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UNIT-II Dr. Pradip Kumar Gain

Syllabus for Unit-ll: Differentiability of a function at a point and in an interval, Caratheodory’s
theorem, algebra of differentiable functions, Relative extrema, interior extremum theorem, Rolle’s
theorem, Mean value theorem, intermediate value property of derivatives, Darboux’s theorem,
application of mean value theorem to inequalities and approximation of polynomials.

DERIVABILITY

Let y = f(x) be a function where X is independent variable and y is dependent variable.
Let AX be the increment of X and let Ay be the corresponding increment of y . Therefore, Change in

Xis AX and Changein y is Ay . Therefore, the rate of change in y with respect to the change in X is

A
% . Then the limit Lim A_y (if the limit exists) is called derivative of the function y = f (x) at the
X AX—>0 AX

point x and it is denoted by di(y) or by ? orby f'(x).
X X

So, f'(x)= Y LimY i LA = T
dx M™x>0AX  Ax—0 AX
f(x +h)—f(x)

u@_ -

haO

Now let c+h=x.Thenas h—0,

At the point x=c, f'(c)= (jyj =Limf(c+hr)]_f(c)

h—0

ferh-f© _ . T0-f©

X —C.Then f’(c):(%j =Lim

X h—0 h X—C X —C
£(c) = Lim 1~ X =)
X—C X—C




DEFINITION : A real valued function y = f (x) defined on an interval [a, b] is said to be derivable at

Xx=c when a<c<b if LimM
X—C

X—C

exists. This limit, if exists, is called derivative or differential

coefficient of the function y = f(x) at the point x=c.

f(x)— f(c) . Lim f(c—h)- f(c)

DEFINITION (Left-hand derivative): If LIM ¢ LIM exists, is
X—¢ X —C h—0 —h
called left-hand derivative of the function y = f(x) at x=c and itis denoted by f'(c —0)
or f'(c”) or Lf'(c).
_f()-f@) . f(c+h)—f(c)
DEFINITION (Right-hand derivative): If le or LII’T] exists, is
X—C X—C h—0

called right-hand derivative of the function y= f(x) at x=c and it is denoted by f’'(c+0) or
f'(c’) or Rf'(c).

DEFINITION ( Derivablity in an interval ): If a function f defined on an interval [a, b] is derivable at

all points including the end points a andb then f is called derivable on [a, b].

ALGEBRA OF DERIVATIVES

THEOREM 2.1: If f and g be two functions which are defined on [a, b] and derivable at any point
¢ of [a,b] then

(i) f + gisalso derivable at x=cand (f + g)' =f'(c)+g'(c)
(i) fg is also derivable at x =cand (fg)’ =f(c)g'(c)+g(c)f'(c)

g(c)f'(c)- f(c)g'(c)
{g(c)}?

(iv) % is also derivable at x =cand [1] (c)=- ) provided f(c)=0

f {fO}

(v) (kf) is also derivable at x =cand (kf ), (c)=kf'(c), where k is a real number.

(iii) (ij is also derivable at x =cand [iJ (c)= provided g(c) =0
g g

!

THEOREM 2.2 : If f be defined on an interval continuous and one to one function and f be

derivable at x =cwith f'(c) = 0. Then the invers of the function, i.e., f is derivable at f(c) and its

derivative at f(C) is

1
f'(c)




THEOREM 2.3 A function which is derivable at a point is necessarily continuous at that point but

converse is not true.

Proof : Let a functiony= f(x)be derivavle at x=c. That is, f’'(c) exists. That is,

f'(c):LimM exists. Now f(X)— f(c):M(x—c) (x#c). Therefore,
x>¢ X—C (x—c)
I;ir?{f (x) - f(c)}= &im{w} I;incw(x—c): f'(c)x0=0 = Lim f (x) - Lim f () =0

= Lim f(x) =Lim f(c)= f(c) = Lim f (x) = f (). Hence y = f (x) is continuous at x=cC.

Converse is not true.
Let us consider the function y = f(x) =|x|.

According to the definition of modulus function y = f(x) =[x/ =x when x>0

=0 when x=0
=_X when x<0.
Now Limf(x)=Lim(-x)=0 and Lim f(x)=Lim(x)=0. Therefore, Limf(x)=0. Also
x—0" x—0" x—0 " * x—0"" x—0

f (0)=0. Hence y = f(x) =|x| is continuous at x=0.

f(x) - f(0) [x|-0 -X _

Now, Lim =Lim——=Lim—=-1_

x—0" X—0 x>0~ X x—0" X

- X —0 . f(x)-f(0 . f(x)-f(0

Also LimM: LimL: L|m§:1 So, L|mM¢ L|mM

x—0" X—-0 x>0t X x—0" X x—0" Xx—0 x—0" Xx—0

. f(x)-f(0
- LIf(T)] () © does not exists.

x> Xx-0

= f'(0) does not exists. Hence y = f(X) is not differentiable at x=0.

MEANING OF THE SIGN OF DERIVATIVE

Let ¢ be an interior point of the domain of definition of f . Let f’(c) exists. Let f'(c) > 0. Therefore,

f'(c):LimM>O.
X—¢ X—C

- w_ £/(c)| < & when |x—¢/<35.

=N f’(c)—g<%§<c)< f'(c)+e, Vxe(c—8,c+5), x=c.

If &< f'(c) then L(f((:)>0 Vxe(c—5,c+5), x#c
X_

then f(xX)— f(c)>0= f(xX)> f(c)when c<x<Cc+6
f(x)—f(c)<0= f(x)< f(c)when c—S<x<cC.
If f'(c)>Othen there exists a neighbourhood (¢ —&,¢ + &) of ¢ such that




f(x)> f(c) Vxe(c,c+0)
& f(x)< f(c) vxe (c -0, c) we say f isincreasingat c.
Similarly, If f’(c) <0then there exists a neighbourhood (¢ — &,¢ + &) of ¢ such that
f(x)< f(c) vxe(c,c+5)
& f(x)>f(c) Vxe (c -0, c) we say f is decreasingat c.

Let y = f(x) be afunction. Let P(X,y) be any point on the curve y= f(x).Let Q(X + AX,y + Ay) be

any neighbouring point taken either
Sides of the point P(X,Y). Let the chord ﬁj makes an angle 8 with the Positive
Ay
direction of x-axis . Then fané@= e let the point Q tends to
P along the curve indefinitely so that AX—>0and 0 > v.
Lim &y _ Limtan @ = Limtan @ = tan
Therefore, =IT!] AX o0 T oy =y
i + Ay —
= LimIT2Y =Y tany
Ax—0 AX
. F(x+Ax)— f(x
= Lim ( )= 100 =tany
AX—0 AX
. F(x+h)—f(x
= Lim ( )= T(x) =tany
h—0 h

y
- & =tany . Now the equation of the tangent to the curve y = f(X) at the point P(X1 Y) is

y—Yy, =m(X—Xx,). That is, y—y, =tany(X—x,) That is,
(dy dy
Y—-Y. = & (X o Xl) . Therefore, & geometrically represents the slope of the tangent
(x.y)

to the curve y = f (x) at the point (X, ¥) .




DARBOUX’S THEOREM

THEOREM 2.4 If a function f is derivable In a closed interval [a, b] and f'(a), f'(b) are of

opposite signs, then there exists at least one point c of the open interval (a,b) such that f'(c)=0.

Proof : For the sake of definiteness let us suppose that f'(a) >0 and f’(b) <0. There exist intervals
(a,a+h]and [o—h,b), (h>0), such that

xe(@a+h]= f(x)> (@) s (1)

xel[o—hb)= f(X)> f(0) e (2). Again, since f is derivable in[a,b], f is continuous
in[a, b]. Therefore, it is bounded and attains its bounds. Thus if M be the least upper bound(sup)
of f in [a,b] there exists ¢ [a,b] such that f(c)=M . From (1) & (2), we see that the least upper
bound Is not attained at the end points a and b so that ¢ s interior point of [a,b].

If £(c) be positive, then there exists an interval [c,c +7] (7 >0) such that for every point x of this
interval f(x)> f(c)=M and this is a contradiction.

If f'(c) be negative, then there exists an interval [c —7,c]| (17 >0) such that for every point x of this
interval f(x)> f(c)=M and this is, again, a contradiction. Hence f'(c)=0.

EXAMPLE 17 : If f(x)= x> sin(lj when x =0
X

=0 when x=0, show that f is derivable for every value x of but derivative

is not continuous for x =0.
SOLUTION ( FIRST PART ) :

F(0+h)— (0 hzsm(h)_o 1
RF'(0) = Lim-OFM=1O) _ :Limhsin(—j:Oxk:O where
h—0* h h—0* h—0* h !
-1<k <1.
f(0—h)— f(0 thin(_hj_O 1
Lf’(0) = Lim O=M=1O_in :Limhsin[—j:Oxk:O
ho>0" —h h—>0" —h h—0" h ’

where —1<k <1.
Therefore, as Rf '(0)=Lf'(0)=0, f is derivable at x=0 and f’(0)=0.

( SECOND PART ) : Here f’(x):2xsin[1j—co{1j at x=0.
X X
=0at x=0.

Right-hand limit

=Lim f’(x) =Lim f'(0+ h) =Lim f'(h) = Lim(Zh sin(ij - cos(ljj
h—0" h—0" h—0* h—0* h h




. 1 . 1
ZZXOXk_LImCO{EJ:_LImCO{HJ' when —-1<k<1. As h—0, COS(%) oscillates

h—0* h—0*

between —1 and 1 and hence cos(%j does not tend to a fixed and definite limit. Hence Right-hand

limit does not exist. Similarly, it can be shown that Left-hand limit also does not exist. Hence f'(X) is

not continuous at x=0.
EXAMPLE 18 : Show that the function defined by f (x) = x? is derivable on [0,1].

SOLUTION : Let ¢ €(0,1) be any point, then
. f(x)-f(c) ,. x*-c* .
f'(c) =Lim (x) ( )=L|m :le(x+c):20_Atend point x =0

X—C X—C x>t X —2C X—C

2 2
£(0) = Lim f(x)_g(o) “LimX =% limx =0
X_

x—0* x—>0" X—0 x—0*
2

, - . Xt - .
f (1)=leu= Lim——=Lim(X+1) =2 thys £'(0) and f'(1)

X—1 X =1 x->1m X=1 X—1"

both exist. Hence the given function is derivable in the closed interval [0,1].

EXAMPLE 19 : A function f isdefindonR by f(x)=xif 0<x<1
=1if x>1
SOLUTION : At x=1,
()= f( . x—-1
Lf'(D) = leuz Lim——=1

x—1" X—1 x->1" X =1

RE'@ = Lim W=D _ 171

X—1" X—=1 x—>1" X =1

=0. Therefore, Lf'(1) # Rf '(1)

Thus f is not derivable at x=1.

EXAMPLE 20: A function f isdefindonR by f(x)=|x=xif x>0
=0 if x=0
=-x if x<0.

Check the derivability of f at (0,0).

SOLUTION : At (0,0),

Lf(0) = Lim X =FO) _;=x=0_

x—0~ X—0 x>0~ X—0

. f(x)-f . X
Rf'(0) = LImM = LImX—0 =1. Therefore, Lf'(0) = Rf'(0)

x—0" X—0 h—»0~ X —0
Thus f is not derivable at x=0.




EXPANSION OF FUNCTIONS

ROLLE’S THEOREM

If a function f defined on [a, b] is
(i) Continuous on [a,b]
(ii) Derivable in (a, b), i.e., f'(x) exists in(a, b)
(i) f(a)= f(b)

Then there exists at least value of x (sayc ) between a and b , such that f'(c)=0.

Proof : As f is continuousin [a,b], f is bounded. Let L.ub of f be M and g.l.b of f be m.Let c,
d e [a, b] such that f(c)=M, f(d)=m.There are two possibilities, either m=M or, m# M .
Case-l: If m=M then f(x)=M Vxe[a,b]

= f'(x)=0 vxe[a,b]

= f'(c)=0, cela,b]
Case-ll : Let m=M. As f(a)=f(b) and m=M then atleast one of the numbersM and m be
different from f(a) and f(b). Let M = f(a), M = f(b). Then f(c) = f(a), f(c)= f(b) which
implies c#a, c#b.Thus a<c<b. As the function f is derivable in (a, b) at ¢, f'(c) exists.
If f’(c)>0 then there exists a neighbourhood (c—5,c+5) of ¢ such that f(x)> f(c)(=M) when
c<x<C+dJ( That is, xe(c,c+d)) which contradicts the fact that is the l.u.b of f. Hence our
assumptioni.e, f'(c) >0, is not true.
Again if, f'(c) <0 then there exists a neighbourhood (c —-0,C+ 5) of ¢ such that f(x)> f(c)(=M)
when ¢— 8§ <x<c(Thatis, xe(c—d,c)) which contradicts the fact that is the l.u.b of f . Hence our

assumptioni.e, f'(c) <0, is not true. So, there remains the only possibilities, i.e., f'(c)=0.

GEOMETRICAL INTERPRETATION

Let f be a continuous function defined on [a,b] and derivable on (a,b). Let the graph (curve) be

drawn.

Rolle’s theorem simply states that between two points A and B with equal ordinate on the graph of
the function f , there exists at least one point where the tangent is parallel to X —axis.




ALGEBRAIC INTERPRETATION

Between two roots a, b of f(x)=0there exists at least one root £ of f'(x)=0.

LAGRANGE’S MEAN VALUE THEOREM
(FIRST MEAN VALUE THEOREM OF DIFFRENTIAL CALCULUS)

If a function f be defined on [a,b], is
i) Continuous on [a,b] and
ii) derivable on (a,b)
then there exists at least one real number & between a and Db such that

f(b)-f(@=(b-a)f'(5).

Proof : Let us consider the function @(x) = f(x) + Ax, where A is a constant to be determined such
—f(b)-f(a)
b—a
and derivable functions f(x) and A(X). Therefore, the function ¢(x) is

that ¢(a) = ¢(b) . Therefore, A= . Now the function ¢(x) is the sum of two continuous

i) continuous on [a,b]
ii) derivable on (a, b)

i) ¢(a) =¢(b).
Therefore, by Rolle’s theorem, there exists a real number r§e[a,b] suct that ¢'(£)=0. As
p'(X)=F'(X)+A, we have 0=¢'(&)=1"(&)+ A. That is, f’(f):—A:% . Hence

f(b)-f(a)=(b-a)f'(5).

ANOTHER STATEMENT OF LAGRANGE’S MEAN-VALUE THEOREM

In the statement of Lagrange’s Mean-Value theorem, let b is replaced by a + h, then the number &
between a and b may be written as a+éh where O<a<1 . Thus f(a+h)- f(a)=hf'(a+6éh),
O<a<l.Thatis, f(a+h)= f(a)+hf'(a+6éh) where 0<a<l1.

GEOMETRICAL INTERPRETATION

A 1’*
2\
3 4
) —_ 5t2)
- ;l €7/ < /\

The Lagrange’s M.V.T states that between two points A and B of the graph of the function f there

exists at least one point where the tangent is parallel to the chord AB .




APPLICATIONS OF MEAN-VALUE THEOREM

X
EXAMPLE 21 : Using Lagrange’s M.V.T, show that FI <log@@+x)<x, x>0
+ X

SOLUTION : Let f(x)=log(L+ x) in [0, x]. Therefore, f'(x) = % .................. (1). This implies that f
+ X
is continuous in [0, x]. Since f is continuous in[0, x| and derivable in (0, x), so by Lagrange’s M.V.T,
f(x)-f(0) X
x-0 1+ 6k
1

1+ 1+X

there exists some &, 0< @ <1such that = f'(&x) Thatis, logl + x) =

(using (1)

) T (2).As 0<@<1and x>0, we have X< X.Thatis, 1+ K<1l+ X =

> e, (3). Again,as 0<@ <1 and x>0, we have 1<1+ & <1

=
1+ 1+X 1+6X

S (4). From (3) & (4) we have, —— <

S ST (5). From (2) & (5)
1+ 6 1+x 1+6X

we obtain, X logl+x)<x, x>0.
1+X

EXAMPLE 22 : Applying Lagrange’s M.V.T, prove that <tan* x<x, x>0.

1+ x?

SOLUTION : Let f(x)=tan™" X in [O, x]. Therefore, f'(x) :1%. Clearly, f'(x) exists in [0, X]. As
+ X

f is continuous in[O, X] and derivable in (O, X), by Lagrange’s M.V.T, there exists some @,

f(x)-1(0) X
X_

0<@<1such that = f’(@() That is, tani1 X:m ................ (1) As 0<#<1 and
+0°X

X
>
1+60*°x*> 1+ x°
1 X
— =" <
1+ 6%x? 1+ 6%x?

x>0, we have k<X = 0°x* <x? =1+0*X*<1l+x* =>— " > 0 e, (2). Again,

as 0<@<1 and x>0, we have 1<1+6°x*> =

From (2) & (3), we obtain X 5 < X2 > <X, Xx>0.......(4). From (1) & (4), we have
1+x° 1+6°x

T <tan'x<Xx, x>0.
+ X




_u i i V_
2<tan1v—tanlu< >
1+v 1+u

EXAMPLE 23 : Show that if O<u<v and deduce that

Tz 3 4,4 71
===l =<=F=.
4 25 3 4 6

SOLUTION : Applying L.M.V.T to the function f (x) =tan™ x in [u,v], we obtain f'(c)

fv)—fu) _
=

tan*v—-tanu 1

for some ce(u,v). That s, for u<c<v..(l) Now

2

v—u 1+c
c>u=1+c*>1+u’ = - < 12 ........................... (2)
1+c 1+u
) ) ) 1 1
Again, c<v=l1+cCc <l+V = > > S stenese st (3). From (1), (2) & (3), we
1+c 1+v
get v—u2 <tan?tv-tantu< v—uz .(since U<V=V—U>0)covuenne(4)
1+v 1+u
4 3 44 4. 1
SECOND PART: Let u=1 and v=—. Thenby(4), weget —<tan™ ——tan—"1<—
3 25 3 6
:>tan’ll+i<tan’lﬂ<tan’ll+1
25 3 6
Tz 3 4,4 71
=>—+—<tan —<—+-—.
4 25 3 4 6
EXAMPLE 24 : Show that 2 < >1% <1 if0<x<%
T X

sinx
SOLUTION : Let ¢(X) =—— when x=0
X

=1 when x=0. Cleary, ¢(x) is continuous in OSXS% and derivable in

O<x< % Therefore, ¢'(X) = Mz—smx . Let w(x)=xcosx—sinx be defined in 0<Xx< %
X
Therefore, y'(x) =—xsinx<0for 0<x< % Hence w(x) is strictly decreasing in 0<x< % So

w(x) <y (0)=0 for all X, OSXS%. This implies ¢'(x) <0, for OSXS%. Hence ¢(x) is strictly

decreasing in OSng. Therefore, ¢(0)>¢(x)>¢(%j for 0<x<%, That is, 1>S|nx>l

X T

2
2 sinx pa
= —<——=<1lforO<x<—.
V4 X 2

EXAMPLE 25 : Find the value of c of Lagrange’s M.V.T when f(x) = 2x* +3x+4 in [1,2].

10

Pt
et



SOLUTION : The given polynomial f(x)=2x* +3x + 4 is continuous in the closed interval [1,2]. Then
f(x) is derivable in (1,2). Thus f(x) satisfies conditions of Lagrange’s M.V.T. So there must exist

¢ € (1,2) such that M= f'(c):ﬂ=4c+3zc=g Since c e (L,2), the required value

2-1 2-1

of C is 3 .
2
EXAMPLE 26 : Verify Lagrange’s M.V.T for the polynomial f(x)=X(x—-1)(x—2) in [O, %}

1
SOLUTION : The given polynomial f(Xx)=x(x—-1)(Xx—2) is continuous in the closed interval [OE}

Then f(x) is derivable in (O,%). Thus f(x) satisfies conditions of Lagrange’s M.V.T. So there must

1
. ()= 10
exist ce(0,5) such that — = f(C) e (1). We see
2 1 0
2

') =(x-DX-2)+x(Xx-D +x(x-2)= f'(x)=3x*> —=6x+2. So from (1), we have

=3c?’-6c+2=>cC=

+
—(6_(;/2'). Out of two values of ¢ only [1—%}“95 in (0,%)- Hence

N || w

c= (1— g] and the Lagrange’s M.V.Theorem verified.

EXAMPLE 27 : Evaluate the value of & that appears in Lagrange’s M.V.Theorem for the polynomial

f (x) =x* —2x + 3, given that azl,b:%.

SOLUTION : Given polynomial is f(X)=x* —2x+3. Therefore, f'(X)=2X—2....ccc....... (1). Since the
given polynomial satisfies the conditions of Lagrange’s M.V.T. So there exists €, where 0<6<1,
satisfying f(a+h)— f(a)=hf'(a+ 6h).

Thatis, f(L+h)— f(1)=hf'(L+ 6h)

11
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SEMESTER-III
HONOURS

CORE COURSE---C 5T

UNIT-II Dr. Pradip Kumar Gain

Syllabus for Unit-lll: Cauchy’s mean value theorem. Taylor’s theorem with Lagrange’s form of
remainder, Taylor’s theorem with Cauchy’s form of remainder, application of Taylor’s theorem
to convex functions, relative extrema. Taylor’s series and Maclaurin’s series expansions of

exponential and trigonometric functions, In (1 + x), 1/(ax + b) and (x+1)n . Application of Taylor’s

theorem to inequalities.

CAUCHY’S MEAN-VALUE THEOREM

If two functions f , g defined on [a, b] are

i) Continuous on [a,b]

ii) Derivable on (a,b) and

iii) g'(xX)#0 Forany xe [a, b]
fb)-f(a) _f'()
gb)-g@ 9'(%)
Proof : Let a function ¢ be defined by ¢(x) = f (x) + Ag(X), where Ais a constant to be determined
(f®)-f@)
(g(b) - 9(a))
(g (b) — g(a));t 0.If (g (b) — g(a)): 0, then the function g would satisfy all the conditions of Rolle’s

then there exists at least one real number & between a and b such that

that ¢(a) = 4(b) . That is, f(a)+ Ag(a)= f (b) + Ag(b). Hence A=

theorem and derivative of g would, therefore, vanish at least once in (a, b) and the condition (iii)

would be violated. The function ¢ is continuous in the closed interval [a, b], derivable in the open

12
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interval (a,b) and ¢(a) = ¢(b) . Hence by Rolle’s theorem, there exists at least one point & e(a, b)

such that ¢'(£) =0.Thatis, ¢'(&) = f'(£)+ Ag'($) =0. That s, ;:Eg =—A= % [by (1)1.

TAYLOR’S THEOREM (Generalized Mean Value Theorem)(FINITE FORM)

If a function f possesses differential co-efficients of the first (n —1) orders for every value of x in
the closed interval [a,b] and the derivative of f exists in the open interval (a,b) , i.e.,if f"*(x) is

continuous in [a,b] and f"(x) existsin (a,b), then

()= (e + (o) e + O oy O ey s BB ey O

where a <& <Duninnninnninecsessenens (A)

If b=a+h sothat b—a=h, then

f(a+h)=f(a)+hf’ (a)+hz f"(a)+hs F7(2) oo et e + h™* f”’l(a)+£f”(a+¢9n)
(n=1)! n!

where 0 < <l.inccsnsnensensssncnnns (B)

If we write X for a, we have

f(x+h)=f(x)+hf’ (x)+h2 f”(x)jLh3 F7(2) + o et e +(:n__ll)lf”‘l( )+ — f (x + 6h)

where 0 <@ <l.vvcsrnnennnnssncnnns (C)

Proof : Let wus consider the function y(x) in (ab) defined by

w(X) = g(X) — (b- X): VIC) J— (1) where
(b—a)
p(x)=fb)- f(X)—(b-x)F'(x)— (b-x)" X) F(X) =i .—ﬂ R 00 O (2)
(n=D!
Clearly, v (a)=0 and y(b) =0.
Again,

¢'(X)=—F' () +{f'(x) = (b —x)f"(X)}+ {(b x) f"(x) — (b-x" X) f’”(x)} ........................................

.............................. {% " (x) — %f (x)}
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B (b_X)nfl
(-1

Now from (1),

y'(x)=¢'(x)+

f"(x).

n(b—x)""
(b-a)"

(b-x)"" .,
——oor f7(x) +

¢(a)

n(b —x)"*
(b-a)"

¢(a).

As w(a)=w(b) and y'(X) exists in (a,b), by Rolle’s Theorem there exists at least one value of

X (say &) suchthat w'(£)=0.
b-H"

nb-5H"

That is, = (-1 f1 (&) + (b_a) #(@)=0
= ¢(a) = (b- a) f"(£). Then from (2), we have
6@ = 10 1@ -0 @ @) 0o2) o)
(n=1)!
,, 0= a) (&)= F(b) - f(a)—(b—a)f'(a)- 2 fray_ . O™ oy
2! (n=D!
or,

f(lb)y=f(@)+(b-a)f'(a)+ (b i

)" ¢

"(a) +

JCEC IR
(n=1)!

where

@+ 1)
n!

Putting b=a+h we have

f(a+h)=f(a)Jrhf'(a)JrEf"(a)Jrh—Sf”’(a)jL ................................ h™” f”‘l(a)+£f“(a+6h)
2! 3 (n=1)! n!
where 0 <@ <l.eevccrnrneccenncneennns (B)
writing X for a, we have
h* _, h3 . h"* . h"
f(x+h)=f(x)+hf (x)+—f (x)+ f (X) + e st e (n—1)lf (x)+ f (X + 6h)

where 0 <@ <lacvoreerecrcenerenee

REMARK : The series (A) or (B) or (C) is called Taylor’s series in finite form with remainder in

Lagrange’s form.

Here remainder term means the term after nth term in the series. Remainder is denoted by R, .

——
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LAGRANGE’S FORM OF REMAIDER ( R,) FOR TAYLOR’S SERIES.

Lagrange’s form of remaider for Taylor’s series(A) is

(b-a)"

R, = " f"(&). a<é<b

Lagrange’s form of remaider for Taylor’s series(B) is

n

R, :%f"(a+6h), 0<6<1

Lagrange’s form of remaider for Taylor’s series(C) is

n

R :%f"(x+6h), 0<6<1

CAUCHY’S FORM OF REMAIDER ( R,) FOR TAYLOR'S SERIES.

Cauchy’s form of remaider for Taylor’s series(B) is

B hn(l_g)n—l

N = (D] f'(a+6h), 0<O<1

Cauchy’s form of remaider for Taylor’s series(C) is
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B hn(l_e)nfl

N = (n_1)! f'"(x+6h), 0<@<1

MACLAURIN’S SERIES (FINITE FORM)

Putting X =0 and h =X in Taylor’s series (C) we get,

X2 x3 n-1
X

f(x) = f(0)+xf (0)+ f”(O) f”’(0)+ ............... + f”‘1(0)+£ f"(6x), 0<@<1. This is
(n=1)! n!

n

X
known as Maclaurin’s series in finite form with remainder R, = — f" (&) inLagrange’s form.
n!

And

2 ) 3 j Xn71 o Xn (1_6)n—1
f(x)= f(0)+xf (O)+ f (O)+ f [(0) S +(n—1)!f (0)+W

(n-=1)!

f" (&), 0<O<1.

This is known as Maclaurin’s series in finite form with remainder R, = f"(6X) in

Cauchy’s form.

TAYLOR’S INFINITE SERIES

If £(X), . T/(X), « F"(X),errrrerereererereereseesennns , T"(x) exist finitely, however large n may be in any
0 —neighbourhood of x and if R, tends to zero as n tends to infinity then Taylor’s series

extended to infinity is valid and we have

2 3

f(x+h) = f(x)+hf (x)+h f”(x)jLh I €0 R to o (|h|<5).
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MACLAURIN'’S SERIES (EXTENDED TO INFINITY)

If F(X),.T'(X), . T"(X),eemcrcrmenersececnaneens , T"(X) exist finitely, however large n may be in any
o0 —neighbourhood of x and if R, tends to zero as n tends to infinity then Maclaurin’s series

extended to infinity is valid and we have

2 3

f(x) = f(0)+xf (0)+ 110+

R GEE— to o (|X<5).

EXPANSION OF SOME FUNCTIONS

-) Expand the function f(x)=¢" in a finite series in powers of x (i.e., in the neighbourhood

of x=0) with the remainder in Lagrange’s form and also in cauchy’s form
Solution : Given functionis f(x)=e*— f(0)=1

f'(x)=e*— f'(0)=1

f'(x)=e*— f"(0)=1

f"(x)=e"—> f"(0)=1

frix)=e*— f"(0)=1
fr(x)=e* —» f"(&x)=e*
Now,

f(x) = f(0)+xf (0)+ f”(O) f"’(0)+ .......... X

e X" cn X" on
(n_l)!f 1(0)+Hf (@(),whereﬁf (&X)

is the remainder in Lagrange’s form, 0<@6<1.

Hence expansion of the function f (x)=e”in finite form with remainder in Lagrange’s form is
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(0= 10) + 3 @)+ 5170+ X170+ o 2 X (- 0)™

(n—1)!f "0+ (n—1! @),

x"(1-6)""

where (n_1)! f " (€X) is the remainder in Cauchy’s form, 0<@<1.
n-1)!

Hence expansion of the function f(x) =e”in finite form with remainder in Cauchy’s form is

n-1

n n-1
:1+x+—+X— ......... X x(1-0)

21 3l +(n_1)!+ (n—l)l e&(r 0<B@<Tuuuireeirerenas (2)

- Expand the function f(x)=¢e”* in powers of X ( i.e., in the neighbourhood of x=0) in
infinite series and state the condition under which the expansion is valid

Solution : Given functionis f(x)=¢e*— f(0)=1
f'(x)=e*—> f'(0)=1
f'(x)=e*— f"(0)=1
f"(x)=e"—> f"(0)=1

fri(x)=e*—> f"(0)=1
frix)=e* — f"(x)=e*

Now,
f(x) = f(0) + xf (0)+ X f"(0)+ X f’"(O)+ .......... . i f"‘1(0)+£f"(6b(),wherex—nf”(@()
(n—1)! n! n!

is the remainder in Lagrange’s form, 0 <@ <1.

Hence expansion of the function f (x)=e”in finite form with remainder in Lagrange’s form is

2 3 n-1 n
e =l X+ — . + X +—e%, 0<O<Lueeereenns (1)
20 3 (n=! n
X" n e@( e‘x‘ e‘x‘ . . . .
From (1) R, = f"(x), 0<f<1. Now < . As is a finite quantity for a given X,
n!
2% n
e

. X
is also finite. Also —'—>0 as N—oo. Therefore, R, >0 as n—>w®
n!

Thus the conditions of Maclaurin’s infinite expansion is valid
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Hence from (1), we have the infinite expansion of the given function f(x)=e"as

Sl X —— e e e to o VYXxeR

- Expand the function f(x)=a” in a finite series in powers of X (i.e., in the neighbourhood
of X =0) with the remainder in Lagrange’s form and also in cauchy’s form.

Solution : Given functionis f(X)=a" - f(0)=1
f'(x)=a"log,a - f'(0)=log, a
f"(x)=a*(log, a)> - f"(0)=(log , a)°
f”(x)=a*(log ,a)® - f"(0)=(log, a)®

f n‘1.(x) =a*(log, a)"" - f"*(0) =(log, a)"*
f*(x)=a"(log,a)" - f"(&)=a(log, a)"

Now,
o2 ” N } ¥t
f(x) = f(0) + xf (0)+ f (0)+ p O

f"%0) +% f" (%) , where %f”(éb()

is the remainder in Lagrange’s form, 0 <@ <1.

Hence expansion of the function f (x)=a”in finite form with remainder in Lagrange’s form is

X2 XS n1 n
*=1+xlog, a+— (log, a)* + =—(log, @)° +......... log, a ~_a*(log, a)"
g, @+ (log, &)’ + -(log, a) o100, "+ ra® (og, )
................................................... (1)
Again,
" 3 " anl n-: Xn (1 - H) n n
f(x)= f(0)+ xf (0)+ f (O)+ f ) +.......... . (n—l)!f 1(O)erf (&),
n _ n-1
where % f " (&X) is the remainder in Cauchy’s form, 0 <@ <1.

Hence expansion of the function f(x) =a”in finite form with remainder in Cauchy’s form is
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X2 ) Xn—l - Xn (l— 9) n-1
(i 10% )T

a”(log, a)",

- Expand the function f(x)=a" in powers of x ( i.e., in the neighbourhood of x=0) in
infinite series and state the condition under which the expansion is valid.

Solution : Given functionis f(X)=a" - f(0)=1
f'(x)=a"log,a - f'(0)=log, a
f"(x)=a*(log, a)> - f"(0)=(log , a)°
f”(x)=a*(log ,a)® - f"(0)=(log, a)®

f"*(x)=a"(log, @)"" —» f"*(0)=(log, a)"*
fr(x)=a*(log, a)" — f"(&x)=a"(log.a)"

Now,
f(x)= f(0) + xf'(0) + X f "(0) X X f "(0) + e . X" f"0) + ﬁ f"(&X) , where X f" (&%)
(n -1! n! n!

is the remainder in Lagrange’s form, 0 <@ <1.

Hence expansion of the function f(X) =a”in finite form with remainder in Lagrange’s form is

2 3 n -1 n
¥ =1+ xlog, a+%(loge a)’ +%(Ioge a)’ +......... (log, a)"* : ~—a%(log, a)"
! ! n!

-1y

X X"
From (1), the remaider (R,) term after nth term is Rn ZF f ”(@()zﬁa (Ioge a)n,

0<6<1 , Let P=Ilog, a. Then
R :_na (P) (PX) = — Kn a Kn eIOQEa& :&e@dogea — Ioge aKn e@( _ PKn e@(
n! n! n! n! n! nl

o ol ¥ o
Now <€ , 0<0<1. As € ' is a finite quantity for a given X, is also finite. Also

PK"
n!
expansion is valid.

—0 as n—wo. Therefore, R, >0 as n—oc. Thus the condition of Maclaurin’s infinite
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Hence from (1), we have the infinite expansion of the given function f(x)=a"as

2 3
a* =1+xlog, a+%(loge a)’ +%(Ioge ) R S to o VxeR

- Expand the function f(x)=sinx in a finite series in powers of x ( i.e., in the
neighbourhood of x =0) with the remainder in Lagrange’s form and also in cauchy’s form.

Solution : Given function is f(x) =sinx — f(0)=0

f'(x):cosx:sin[%+xj — f'(0)=1

f"(x) = co{% + xj = sin(%[ + xj — f"(0)=0

f”l(x):sin(@+xj - f"(0) =
f”(X)ZSin(n%+Xj - f“(@():sin(%{+@<J
Now,
3 Xn—l

f(x) = f(0) + xf (0)+ f”(O)+ E7O) 4 . f“-1(0)+x7:f“(@<) , where X?n'f”(éb()

(n -1!
is the remainder in Lagrange’s form, 0 <@ <1.
Hence expansion of the function f (x) =sinxin finite form with remainder in Lagrange’s form is

2 3

SINX = 04 X-14 2% 0 4 25 (—1) F oo oo +—sin(n—”+65(j, 0<f<1.
21 3 ! 2

OR

sinx=x——+.x—.— ......................... +X—sin(n7”+6b<j, 0<f<lunicnnnne (1)

3! 5! n!

Again,

" m X - X
f(x)-f(0)+xf(0)+ f(0)+ AR LN A T

x"(1-6)""
(n=D!

Hence expansion of the function f (x) =sinXxin finite form with remainder in Cauchy’s form is

where f " (&X) is the remainder in Cauchy’s form, 0 <@ <1.
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3 5 X"
X

SINX=X—"—+."—.—rrrerer. + 1-6) ‘1sm(—+6b(j 0<B<Luorvmrrrrrrrns (2)
3 o (n—1)! 2

- Expand the function f(x) =sinx in powers of x ( i.e., in the neighbourhood of x=0) in

infinite series and state the condition under which the expansion is valid.

Solution : Given function is f(x) =sinx — f(0)=0

f'(x):cosx:sin(%+xj — f'(0)=1

"(x) = cod Z + x | = sin| 2% "(0) =
f(x)_co{2+xj_sm(2+xj - f"(0)=0

f"(x) = sin((n _21)7[ + xj - f"(0) =
f”(x):sin(%{+xj — f”(@():sin(%{+@<)
Now,
3 Xn—l

f(x) = f(0) + xf (0)+ f”(O)+ FO) 4 . f“-1(0)+XT:f"(@<) , where X?n'f”(éb()

(n -1!
is the remainder in Lagrange’s form, 0 <@ <1.
Hence expansion of the function f (Xx) =sinxin finite form with remainder in Lagrange’s form is

2 3 n
SINX = 04 X142 0 25 (=1) Ferrrrrrrrs oo + X sinf My k|, 0<o<l.
2! 3 n! 2
OR
3 5 n
sinx=x——+.x—.— ......................... +X—sin n—ﬂ+6b< ; 0<O<1uinnnnnns (1)
3 5l n! 2

X" . (nrx
From (1), the remaider (R, ) term after nth term is Rn =—1:In 7 +6X |,

n!
(m @() S|n(n—7[+@<j
2 2

n n

X
n!

n!

g

sin(£+65<
2

As |R|— o
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n

X
— —>0 as N —> . Therefore, R, >0 as n— . Thus the conditions for Maclaurin’s infinite

n!
expansion are satisfied.
Hence from (1), we have the infinite expansion of the given function f(x) =sinx.

3 X5

sinx=x—X—+.—.— ................................... to o ¥xeR
3! 51

- Expand the function f(x)=cosx in a finite series in powers of X ( i.e., in the

neighbourhood of x =0) with the remainder in Lagrange’s form and also in cauchy’s form.

Solution : Given function is f(X) =sinx - f(0)=1
f’(x)=co{%+x)=—sinx S f'(0)=0
[ 277’- 14
f (x):cos(7+ xJz—cosx — F"(0) =-
f”(x):co{nf+x} — f (@()—CO{—+@(J
Now,
3 anl

f(x) = f(0) + xf (0)+ f”(O)+ 7O+ . f“-1(0)+x7:f"(@<) , where ’%f“(@()

(n -1
is the remainder in Lagrange’s form, 0< @ <1.
Hence expansion of the function f (X) = cosX in finite form with remainder in Lagrange’s form is

2 4 n
cosx=1—x—+.x—.— ......................... +X—co n—”+6b< 0<O<luinccnciinns (1)

21 4 n! 2

Again,
2 3 n-1 n _ n-1
f(x) = f(0) + xf (0)+ f”(O)+ AR X gy K= gy
(n=1)! (n-=1)!
n _ n-1

where XA=6)" f "(6X) is the remainder in Cauchy’s form, 0< @ <1.

(n=1!

Hence expansion of the function f (Xx) = cosx in finite form with remainder in Cauchy’s form is
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2 4

cosx:l—X?+.—.— ......... + (1—49)”‘100{”7”+@<j 0< <L umecrrerrrinns (1)

- Expand the function f(X) =cosx in powers of X ( i.e., in the neighbourhood of x=0) in

infinite series and state the condition under which the expansion is valid.

Solution : Given function is f(X) =sinx - f(0)=1
f’(x)=cos(%+x]=—sinx S f'(0)=0
f"(x) = 00{277[ + XJ = —CO0SX — f"(0)=-
f”(x)=co{n7ﬂ+xJ —>f“(@<)=co{”7”+@<]
Now,
3 anl XI’] Xn
f(x)= f(0) + xf (0)+ f”(O)+ f’”(O)+ .......... : f"0) + — f"(&x) , where = f"(¢k)
(n -1! n! n!

is the remainder in Lagrange’s form, 0< @ <1.
Hence expansion of the function f(Xx) = cosx in finite form with remainder in Lagrange’s form is

2 4
cosx=1-—-— .X—.— ......................... +—co{—+6b<j 0<O<luivrnernnns (1)
2! 41
From (1), the remaider (R ) term after nth term is R, :—CO{—‘*‘@(j
n n n 72-
As |R,|= X Mok | = eod M rox | <|X| | -rlco —+6’xj <1].
n 2 nt 2 n! 2
Xn

F — 0 as N — . Therefore, R, -0 as n— . Thus the conditions for Maclaurin’s infinite

expansion are satisfied.
Hence from (1), we have the infinite expansion of the given function f(Xx) =cosx as

2 X4

cosx=1—x—+.—.— ........................ to © ¥xeR
2! 41
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- Expand the function f(x) =log(l+ x), (—1<x<1) in a finite series in powers of x (i.e., in

the neighbourhood of x =0) with the remainder in Lagrange’s form and also in cauchy’s form.

Solution : Given functionis f(X) =
f'(x) = B L+x)*
1+x

() = (-D+x)"*

logl+x),(-1<x<1)

— £(0)=0
— £/(0)=1
— £"(0)=-

F7(%) = (=1)(=2)eer{~(N =D IL+ X) ™"

(=) (n-1)!

O @+x)"
Now,
f(x) = f(0) + xf (0)+ f”(O) X f”’(O)+ .......... .

is the remainder in Lagrange’s form, 0 <@ <1.

_(=D"(n-1)!
O A+x)"
Yo n__ll)lf 1(0)+—f @) where—f ()

Hence expansion of the function f(x) =log(l+ x), (—1< x <1)in finite form with remainder in

Lagrange’s form is

x> x> x* (n—=1)!
logd+X) =X——+.—.— . — 4 e ... -t , 0<6<1
9L +x) 2 "3 T, ()(1@0“ =os
Or
2 3 4 n _1\n-1
Iog(1+x)=x—x—+.x—.—.x—. ............. X—(l—,0<9<1 .............. (1)
2 3 4 n @1+e&x)"
Again,
3 Xl’l—l - X (1_H)n1
f(x)=f(0)+ xf'(0 f”O f'”O .......... . f"0 ),
(9= £0)+ X0+ 5 10+ £7(O) vt o 74O + 5 22 £

x"(1-6)""
(n=1!

Hence expansion of the function f(x) =

where

Cauchy’s form is

f "(6X) is the remainder in Cauchy’s form, 0< 8 <1.

log(L+ x), (—1< x <1)in finite form with remainder in

= _X_Z X_3_X_4 x" n-1 1 (N—=1)!
logl+ x) = x 2+.3. AR (n—l)l( -0)"(-)" —(1+6b<)”'0<6<1
Or
[ =)



X2 X3 4
logl+X)=x——+.—.
gL+ x) > T3

n

X

o +(=D)"@A-0)" m.

- Expand the function f(x)=Ilogl+Xx), (-1<x<1) in powers of x ( i.e., in the
neighbourhood of x=0) in infinite series and state the condition under which the expansion is

valid.
Solution : Given functionis f(x) =log(l+ x), (-1<x<1) — f(0)=0

f’(x)=$=(1+x)‘l > (0) =1

f7(X) = (~1)(L+x) — £"(0) =-

F7(%) = (=1)(=2)eer{~(N =D IL+ X) ™"

@+x)" @+X)"

Now,
3 n

f(x) = f(0)+xf (0)+ f”(O) 5 O R _1)If 1(0)+—f (X) where—f (6X)

is the remainder in Lagrange’s form, 0 <@ <1.
Hence expansion of the function f(x) =log(l+ X), (—1< X <1)in finite form with remainder in

Lagrange’s form is

2 3 4 n Y
Iog(1+x)=x—x—+.x—. Forrere e +X—(—1)“‘1M, 0<0<1
2 '3 n! L+ 6x)"

2 3 4 n _1\n-1
Iog(1+X)=X—X—+ + +X—(1—,
n (1+6x)"

X
2 3

Again,
) 3 . Xn—l . X
f(x)= f(0)+ xf (0)+ f(O) f [(0) E— : —(n—l)!f 1(0)+W

x"(1-6)""
(n=1!

Hence expansion of the function f(x) =log(l+ x), (—1< x <1)in finite form with remainder in

where f " (&X) is the remainder in Cauchy’s form, 0 <8 <1.

Cauchy’s form is

26

Pt
et



Iog(1+x)=x—x—2+.x—3.—.x—4.+ ............. + X! (1—6’)"‘1(—1)“‘1M, 0<6<1
2 '3 4 (n—1)! 1+6X)"
Or
Iog(1+x)=x—x—2+.x—3.—.x—4.+ ............. +(—1)“‘1(1—6’)“‘1X—n, 0<O<lu. (2)
2 '3 4 L+ K)"
X (-

From (1), the remaider (R, ) term after nth term is R, = Evidently, f(x) and all its

n (1+&)" "

derivatives exist and are continuous in —1< x <1.

X <l= X <1
1+ 6X 1+ 6

CASE-1: When 0<x<1.Then 0<

X n
= —>0 as N—> oo,
(1+65<j

1
Also, = —> 0 as n—>o. Hence R, -0 as n— o for 0 < x <1. Thus the conditions of Maclaurin’s
n

Series are satisfied when 0 < x<1.

X
CASE-2: When —-1<x<0. In this case, (mj may not be numerically less than 1 and hence
+

n
(1 @(j may not tend to 0 as N — oo0. Thus we fail to draw any definite conclusion from Lagrange’s
+

form of remainder. In this case we have to try with Cauchy’s form of remainder. The we have from (2),

n

X

R,=C-D"(1-0)" m

-y

X" 1-0\""
( ) . As (1—9)<(1+&(),wehave(

n-1
@+ 6ox)\1+ & j —s30as N—>ow. Also X" >0
+ +

1+ 6x

as N> (- x<1)and L < i . That is, i is bounded and moreover it is independent of
1-|x 1+6x

X.Thus R, = 0as n—oo for —1< x <0. Thus the conditions of Maclaurin’s Series are satisfied.

2

3
Iog(1+x):x—x?+.%.—. F e e to oo isvalid for —1<x<1

- Expand the function f(x)=(1+x)", in a finite series in powers of x ( i.e., in the
neighbourhood of x =0) with the remainder in Lagrange’s form and also in cauchy’s form.

Solution : Given functionis f(x) =1+ x)" — f(0)=1
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£(x) = m(L+ x)™* S f/(0)=m
f7(x) =m(m -+ x)"? — f"(0) =m(m-1)

f"X)=m(m-D(m-2)....{m—-(n-D}L+x)""
= f" (&) =m(m-D(Mm-2)...{m-n+D}L+&X)™"

Now,
3 n—l

f(x)= f(0)+ xf (0)+ f”(O) 5 O T

fr 1(O)+—f (&) , where—f (&%)

is the remainder in Lagrange’s form, 0 <@ <1.
Hence expansion of the function f(x) =1+ x)", (—=1< x <1)in finite form with remainder in

Lagrange’s form is

2

1+x)" =1+ mx+.m(m—1)%+ ....... + m(m—l)(m—2)....(m—n+1)x?r:(1+ x)m ",

0< 6 <Lurunennne(1)
Again,
) 3 " Xn—l o Xn (1_ H) n-1 )
f(x) = f(0) + xf (0)+ f(O) 5 7O+ e . (n_l)!f 1(0)+Wf (&),

x"(1-6)""
(n=1!

Hence expansion of the function f(x) =1+ x)", (—=1< x <1)in finite form with remainder in

where f " (&X) is the remainder in Cauchy’s form, 0 <@ <1.

Cauchy’s form is

2 n

m B X_ _ . N _ n-1 X
A+x)" =1+ mx+.m(m—1 2!+....+m(m H(Mm-2)...(m-n+1)(1-0) (n—1)!

@a+ex)"",

- Expand the function f(x)=(1+x)", in powers of X ( i.e., in the neighbourhood of x=0)
in infinite series and state the condition under which the expansion is valid.

Solution : Given functionis f(x) =1+ x)" — f(0)=1
f/(x) =mL+x)"" — f'(0)=m
f7(x) =m(m-D(@A+x)"? — f"(0) =m(m-1)
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f'"X)=m(m-D(m-2)...{m-(n-D}L+x)""
- ") =m(m-D(Mm-2)....{m-n+D)}L+X)""

Now,
3 n

f(x)= f(0)+xf (0)+ f”(O) 5 O R _1)If 1(0)+—f (), where—f ()

is the remainder in Lagrange’s form, 0 <@ <1.

Hence expansion of the function f(X) = (1+x)", in finite form with remainder in Lagrange’s form is

2

1+x)" =1+ mx+.m(m—1)%+ ....... + m(m—l)(m—2)....(m—n+1)X7:(1+ x)"",

0<O<lunn. (1)
Again,
3 n-1 nmM_ n-1
f(x)= f(0) + xf'(0) + — f () + 7 170) F X gy XEZOT gy
(n=1)! (n=1)!
n _ n-1
where XA=6)" f "(6X) is the remainder in Cauchy’s form, 0< @ <1.

(n=1)!

Hence expansion of the function f(x)=(1+X)", in finite form with remainder in Cauchy’s form is

2 n

@+x)" =1+mx+.m(m—1)%+....+m(m—1)(m—2)....(m—n+1)(1—0)”1( — )|(1 +ex)™ ",

CASE-1 : When m is positive(+) integer.

Then f"(x) =0 for n>m and for every value of X. Hence the expansion stops after (m+1)th term

and the expansion is finite.

2
X
@+x)" =1+ mx+.m(m —1)§+ .................... .+ X" forall X which is a finite expansion.

CASE-2 : When m is negative(-) integer or a fraction.

From (2),

the Cauchy’s form of remainder is R, = m(m-1)(m-2)...(m—-n+1) (l+6b()ml(ﬂj
(n —1)' 1+ 6x

Let —1< X <1 Thatis,

x| <1.

Since 0<@<1,0<1-0<1+&=>0< 1
1+ 6X

n-1
—0 <1:>0<[1_0j <1.
1+ 6X
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n-1
Therefore, ( ) —0 as n—oo. Also (1+6k)"" is finite. Again, if [X <1, X" >0 as n— .

1+ 6x

Therefore, when |x|<1, R, -0 as n—o. Hence for |X <1, Maclaurin’s infinite expansion for

f(x) =@+ x)" is valid, m being a negative integer or fraction.

m(m-)(m-2)...(m-n+1)
(n=1)!

REMARK : If |X| >1then X" does not tend to 0as n — . Also does not

tend to 0 as n —ooand hence R, does not tendto 0.

INSTRUCTIONS FOR STUDENTS

All the definitions, theorems, results, examples highlighted by yellow colour are very
very important.
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