Entries are made on encountering a statement with the

sequencing symbol in their label field or on reading a reference prior to its definition.

• Perform expansion of a model statement: The expansion task has the following steps:

o MEC points to the entry in the MDT table with the model statements.

o APT and EVT provide the values of the formal parameters and EVs, respectively.

o SST enables identifying the model statement and defining sequencing.

Functions of Macro Processor

The design and operation of a macro processor greatly influence the activities performed by

it. In general, a macro processor will perform the following tasks:

• Identifies macro definitions and calls in the program.

• Determines formal parameters and their values.

• Keeps track of the values of expansion time variables and sequencing symbols declared in

a macro.

• Handles expansion time control flow and performs expansion of model statements.

Design of Two-pass Macro Preprocessor

Pass 0 of Assembler

The activities of pass-0 macro processor is given in the following steps:

1. Read and examine the next source statement.

2. If MACRO statement, continue reading the source and copy the entire macro definition to

the MDT. Go to Step 1.

3. If the statement is a pass-0 directive, execute it. Go to Step 1. (These directives are

written to the new source file in a unique manner (different from normal directives). They

are only needed for the listing in pass 2.

4. If the statement contains a macro name, it must perform expansion, that is, read model

statements from the MDT corresponding to the call, substitute parameters, and write each

statement to the new source file (or execute it if it is a pass-0 directive). Go to Step 1.

5. For any other statement, write the statement to the new source file. Go to Step 1.

6. If the current statement contains the END directive, stop (end of pass 0).

The assembler will be in one of the three modes:

• In the normal mode, the assembler will read statement lines from the source file and write

them to the new source file. There is no translation or any change in the statements. In the

macro definition mode, the assembler will continuously copy the source file to the MDT.

• In the macro expansion mode, the assembler will read statements from the MDT,

substitute parameters, and write them to the new source file. Nested macros can be

implemented using the Definition and Expansion (DE) mode.

Pass 1 of Macro Processor - Processing Macro Definitions

1. Initialize MDTC and MNTC.

2. Read the next source statement of the program.

3. If the statement contains MACRO pseudo-op. go to Step 6.

4. Output the instruction of the program.

5. If the statement contains END pseudo-op, go to Pass 2, else go to Step 2.

6. Read the next source statement of the program.

7. Make an entry of the macro name and MTDC into MNT at location MNTC and increment

the MNTC by 1.

8. Prepare the parameter (arguments) list array.

9. Enter macro name into the MDT and increment the MTDC by 1.

10. Read the next card and substitute index for the parameters (arguments).

11. Enter the statement into the MDT and increment the MDT by 1.

12. If MEND pseudo-op found, go to Step 2, else go to Step 10.

Pass 2 of Macro Processor - Processing for Calls and Expansion of Macro

1. Read the next source statement copied by pass 1.

2. Search into the MNT for record and evaluate the operation code.

3. If the operation code has a macro name, go to Step 5.

4. Write the statement to the expanded source file.

5. If END pseudo-op found, pass the entire expanded code to the assembler for assembling

and stop. Else go to Step 1.

6. Update the MDTP to the MDT index from the MNT entry.

7. Prepare the parameter (argument) list array.

8. Increment the MDTP by 1.

9. Read the statement from the current MDT and substitute actual parameters (arguments)

from the macro call.

10. If the statement contains MEND pseudo-op, go to Step 1, else write the expanded

source code and go to Step 8.

