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“ Another fundamental result wij] now be established

Theorem. Let f be analytic everywh

' it ere inside and on q simple closed contour C,
taken in the positive sense. If 7y is any

point interior to C, then

—

2ni Jo z—1z¢

(D flzg = — [ f@dz

Formula (1) is called the Cauchy integral formula. It tells us that if a function f
1s t0 be analytic within and on a simple closed contour C, then the values ot f intenior
to C are completely determined by the values of f on C.

When the Cauchy integral formula is written

) f(2)dz
C 22—

=2 if (Zo),

1t can be used to evaluate certain integrals along simple closed contours.

EXAMPLE. Let C be the positively oriented circle |z| = 2. Since the function

i
L

9 — 22

is analvtic within and on C and since the point zo = —i is interior to C, formula (2)

tells us that
zdz =f /@ -2) dz=2m'(l_—(;)=%_
,/;(9—22)(z+i) c z— (=)

: itively oriented circle

theorem by letting C,, denote a posi _ .
T] enough that C,, is interior to C (see Fig. 64). Since the
ytic b%tween and on the contours C and C,,, it follows

fl@=

We begin the proof of th
|z — 79| = p, where p is'sma
function f(z)/(z — Zo) 18 anal
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5 Sec. 46) that
ple of deformation of paths (Corollary 2, Sec

f(z)dz :f fldz

from the princi

c 27420 Cp z— 20
This enables us to write
| f( ydz dz f _f_(_g_).___’-f—(——o—)* dz
(3) (‘T_‘zgﬂf(zo) c,2-% G z2—20
But [see Exercise 10(a). Sec. 40]
/ _d2 i
c, 2720

and so equation (3) becomes

2) dz (z) — f(zp)
@) R orif(ze) = f / 0 4.

c 2—230 Cs Z— 2

Now the fact that f is analytic, and therefore continuous, at z ensures that,
corresponding to each positive number &, however small, there is a positive number 8
such that

(5) | f(2) — f(zg)| <& whenever |z — zp| <.

.Let the .rgdius p of the circle C, be smaller than the number § in the second of these
inequalities. Since |z — z9| = p when z is on C,, it follows that the first of inequalities

(5) holds when z is such a point; and inequality (1), Se -
2 2 ’ C. 41,
the moduli of contour integrals, tells us that i giving upper bounds for

Cp < (_0

In view of equation (4), then,

f(2) dz

¢ =2

—2mif(zg)| < 27e.

Since the left-hand side of this inequalit
arbitrarily small positive number, it m

y is a noy i
| IN€gative constant that is less than an
and the theorem is proved,

ust equa y
qual to zero, Hence equation (2) is valid,

48. DERIVATIVES OF ANALYTIC FUNCTION

It follows from the Cauchy j o

point, then its derivatives):) all o:I fOrmu.la (Sec. 47) that if a function i lytic ata
¥ lon is analytic a
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there. To prove this, we start with

. a lemma the
5o as to apply to derivatives of the Ma that extends the Cauchy integral formula

first and second order.

Lemma. Suppose that a : .
closed contour C, taken inf;lhnecnon- f Is analytic everywhere inside and on a simple
positive sense. If z is any point interior to C, then
’ (4

(7) = f(s)d
(1) f(i’)-——- LI 11 1 $) d.:

| I;Tog': {that ex.pr'essiot'ls (1) can be obtained formally, or without rigorous verifica-
tion, by differentiating with respect to z under the integral sign in the Cauchy integral

formula

I f(s)ds
wiJc §s—2 ’

2 () =
(2) f(2) 2

where z is interior to C and s denotes points on C.
To verify the first of expressions (1), we let d denote the smallest distance from

z to points on C and use formula (2) to write

f(z+Az)—f(Z):_1_/( 1 ___I_)ﬂ“ﬂds
Az 2171i Jo §—7—Az §—12 Az
1 f(s)ds

— e

=5 JeG-2- DG~

where 0 < |Az] < d (see€ Fig. 65)- Evidently, then,

fetan—s@ _ L [ 19— _ Af@ds
() ‘——_‘A‘"Z"'_—_-_a}—,' c (s =27 i Jo (s —2—ADG =)
y
C d
\N'\z :
7+ A2

/ FIGURE 65

S|
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i f Y ! .
analytic function f7to conclude that its geriya
now established. S derivative f”

IS analylic, etc. Theorem 1 is
As a consequence, when a function
F@ =u(x, y) +ivix, y)

s analytic at a point z = (x, y), the diff o
» V), erenti: L ,
there (Sec. 18). Then, since entiability of £’ ensures the continuity of f

'
f(z)—ux+lvx=vy‘-fu

y

w? my ({ogc:.;?e thit the. ﬁrst-(?’rqer partial derivatives of u and v are continuous at
that point. Furthermore, since f is analytic and continuous at z and since

" '
PRy = e+ ivg = Vyy — illyy,

etc., we arrive at a corollary that was anticipated in Sec. 25, where harmonic functions
were introduced.

Corollary. If a function f(z) = u(x, y) +1 v(x, y) is defined and analytic at a point
2= (x, y) then the component functions u and v have continuous partial derivatives
of all orders at that point.

One can use mathematical induction to generalize formulas (1) to

nt [ f(s)ds
i Je (s ="

The verification is considerably more involved than for just 7 = 1and n =2, and we
refer the interested reader to other texts for it.* Note that, with the agreement that

fO@)=f@ and 0'=1,

hich case it becomes the Cauchy integral

(4) Nz = n=12,..).

expression (4) is also valid when 7 = 0,inw
formula (2).
When written in the form

f@dz _ 2 pg) —0,1,2,.. )
¢ (2= Zo)""H n!

on a Sllll]) [d-ke“ n the pGS Ve I’E“"E a"d Z S “y l,(i n

: i . 47 whenn =0.
interior to C. It has already been lustrated in Sec- 4

)

————

arkushevich, cited in Appendix 1.
* See, for example, pp- 299-301 in Vol.

[ of the book by M
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nted unit circle |z| =1 an

., .e
EXAMPLE 1. If C is the positively ort
f@= exp(22),

then 27[! ” 87Tl
f(z)dz = 0) = —.
/gc_p%zzf_ufcm T 3
C

N a positively oriented simple clogeq
int interior to a positive
EXAMPLE 2. Let zo be any poin
contour C. When f(z) = 1, expression (5) shows that

/ dz_ _ni
cZT— 3

/J_=o n=12,...). |
C(Z_Zo)n-H w

(Compare Exercise 10, Sec. 40.)

and

We conclude this section with a theorem due to E. Morera (1856—1909). The proof
here depends on the fact that the derivative of an analytic function is itself analytic, as
stated in Theorem 1.

Theorem 2. Let f be continuous on a domain D. [f

(6) f f@dz =0
C

for every closed contour C lying in D, then f is analytic throy ghout D

In particular, when D js Simply connecteq we
functions on D a converse of Theorem 1 i Se:c 4
Cauchy—-Goursat theorem involvin g such domain§

To prove the theore
m here, we obserye that whep its hypothesis is satisfied, the

theorem in Sec, 42 censures that f p
' : a8 an antiderivag:., . -
analytic function F such that F’ (z) = antldenvanve 'n D; that is, there exists an |

: Z) at inti : o
of F, it then follows from Theorem | abo)ve til?lfhf PoIntin D. Sipce f is the derivative
'S analytic i p,

have for the class of continuous &
6, which is the extension of the f

EXERCISES

) I;,ct C denote the b
lines x = +2 apq y=42 Evaluate ea?;l}indary of the g

o
=
g
(¢
<
=
s
o
2.
Q.
w
wn
o
®,
=
a2
=
o

T —
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cosh z
(d) f dz; tan(z/2)
c & © C (z — x;)2 2 (=2 <x9 <2).

Ans.(a) 275 (bymi/4; (c) —7i/2, (d)0;

2. Find the value of the integral of g(;
when

(e) im sec?(xy/2).

) around the circle |z — i| = 2 in the positive sense

D g =—
4 (22 + 4)2°
Ans.(a) w/2; (b) n/16.

3. Let C be the circle |z| = 3, described in the positive sense. Show that if

(@ @) = 5
¢+

222 —z7-2.
(w)=f__
g To—dz (wl#Y),

then g(2) = 8xi. What is the value of g(w) when |w| > 3?

4. Let C be any simple closed contour, described in the positive sense in the z plane, and
write :

Show that g(w) = 6miw when w is inside C and that g(w) = 0 when w is outside C.

5. Show that if f is analytic within and on a simple closed contour C and zq is noton C,
then
fl(@dz _ f f(2)dz
c z—20 Jc @—20)*

6. Let f denote a function that is continuous on a simple closed contour C. Following a
procedure used in Sec. 48, prove that the function
1 f(s)ds
2i Jc S—1C
nd that
1 £(s) ds
Frik e
D=5 lc -2

g(a) =

is analytic at each point interior to C a

at such a point.

7. Let C be the unit circle Z = ef(—m <0 <) First show that, for any real constant a,

az
€ dz=2ni.

c Z

Then write this integral in terms of 0 to derive the integration formula

fﬂ 02089 cos(a sin 6) do=m.
0
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19, LIOUVILLE’S THEOR g\
THEOREM OF ALGERBRA AND THE FUNDAMENTAL

This section is devoted to two importa
ihe Cauchy integral formula in Sec, 48

165

ntt
heorems that follow from the extension of

Lemma. Suppose that a function f is ana

Iytic insi .. .
circle Cg, centered at zg and with radiy Yue inside and on a positively oriented

value Oflf(z)l on Cg, then R (Fig. 67). If My denotes the maximum
(n),. n 'MR

(1) lf (LO)IS%RH n=12,..).

-v

0 X FIGURE 67

Inequality (1) is called Cauchy 's inequality and 1s an immediate consequence of
the expression

nl [ _f@dz 2, ),
2ni Jecg (Z—Zo)""'1

f™M(z) =

which is a slightly different form of equation (5), Sec. 48. We nced only apply
inequality (1), Sec. 41, which gives upper bounds for the moduli of the values of

contour integrals, to see that

n! MR

n=12,..)
of s Rn+12nR (

|7 (z0)
where M is as in the statement of the lemma. This inequality is, of course, the same

: m?;:ality (L in thebl: r::;z. to show that no entire function except a constant is
¢ lemma can

bounded in the complex plane. Our first thcoremthe;e, which is known as Liouville’s
ifferent way.
theorem, states this result in @ somewhat differe y

nded in the complex plane, then f(z) is constant
unded

Theorem 1. If f is entire and bo
throughout the plane.
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ed in the theorem and note tha,

: tat :
me that f is as S holds for any choices of Zg angd

ve asSUE C ) withn = |

To start the proof, ¥

since [ is entire, Cauchy’s inequality
R: 3 ‘ ) M_B_
(2) |f'@) =g
statement Of the theorem tells us that

condition in the
ts such that | f @l <M
Jess than or equal 10

for all z; and, because the constant
M. it follows that

Moreover, the boundednegs
nonnegative constant M exis
Mgz in inequality (2) 18 always

(- < __A:!_
o) |fel =%

. i< any fixed point in the plane and R is arbitrarily large. Now the npmber M
;hierf:qﬁoai;ya%) is ingcpcndent o?the value of R that is taken. Hence th:dt inequality
can hold for arbitrarily large values of R only if f'(zg) = 0. Since the choice of zy was
arbitrary, this means that f'(2) = 0 everywhere in the complex plane. Consequently,
f is a constant function, according to the theorem in Sec. 23.

The following theorem, known as the fundamental theorem of algebra, follows
readily from Liouville's theorem.

Theorem 2. Any polynomial
P@)=ay+aiz+a + - +a," (@, #0)

of degreen (n > 1) has at least one zero. That is ; :
= - , there exists at -
that P(zg) = 0. least one point z such

The proof here is by contradictio .
of z. Then the reciprocal n. Suppose that P(z) is not zero for any value

f(-:) I
S clearly entire, and it is also boundcd in t |
he Complex
planc.

To show that it is bounded, we first

write
4) _ 9 a
w=—4—L 4 % a,_,
4 Z"—l Zn—2 s o Tmm—

when |z| > R,

Ian+w >
| - “a"l - |w“ > |an|_

—
:) )

-

B
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and this enables us to write NereLe 167

@ VPOl bz B ey,
> whe
Evidently, then, 2 never |z| > R.
| f(2)| = ! 2

—_— s

[P@)| |, |gn Whenever |z| > R.

w VR
tI;n?OBmfoll)l(o WS from Liouville’s theorem that f(2), and consequently P(z), is
constant. Z) is not constant, and we have reached a contradiction.*

The fundamental theorem tells us that any polynomial P(z) of degree n (n > 1)
can be expressed as a product of linear factors: -

(6) P()=cz—z2))z—2) (2 —2zp),

where cand z;, (k =1, 2, ..., n) are complex constants. More precisely, the theorem
ensures that P(z) has a zero z;. Then, according to Exercise 10, Sec. 50,

P(2) =(z—7)0(2),

where Q,(z) is a polynomial of degree n — 1. The same argument, applied to Q(z),
reveals that there is a number z5 such that

P(z) = (z — 20(z — 22)2(2),

where Q,(z) is a polynomial of degree n — 2. antinuing in ttfns way, we arrive at
expression (6) Some of the constants Zi in expression (6) magfi,'c‘) : cc;uzrzer:(,)zlppear more
than once, and it is clear that P(z) can have no more than 7 @istinc >

50. MAXIMUM MODULUS PRINCIPLE

mportant rest
n with 2 needed lemma.

derive an i 1t involving maximum values of the moduli
In this section, we derive aniv
of analytic functions. We begl

nt z in some neighborhood
z0)| at each pomn 7
Lemmg, Suppe- ”}a{ lfﬁ,zli,lnf 'T{éno f(z) has the constant value f (2o) throughout
|z —zg| <€in which [ isan -
that neighborhood.

rem using the Cauchy-Coursat theorem, sce R. P
eo

damental th
d me\f(l)lll.iﬂ, No. 2, P 180, 1964.

*For an interesting proof om
Boas, Jr., Amer. Math. Monthly,
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— x FIGURE 68

sfies the stated conditions and let z, be any
ood. We then let o be the distance betweep
z — 7| = p, centered at z;, and

e that f sati
neighborh
itively oriented circle |
Cauchy integral formula tells us that

To prove this, we assum

point other than z in the given
z, and z. If C,, denotes the pos

passing through z (Fig. 68), the

1 f(z)dz.
(1 f(ZO)_2JTi ” Z"'Zo’

P
and the parametric representation

z=zo+pei9 0<6<2m)

for C, enables us to write equation (1) as

1 [ :
(2) fzy) = . / f(zo+ pe'®) do.
T Jo

:ivri lr;otifisfrvc:ir:l :);;:r;ssion 52) thz:lt1 when a function is analytic within and on a given
. e center is the arithmetic mea i ' :

result is called Gauss’s mean value theorem e p e
From equation (2), we obtain the inequaIity

3) fal<-~ [T '
0| < 2 ), |f (20 + pe'®)| do.
On the other hand, since
4) | f(z i
0+ ) < | (2
we find that 0! S =,

2r
/ If(zo+pei9)|d9 fzn
0 £
o F@01d6 =277z,

Thus

(5) If(ZO)| > l /2n |
2 Jo o+ pe®)) ap.
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It is now evident from Inequalitje
$ (3) and (5) th
at
[fGol= L [ '
2n J, 1o+ pei®) a,
or

2n
fo US o) = £z + pe'®y1d6 =0,

he variable #; and, in view of
the entire interval 0 < 6 < 27.

(6) 1fzo+ pe) = 1fGp)l  (0<o <2m).

This shows that | £(2)| = | f(zo)| for ail points z on the circle 1z — zo| = p.

Finally, since z, is any point in the deleted neighborhood 0 < |z — z| < &, we
see that the equation | f(2)| = | f(zg)| is, in fact, satisfied by all points z lying on any
circle [z — zp| = p, where 0 < p < €. Consequently, | f(z)| = | f(zy)| everywhere in
the neighborhood |z — z;| < &. But we know from Exercise 7(b), Sec. 24, that when the
modulus of an analytic function is constant in a domain, the function itself is constant
there. Thus f(z) = f(z,) for each point z in the neighborhood, and the proof of the
lemma is complete.

This lemma can be used to prove the following theorem, which is known as the

maximum modulus principle.

Theorem. If a function f is analytic and not constant in a given domain D, then
F(2)| has no maximum value in D. That is, there is no point 2o in the domain such

that | f (z)| < | f(zo)| for all points Z in it.

prove the theorem by assuming that | £ ()|

- : ic in D, we shall .
Given that f is analytic zo in D and then showing that f(z) must

does have a maximum value at some point

be cqqstant throughout zh here is similar to that taken in the proof of the lemma in
I'he general aPPT(i onal line L lying in D and extending from z to any other
Sec. 26, We draw a polyg he shortest distance from points on L to the boundary

' . st it
p?l?)t I;}E D. g]-sot’hcir:s:jize;ltane, J may have any positive value. Next, we observe
or D. en D 1S

that there is a finite sequence of points

ZO, Z]s 227 sery Zn—ly Zn

cides with the point P and

along [, such that z, coin
k=12,....n).

|Zk "Zk—-ll <d
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EXAMPLE. LetR de

jary tells us that the mod:;ﬁ tlfle rectal?gular region0<x<x,0<y<|

in R that occurs so s of the entire function f (5 Z Sin 2 has & maxi the corol
i S ¢ mevyl_lere on the boundary and not i =Sing haS a maximum value

verified directly by writing (see Sec. 33) . ot in the interior, of R. This can be

|f(2)| = \/azx . Sinh2 y

and noting that, in R, the term sin? x is
SRS ke 1§ greatest when x = /2 i
B /2 and that the increas
fur:]:tn(l))n Sln(;l y1is greatest when y = 1. Thus the maximum value of | ¥ (’)[ein ;rgzzunr%
at the boundary point z = (r/2, 1) and at no other point in R (Fig. 70).“

(m/2,1)

0 m X FIGURE70

When the function f in the corollary is written f@)=u(x,y) +iv(x,y), the
component function u(x, y) also has a maximum value in R which is assumed on
the boundary of R and never in the interior, where it is harmonic (Sec. 25). For the
composite function g(z) = expl f(2)11s continuous in R and analytic. anq not constant
in the interior. Consequently, its modulus |g(2)] = explu(x, y)], which is continuous

in R, must assume its maximum value in R on the boundary. Because of the increasing

nature of the cxponential function, it follows that the maximum value of u(x, y) also

occurs on the boundary. ; .
Properties of m}arnilmum values of | ()l and u(x, y) are treated in the exercises.

EXERCISES

1. Let f be an entire fu

number. Show that f(z) = . )
Suggestion: Us€ Cauchy’s inequality (

f”(z) is zero everywhere in the plane. Not€ L
is less than or equal tO A(zol + B)-

()| < Alzl for all z, where A is a fixed positive

a complex constant.
Sec. 49) to show that the second derivative

hat the constant M in Cauchy's inequality

nction such that |f(z
a,z, where 4| 1S
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10.

2. Suppose that f(2) is entir€

. Show that, for R sufficiently large,

. Let a function f be continuous

. Let the function f(z) = u(x, V) +iv

.. function u(x, ¥) = Relf(2)] has 4
.o and that the harmonic . 2 o he 37 piane, Show o

: is )) < Ho
er bound ug; that 15, u(x,y N |
Ei();) y) must be constant throughout the plan 19) tothe - etion g(2) = exp[f(m.

Suggestion. Apply Liouville's theorém (Sec.

the polynomial P(z) in Theorem 2, Sec. 49, satisfieg

the inequality

> R.
|P(2)] < 2la,llzI” whenever |z] =

i iti .49.]
first of inequalities (5), Sec 1
[COmg:;E;L};ZO;: Observqe that there is a positive number R such that the modulus of

; s
each quotient in expression (4), Sec. 49, is less than |@,|/n when |z| > R.

. a closed bounded region R, and let it be a_nalylic and
not constant throughout the interior of R. Assuming that f(2) # 0 anywhere in R, prove
that | f (z)| has a minimum value m in R which occurs on the boundm of R and never
in the interior. Do this by applying the corresponding result for maximum values (Sec.

50) to the function g(z) = 1/f(2)-

. Use the function f(z) = z to show thatin Exercise 4 the condition f(z) # 0 anywhere

in R is necessary in order to obtain the result of that exercise. That is, show that | f(z)|
can reach its minimum value at an interior point when that minimum value 1s zero.

. Consider the function f(z) = (z + 1)? and the closed triangular region R with vertices

at the points z =0, z =2, and z = i. Find points in R where | f (z)| has its maximum and
minimum valucs, thus illustrating results in Sec. 50 and Exercise 4.

Suggestion: Interpret | f (z)| as the square of the distance between z and —1.
Ans. z=2,2=410,

. Let f(z) =u(x, y) + iv(x, y) beafunction that is continuous on a closed bounded region

R and analytic and not constant throughout the interior of R. Prove that the component

function u(x, y) has a minimum value in R whi
' onu(x, which occurs o j r
in the interior. (See Exercise 4.) It bammday of Riantace

. Let f be the function f(z) = €?

and R .
Mustrate resalts in Sec. 50 and E the rectangular region 0 < x < 1,0 <y <7

: xercise 7 by finding points i
function u(x, y) = Re[ f (2)] reaches its maximum agn g‘::;sll:luﬁ wt;ere the component
values.
Ans.z=1,z=1+mi. hes

] (x, y) be conti .
R, and suppose that it is analytic and not c ntinuous on a closed bounded regio?

) onstant ; .
component function v(x, y) has maxim tant in the interior of R. Show that the

: um and mjpj )
on the boundary of R and never in the int MINMUm valyes in R which are reached

. eri Bz 1w
Suggestion: Apply results in Sec, 5() on Where it iy harmonic.

and Exercise 7 : :
Let z, be a zero of the polynomial to the function g(z) = —if (@)

P(z) =ag+ ayz 2
1 +azz +..,+anzn

(a, #0)



