
 

1 

SEMESTER-III 
HONOURS 

CORE COURSE---C 5T 

UNIT-II (MARKS-14)  

UNIT-II                                                                                                       Dr. Pradip Kumar Gain 

Syllabus for Unit-II: Differentiability of a function at a point and in an interval, Caratheodory’s 

theorem, algebra of differentiable functions, Relative extrema, interior extremum theorem, Rolle’s 

theorem, Mean value theorem, intermediate value property of derivatives, Darboux’s theorem, 

application of mean value theorem to inequalities and approximation of polynomials.  

 

 

DERIVABILITY 
 

 

Let )(xfy  be a function where x is independent variable and y  is dependent variable. 

Let x  be the increment of x  and let y  be the corresponding increment of y . Therefore, Change in 

x is x  and Change in y  is y . Therefore, the rate of change in y  with respect to the change in x  is  

x

y




. Then the limit 

x

y
Lim
x 



 0
 ( if the limit exists) is called derivative of the function )(xfy  at the 

point x and it is denoted by   y
dx

d
 or by 

dx

dy
 or by )(xf  . 
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cx  . Then 
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DEFINITION : A real valued function )(xfy   defined on an interval  ba,  is said to be derivable at 

cx   when  ca b  if 
cx

cfxf
Lim

cx 





)()(
exists. This limit, if exists, is called derivative or differential 

coefficient of the function )(xfy   at the point cx  . 

DEFINITION (Left-hand derivative): If 
cx

cfxf
Lim

cx 




)()(
 or 

h

cfhcf
Lim
h 




)()(

0
 exists, is 

called left-hand derivative of the function )(xfy   at cx   and it is denoted by )0(  cf  

or )(  cf  or )(cfL  . 

DEFINITION (Right-hand derivative): If 
cx

cfxf
Lim

cx 




)()(
 or 

h

cfhcf
Lim
h

)()(

0




 exists, is 

called right-hand derivative of the function )(xfy   at cx   and it is denoted by )0(  cf  or 

)(  cf  or )(cfR  . 

DEFINITION ( Derivablity in an interval ): If a function f  defined on an interval  ba,  is derivable at 

all points including the end points a  andb  then f  is called derivable on  ba, . 

 

ALGEBRA OF DERIVATIVES 

THEOREM 2.1 : If f  and g  be two functions which are defined on  ba,  and derivable at any point 

c  of  ba,  then  

(i) gf  is also derivable at cx  and   )()( cgcfgf 


  

(ii) fg  is also derivable at cx  and   )()()()( cfcgcgcffg 


 

(iii) 








g

f
 is also derivable at cx  and 

 2
)(

)()()()(
)(

cg

cgcfcfcg
c

g

f 












 provided  0)( cg  

(iv) 
f

1
 is also derivable at cx  and  

 2
)(

)(1

cf

cf
c

f














 provided  0)( cf  

(v)  kf  is also derivable at cx  and   )()( cfkckf 


,  where k  is a real number. 

 

THEOREM 2.2 : If f  be defined on an interval continuous and one to one function and f  be 

derivable at cx  with 0)(  cf . Then the invers of the function, i.e., f is derivable at )(cf  and its 

derivative at )(cf  is 
)(

1

cf 
. 
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THEOREM 2.3 A function which is derivable at a point is necessarily continuous at that point but 

converse is not true. 

Proof : Let a function )(xfy  be derivavle at cx  . That is, )(cf   exists. That is, 

cx

cfxf
Limcf

cx 






)()(
)(  exists. Now 

 
 cx

cx

cfxf
cfxf 






)()(
)()(    cx  . Therefore, 

    00)(
)()(

)()( 














cfcxLim

cx

cfxf
LimcfxfLim

cxcxcx
 0)()( 


cfLimxfLim

cxcx
 

)()()()()( cfxfLimcfcfLimxfLim
cxcxcx




. Hence )(xfy  is continuous at cx  . 

Converse is not true. 

Let us consider the function xxfy  )( .  

According to the definition of modulus function xxxfy  )(  when 0x  

                                                                                           0                      when 0x  

                                                                                           x                    when 0x . 

Now  0)()(
00


 

xLimxfLim
xx

 and 0)()(
00






xLimxfLim
xx

. Therefore, 0)(
0




xfLim
x

. Also 

0)0( f . Hence xxfy  )(  is continuous at 0x .  

Now, 1
0

0

)0()(

000











  x

x
Lim

x

x
Lim

x

fxf
Lim

xxx
. 

Also 1
0

0

)0()(

000








  x

x
Lim

x

x
Lim

x

fxf
Lim

xxx
.   So, 

0

)0()(

0

)0()(

00 







  x

fxf
Lim

x

fxf
Lim

xx
 

0

)0()(

0 




 x

fxf
Lim
x

 does not exists. 

)0(f   does not exists. Hence )(xfy  is not differentiable at 0x . 

 

MEANING OF THE SIGN OF DERIVATIVE 
 

Let c  be an interior point of the domain of definition of f . Let )(cf   exists. Let 0)(  cf . Therefore, 

0
)()(

)( 





 cx

cfxf
Limcf

cx
.  





 )(

)()(
cf

cx

cfxf
 when  cx . 

 



 )(

)()(
)( cf

cx

cfxf
cf ,    ccx , , cx  .  

If )(cf   then 0
)()(






cx

cfxf
   ccx , , cx   

then  )()(0)()( cfxfcfxf  when  cxc   

           )()(0)()( cfxfcfxf  when cxc  . 

If 0)(  cf then there exists a neighbourhood    cc ,  of c  such that  
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       )()( cfxf     ccx ,  

  & )()( cfxf    ccx ,   we say f is increasing at c . 

Similarly, If 0)(  cf then there exists a neighbourhood    cc ,  of c  such that  

       )()( cfxf     ccx ,  

  & )()( cfxf    ccx ,   we say f is decreasing at c . 

 

GEOMETRICAL INTERPRETATION OF DERIVATIVES   

                                                                                                                                                 

   
Let )(xfy   be a function. Let ),( yxP  be any point on the curve )(xfy  . Let ),( yyxxQ   be 

any neighbouring point taken either                                                                                                                                                                  

Sides of the point ),( yxP . Let the chord PQ  makes an angle   with the                       Positive 

direction of x -axis . Then 
x

y




tan . Let the point Q  tends to                                                                                                                                                                                                                                                                    

P  along the curve indefinitely so that 0x  and   .  

Therefore,  


tantantan
00







LimLim

x

y
Lim

xx
 

tan
0







 x

yyy
Lim

x
 

tan
)()(

0







 x

xfxxf
Lim

x
 

tan
)()(

0





 h

xfhxf
Lim
h

 

tan
dx

dy
. Now the equation of the tangent to the curve )(xfy  at the point ),( yxP  is  

)( 11 xxmyy  . That is, )(tan 11 xxyy    That is, 

)( 1

),(

1 xx
dx

dy
yy

yx









 .  Therefore, 

dx

dy
geometrically represents the slope of the tangent 

to the curve )(xfy  at the point ),( yx .  
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DARBOUX’S THEOREM 
 

THEOREM 2.4  If a function f  is derivable In a closed interval  ba,  and )(af  , )(bf   are of 

opposite signs, then there exists at least one point c of the open interval ),( ba such that 0)(  cf . 

 

Proof : For the sake of definiteness let us suppose that 0)(  af  and 0)(  bf . There exist intervals 

 haa ,  and  bhb , ,   0h , such that  

  )()(, afxfhaax  ………………..(1) 

  )()(, bfxfbhbx  …………………(2).   Again, since f  is derivable in  ba, , f  is continuous 

in  ba, . Therefore, it is bounded and attains its bounds. Thus if M  be the least upper bound(sup) 

of f  in  ba,  there exists  bac ,  such that Mcf )( . From (1) & (2), we see that the least upper 

bound Is not attained at the end points a  and b  so that c Is interior point of  ba, . 

If )(cf   be positive, then there exists an interval  cc,   0  such that for every point x  of this 

interval Mcfxf  )()( and this is a contradiction. 

If )(cf   be negative, then there exists an interval  cc ,   0  such that for every point x  of this 

interval Mcfxf  )()( and this is, again, a contradiction. Hence 0)(  cf . 

EXAMPLE 17 : If 









x
xxf

1
sin)( 2  when 0x  

                                        0   when 0x , show that f  is derivable for every value x  of but derivative 

is not continuous for 0x .  

SOLUTION ( FIRST PART ) :  

00
1

sin

0
1

sin
)0()0(

)0(
0

2

00
























 

k
h

hLim
h

h
h

Lim
h

fhf
LimfR

hhh
, where 

11  k .  

00
1

sin

0
1

sin
)0()0(

)0(
0

2

00





























 
k

h
hLim

h

h
h

Lim
h

fhf
LimfL

hhh
, 

where 11  k .  

Therefore, as 0)0()0(  fLfR , f  is derivable at 0x  and 0)0( f . 

( SECOND PART ) : Here 


















xx
xxf

1
cos

1
sin2)(  at 0x . 

                                                       = 0 at 0x . 

Right-hand limit  




























  hh
hLimhfLimhfLimxfLim

hhhh

1
cos

1
sin2)()0()(

0000
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  h
Lim

h
Limk

hh

1
cos

1
cos02

00
, when 11  k . As 0h , 









h

1
cos  oscillates 

between 1  and 1  and hence 








h

1
cos  does not tend to a fixed and definite limit. Hence Right-hand 

limit does not exist. Similarly, it can be shown that Left-hand limit also does not exist. Hence )(xf   is 

not continuous at 0x . 

 

EXAMPLE 18 : Show that the function defined by 2)( xxf   is derivable on  1,0 . 

 

SOLUTION  : Let  1,0c  be any point, then  

  ccxLim
cx

cx
Lim
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cfxf
Limcf

cxcxcx
2

)()(
)(

22













. At end point 0x  

0
0

0

0

)0()(
)0(

0

22

00












 
xLim
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fxf
Limf
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2)1(
1

1

1

)1()(
)1(

1

22

11












 
xLim

x

x
Lim

x

fxf
Limf

xxx
. Thus )0(f   and )1(f   

both exist. Hence the given function is derivable in the closed interval  1,0 . 

 

EXAMPLE 19 : A  function f  is defind on R   by xxf )( if 10  x  

                                                                                              1  if 1x  

SOLUTION  : At  1x ,  

1
1

1

1

)1()(
)1(

11












  x

x
Lim

x

fxf
LimfL

xx
 

0
1

11

1

)1()(
)1(

11












  x
Lim

x

fxf
LimfR

xx
.  Therefore, )1()1( fRfL   

Thus f  is not derivable at 1x . 

 

EXAMPLE 20: A  function f  is defind on R   by xxxf )( if 0x  

                                                                                              0  if 0x  

                                                                                              x  if 0x .  

Check the derivability of f   at  0,0 . 

 

SOLUTION  : At   0,0 ,  

1
0

0

0

)0()(
)0(

00












  x

x
Lim

x

fxf
LimfL

xx
 

1
0

0

0

)0()(
)0(

00












  x

x
Lim

x

fxf
LimfR

hx
.  Therefore, )0()0( fRfL   

Thus f  is not derivable at 0x . 
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EXPANSION OF FUNCTIONS 

 

 

ROLLE’S THEOREM 

 

If a function f  defined on  ba,  is  

(i) Continuous on  ba,  

(ii) Derivable in  ba, , i.e., )(xf   exists in  ba,  

(iii) )()( bfaf    

Then there exists at least value of x  (say c  ) between a  and b  , such that 0)(  cf . 

 

Proof :  As f  is continuous in  ba,  , f  is bounded. Let l.u.b of f  be M  and g.l.b of f  be m . Let c , 

d   ba,  such that Mcf )( , mdf )( . There are two possibilities, either Mm   or, Mm  . 

Case-I :  If Mm   then Mxf )(   bax ,   

                                         0)(  xf  bax ,  

                                         0)(  cf ,   bac ,  

Case-II : Let Mm  . As )()( bfaf   and Mm   then atleast one of the numbers M and m  be 

different from )(af  and )(bf . Let )(afM  , )(bfM  . Then )()( afcf  , )()( bfcf   which 

implies ac  , bc  . Thus bca  . As the function f  is derivable in  ba,  at c , )(cf   exists .  

If 0)(  cf  then there exists a neighbourhood    cc ,  of c  such that ))(()( Mcfxf   when 

 cxc ( That is,   ccx , ) which contradicts the fact that is the l.u.b of f . Hence our 

assumption i.e, 0)(  cf , is not true. 

Again if, 0)(  cf  then there exists a neighbourhood    cc ,  of c  such that ))(()( Mcfxf   

when cxc  ( That is,  ccx , ) which contradicts the fact that is the l.u.b of f . Hence our 

assumption i.e, 0)(  cf , is not true. So, there remains the only possibilities, i.e., 0)(  cf . 

 

GEOMETRICAL INTERPRETATION 
 

Let   f   be a continuous function defined on  ba,  and derivable on  ba, . Let the graph (curve) be  

drawn. 

 
 

Rolle’s theorem simply states that between two points A  and B  with equal ordinate on the graph of 

the function f  , there exists at least one point where the tangent is parallel to x axis. 
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ALGEBRAIC  INTERPRETATION 
Between two roots a , b  of 0)( xf there exists at least one root    of 0)(  xf . 

 

LAGRANGE’S MEAN VALUE THEOREM 
(FIRST MEAN VALUE THEOREM OF DIFFRENTIAL CALCULUS) 

 

If a function f   be defined on  ba, , is 

i) Continuous on  ba,  and 

ii) derivable on  ba,  

then there exists at least one real number   between a  and b  such that 

)()()()( fabafbf  . 

 

Proof : Let us consider the function Axxfx  )()( , where A  is  a constant to be determined such 

that )()( ba   . Therefore,  
ab

afbf
A






)()(
.  Now the function )(x  is the sum of two continuous 

and derivable functions )(xf  and )(xA . Therefore, the function )(x  is  

i) continuous on  ba,  

ii) derivable on  ba,  

iii) )()( ba   .             

Therefore, by Rolle’s theorem, there exists a real number  ba,   suct that 0)(   . As 

Axfx  )()( , we have Af  )()(0  . That is, 
)(

)()(
)(

ab

afbf
Af




   . Hence 

)()()()( fabafbf  .  

 

ANOTHER STATEMENT OF LAGRANGE’S MEAN-VALUE THEOREM 
 

In the statement of Lagrange’s Mean-Value theorem, let b  is replaced by ha  , then the number    

between a  and b   may be written as ha   where 10  a  . Thus )()()( hafhafhaf  , 

10  a . That is, )()()( hafhafhaf   where 10  a  .  

GEOMETRICAL INTERPRETATION 

                                 
The Lagrange’s M.V.T states that between two points A  and B  of the graph of the function f   there 

exists at least one point where the tangent is parallel to the chord AB . 
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APPLICATIONS OF MEAN-VALUE THEOREM 
 

 

 

EXAMPLE 21 : Using Lagrange’s M.V.T, show that xx
x

x



)1log(

1
, 0x  

 

SOLUTION :  Let )1log()( xxf   in  x,0 . Therefore, 
x

xf



1

1
)( ………………(1). This implies that f   

is continuous in  x,0 . Since f   is continuous in  x,0  and derivable in  x,0 , so by Lagrange’s M.V.T, 

there exists some  , 10  such that )(
0

)0()(
xf

x

fxf





 That is, 

x

x
x




1
)1log( ( using (1) 

)…………..(2). As 10   and 0x , we have xx  . That is, xx  11   
xx 





1

1

1

1


 

x

x

x

x







11 
…………….(3). Again, as 10   and 0x , we have x11  1

1

1


 x
 

x
x

x





1
………………..(4). From  (3) & (4) we have, x

x

x

x

x





 11
………………..(5).  From (2) & (5) 

we obtain, xx
x

x



)1log(

1
, 0x . 

 

EXAMPLE 22 : Applying Lagrange’s M.V.T, prove that  xx
x

x




1

2
tan

1
, 0x . 

SOLUTION :  Let xxf 1tan)(   in  x,0 . Therefore, 
21

1
)(

x
xf


 . Clearly, )(xf   exists in  x,0 . As 

f   is continuous in  x,0  and derivable in  x,0 , by Lagrange’s M.V.T, there exists some  , 

10  such that )(
0

)0()(
xf

x

fxf





 That is, 

 22

1

1
tan

x

x
x


 ………….…(1). As 10   and 

0x , we have xx   222 xx   222 11 xx    
222 11 x

x

x

x








………………….(2). Again, 

as 10   and 0x , we have 2211 x  x
x

x

x








2222 1
1

1

1


……………………………(3). 

From (2) & (3), we obtain x
x

x

x

x





 222 11 
, 0x ……….(4).  From (1) & (4), we have 

xx
x

x




1

2
tan

1
, 0x . 

 



 

10 

EXAMPLE 23 : Show that 
2

11

2 1
tantan

1 u

uv
uv

v

uv








    if vu 0  and deduce that 

6

1

43

4
tan

25

3

4

1   
. 

. 

SOLUTION : Applying L.M.V.T to the function xxf 1tan)(   in  vu, , we obtain )(
)()(

cf
uv

ufvf





 

for some ),( vuc . That is, 
2

11

1

1tantan

cuv

uv






 

 for vcu  ….(1) Now 

22

22

1

1

1

1
11

uc
ucuc





 ………………………(2) 

Again, 
22

22

1

1

1

1
11

vc
vcvc





 ……………………..(3). From (1), (2) & (3), we 

get
2

11

2 1
tantan

1 u

uv
uv

v

uv








  . ( since 0 uvvu )……………..(4) 

SECOND PART :  Let 1u  and 
3

4
v .   Then by (4), we get   

6

1
1tan

3

4
tan

25

3 11    

6

1
1tan

3

4
tan

25

3
1tan 111    

6

1

43

4
tan

25

3

4

1   
. 

 

EXAMPLE 24 :   Show that 1
sin2


x

x


  if 

2
0


 x  

 

SOLUTION : Let 
x

x
x

sin
)(   when 0x  

                             1   when 0x .   Cleary, )(x  is continuous in 
2

0


 x  and derivable in 

2
0


 x .   Therefore, 

2

sincos
)(

x

xxx
x


 . Let xxxx sincos)(   be defined in 

2
0


 x . 

Therefore, 0sin)(  xxx for 
2

0


 x . Hence )(x  is strictly decreasing in 
2

0


 x .  So 

0)0()(  x  for all x ,  
2

0


 x . This implies 0)(  x , for 
2

0


 x . Hence )(x  is strictly 

decreasing in 
2

0


 x . Therefore, 









2
)()0(


 x  for 

2
0


 x . That is, 

2

1sin
1




x

x
  

1
sin2


x

x


 for 

2
0


 x .  

 

EXAMPLE 25 :  Find the value of c  of Lagrange’s M.V.T when  432)( 2  xxxf  in  2,1 . 
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 SOLUTION : The given polynomial 432)( 2  xxxf  is continuous in the closed interval  2,1 . Then 

)(xf  is derivable in )2,1( . Thus )(xf  satisfies conditions of Lagrange’s M.V.T. So there must exist 

)2,1(c such that 
2

3
34

12

918
)(

12

)1()2(










cccf

ff
 Since )2,1(c , the required value 

of c  is 
2

3
 . 

 

EXAMPLE 26 : Verify Lagrange’s M.V.T for the polynomial )2)(1()(  xxxxf  in 








2

1
,0 .  

 

SOLUTION : The given polynomial )2)(1()(  xxxxf  is continuous in the closed interval 








2

1
,0 . 

Then )(xf  is derivable in )
2

1
,0( . Thus )(xf  satisfies conditions of Lagrange’s M.V.T. So there must 

exist )
2

1
,0(c  such that )(

0
2

1

)0()
2

1
(

cf

ff







………………………(1). We see 

263)()2()1()2)(1()( 2  xxxfxxxxxxxf . So from (1), we have 

6

)216(
263

2

1

8

3

2 
 ccc . Out of two values of c  only 
















6

21
1 lies in )

2

1
,0( . Hence 
















6

21
1c  and the Lagrange’s M.V.Theorem verified. 

 

EXAMPLE 27 : Evaluate the value of   that appears in Lagrange’s M.V.Theorem for the polynomial 

32)( 2  xxxf , given that 
2

1
,1  ba . 

 

SOLUTION : Given polynomial is 32)( 2  xxxf . Therefore, 22)(  xxf ……………(1). Since the 

given polynomial satisfies the conditions of Lagrange’s M.V.T.  So there exists  , where 10  , 

satisfying )()()( hafhafhaf  . 

 That is, )1()1()1( hfhfhf   
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SEMESTER-III 
HONOURS 

CORE COURSE---C 5T 

UNIT-III (MARKS-11)  

UNIT-III                                                                                                     Dr. Pradip Kumar Gain 

Syllabus for Unit-III: Cauchy’s mean value theorem. Taylor’s theorem with Lagrange’s form of 

remainder, Taylor’s theorem with Cauchy’s form of remainder, application of Taylor’s theorem 

to convex functions, relative extrema. Taylor’s series and Maclaurin’s series expansions of 

exponential and trigonometric functions, ln (1 + x), 1/(ax + b) and (x+1)
n 

. Application of Taylor’s 

theorem to inequalities.  

 

 

 

CAUCHY’S MEAN-VALUE THEOREM  
 

 

If two functions f  ,  g  defined on  ba,  are  

i) Continuous on  ba,  

ii) Derivable on  ba,  and  

iii) 0)(  xg  For any   bax ,  

then there exists at least one real number    between a  and b  such that 
)(

)(

)()(

)()(





g

f

agbg

afbf









. 

Proof : Let a function   be defined by )()()( xAgxfx  , where A is a constant to be determined 

that )()( ba   . That is, )()()()( bAgbfaAgaf  . Hence 
 
 )()(

)()(

agbg

afbf
A




 ……………….(1) as 

  0)()(  agbg . If   0)()(  agbg , then the function g  would satisfy all the conditions of Rolle’s 

theorem and derivative of g  would, therefore, vanish at least once in  ba,  and the condition (iii) 

would be violated. The function   is continuous in the closed interval  ba, , derivable in the open 
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interval  ba,  and )()( ba   . Hence by Rolle’s theorem, there exists at least one point  ba,  

such that 0)(   . That is, 0)()()(   gAf . That is, 
 
 )()(

)()(

)(

)(

agbg

afbf
A

g

f













[by (1)]. 

 

 

TAYLOR’S THEOREM  (Generalized Mean Value Theorem)(FINITE FORM) 
 

If a function f  possesses differential co-efficients of the first )1( n  orders for every value of x  in 

the closed interval  ba,  and the derivative of f  exists in the open interval   ba,  , i.e., if )(1 xf n  is 

continuous in  ba,  and )(xf n  exists in  ba, , then  

)(
!

)(
)(

)!1(

)(
....)(

!3

)(
)(

!2

)(
)()()()( 1

132

n
n

n
n

f
n

ab
af

n

ab
af

ab
af

ab
afabafbf













 



where ba   …………………………….(A) 

 

 

If hab    so that hab  , then  

)(
!

)(
)!1(

................................)(
!3

)(
!2

)()()( 1
132

haf
n

h
af

n

h
af

h
af

h
afhafhaf n

n
n

n




 


 

where 10  …………………………….(B) 

 

 

If we write x  for a , we have 
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Proof : Let us consider the function )(x  in  ba,  defined by  
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Now from (1),  
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As  )()( ba    and )(x   exists in  ba, , by Rolle’s Theorem there exists at least one value of 

x (say  ) such that  0)(    . 

That is, 0)(
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 where 

ba   …………………………….(A)  

 

 

Putting  hab   we have  
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writing x  for a , we have 
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 where 10  …………………………….(C) 

 

 

REMARK : The series (A) or (B) or (C) is called  Taylor’s series in finite form with remainder in 

Lagrange’s form.  

Here remainder term means the term after nth term in the series. Remainder is denoted by nR . 
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LAGRANGE’S FORM OF REMAIDER ( nR )  FOR TAYLOR’S SERIES. 

 

Lagrange’s form of remaider for Taylor’s series(A) is  
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Lagrange’s form of remaider for Taylor’s series(B) is  
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h
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n

n  , 10    

 

 

Lagrange’s form of remaider for Taylor’s series(C) is    
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h
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CAUCHY’S FORM OF REMAIDER ( nR )  FOR TAYLOR’S SERIES. 

 

 

Cauchy’s form of remaider for Taylor’s series(B) is  
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Cauchy’s form of remaider for Taylor’s series(C) is  
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MACLAURIN’S SERIES (FINITE FORM) 

 

Putting 0x  and xh   in Taylor’s series (C) we get, 
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,  10  . This is 

known as Maclaurin’s series in finite form with remainder  )(
!

xf
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x
R n
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n    in Lagrange’s form. 
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This is known as Maclaurin’s series in finite form with remainder  )(
)!1(

)1( 1

xf
n

x
R n

nn

n 









  in 

Cauchy’s form. 

 

 

TAYLOR’S INFINITE SERIES 
          

If )(xf , . )(xf  , . )(xf  ,………………………..., )(xf n  exist finitely, however large n  may be in any 

 neighbourhood of x  and if nR  tends to zero as  n   tends to infinity then Taylor’s series 

extended to infinity is valid and we have  

 

........................)(
!3

)(
!2

)()()(
32

 xf
h
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h

xfhxfhxf  to     ( h ). 
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MACLAURIN’S SERIES (EXTENDED TO INFINITY) 
      

  If )(xf , . )(xf  , . )(xf  ,………………………..., )(xf n  exist finitely, however large n  may be in any 

 neighbourhood of x  and if nR  tends to zero as  n   tends to infinity then Maclaurin’s series 

extended to infinity is valid and we have  

 

......................)0(
!3

)0(
!2

)0()0()(
32

 f
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f
x

fxfxf  to     ( x ).  

 

 

EXPANSION OF SOME FUNCTIONS 
 

EX-(1)    Expand the function xexf )(  in a finite series in powers of x  ( i.e., in the neighbourhood 

of 0x ) with the remainder in Lagrange’s form and also in cauchy’s form. 

 

Solution : Given function is xexf )(   1)0( f  

                                                 xexf  )(  1)0( f  

                                                 xexf  )(  1)0( f  

                                                 xexf  )(   1)0( f  

                                                        . 

                                                        . 

                                                        . 
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Now, 

)(
!

)0(
)!1(

...........)0(
!3

)0(
!2

)0()0()( 1
132

xf
n

x
f

n

x
f

x
f

x
fxfxf n

n
n

n




 


 , where )(
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is the remainder in Lagrange’s form, 10  .  

Hence expansion of the function xexf )( in finite form with remainder in Lagrange’s form is 
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Again,  
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 is the remainder in Cauchy’s form, 10  .         

 Hence expansion of the function xexf )( in finite form with remainder in Cauchy’s form is 
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EX-(2)  Expand the function xexf )(  in powers of x  ( i.e., in the neighbourhood of 0x ) in 

infinite series and state the condition under which the expansion is valid. 

 

Solution : Given function is xexf )(   1)0( f  

                                                 xexf  )(  1)0( f  

                                                 xexf  )(  1)0( f  

                                                 xexf  )(   1)0( f  

                                                        . 

                                                        . 

                                                        . 

                                               xn exf  )(1   1)0(1 nf  
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xn exf  )(  

                                                  

 

Now, 
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 , where )(
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is the remainder in Lagrange’s form, 10  .  

 

Hence expansion of the function xexf )( in finite form with remainder in Lagrange’s form is 

 

x
nn

x e
n

x

n

xxx
xe 

!)!1(
.........

!3!2
1

132







,    10  ……………..………(1) 

From (1) )(
!

xf
n

x
R n

n

n  , 10  . Now 
xe < 

x
e . As  

x
e  is a finite quantity for a given x , 

xe is also finite.  Also 0
!


n

x n

 as n .  Therefore, 0nR  as n . 

Thus the conditions of Maclaurin’s infinite expansion is valid. 
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Hence from (1), we have the infinite expansion of the given function xexf )( as  
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EX-(3)    Expand the function xaxf )(  in a finite series in powers of x  ( i.e., in the neighbourhood 

of 0x ) with the remainder in Lagrange’s form and also in cauchy’s form. 

 

Solution : Given function is 
xaxf )(   1)0( f  

                                                 aaxf e
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is the remainder in Lagrange’s form, 10  .  

 

Hence expansion of the function xaxf )( in finite form with remainder in Lagrange’s form is 
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Again,  
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where )(
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 is the remainder in Cauchy’s form, 10  .         

 Hence expansion of the function xaxf )( in finite form with remainder in Cauchy’s form is 
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EX-(4)  Expand the function xaxf )(  in powers of x  ( i.e., in the neighbourhood of 0x ) in 

infinite series and state the condition under which the expansion is valid. 

Solution : Given function is 
xaxf )(   1)0( f  
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Hence expansion of the function xaxf )( in finite form with remainder in Lagrange’s form is 
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From (1), the remaider ( nR ) term after nth term is 
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x
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0
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 as n .  Therefore, 0nR  as n . Thus the condition of Maclaurin’s infinite 

expansion is valid.   
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Hence from (1), we have the infinite expansion of the given function xaxf )( as  
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EX-(5)    Expand the function xxf sin)(   in a finite series in powers of x  ( i.e., in the 

neighbourhood of 0x ) with the remainder in Lagrange’s form and also in cauchy’s form. 

 

Solution : Given function is xxf sin)(                                               0)0( f  
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is the remainder in Lagrange’s form, 10  .  

Hence expansion of the function xxf sin)(  in finite form with remainder in Lagrange’s form is 
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where )(
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 is the remainder in Cauchy’s form, 10  .         

 Hence expansion of the function xxf sin)(  in finite form with remainder in Cauchy’s form is 
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EX-(6)  Expand the function xxf sin)(   in powers of x  ( i.e., in the neighbourhood of 0x ) in 

infinite series and state the condition under which the expansion is valid. 

 

Solution : Given function is xxf sin)(                                               0)0( f  
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is the remainder in Lagrange’s form, 10  .  

Hence expansion of the function xxf sin)(  in finite form with remainder in Lagrange’s form is 
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From (1), the remaider ( nR ) term after nth term is 
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0
!


n

x n

 as n .  Therefore, 0nR  as n . Thus the conditions for Maclaurin’s infinite 

expansion are satisfied.   

Hence from (1), we have the infinite expansion of the given function xxf sin)(  .   
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!5

.
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xx

xx to   Rx  

 

 EX-(7) Expand the function xxf cos)(   in a finite series in powers of x  ( i.e., in the 

neighbourhood of 0x ) with the remainder in Lagrange’s form and also in cauchy’s form. 

 

Solution : Given function is xxf sin)(                                               1)0( f  
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is the remainder in Lagrange’s form, 10  .  

Hence expansion of the function xxf cos)(  in finite form with remainder in Lagrange’s form is 

 

  







 x

n

n

xxx
x

n




2
cos

!
..........................

!4
.

!2
1cos

42

,  10  …………..….(1) 

 

Again,  

)(
)!1(

)1(
)0(

)!1(
...........)0(

!3
)0(

!2
)0()0()(

1
1

132

xf
n

x
f

n

x
f

x
f

x
fxfxf n

nn
n

n

















,       

where )(
)!1(

)1( 1

xf
n

x n
nn






 

 is the remainder in Cauchy’s form, 10  .         

 Hence expansion of the function xxf cos)(  in finite form with remainder in Cauchy’s form is 
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EX-(8)  Expand the function xxf cos)(   in powers of x  ( i.e., in the neighbourhood of 0x ) in 

infinite series and state the condition under which the expansion is valid. 

 Solution : Given function is xxf sin)(                                               1)0( f  
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Hence expansion of the function xxf cos)(  in finite form with remainder in Lagrange’s form is 
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From (1), the remaider ( nR ) term after nth term is 
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EX-(9) Expand the function )1log()( xxf  , ( 11  x ) in a finite series in powers of x  ( i.e., in 

the neighbourhood of 0x ) with the remainder in Lagrange’s form and also in cauchy’s form. 

 

Solution : Given function is )1log()( xxf  , ( 11  x )            0)0( f  
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EX-(10)  Expand the function )1log()( xxf  , ( 11  x ) in powers of x  ( i.e., in the 

neighbourhood of 0x ) in infinite series and state the condition under which the expansion is 

valid. 
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Series are satisfied when 10  x . 

CASE-2:    When  01  x .  In this case, 








 x

x

1
 may not be numerically less than 1  and hence 

n

x

x









1
 may not tend to 0  as  n . Thus we fail to draw any definite conclusion from Lagrange’s 

form of remainder. In this case we have to try with Cauchy’s form of remainder. The we have from (2), 

n

n
nn

n
x

x
R

)1(
)1()1( 11





 

  

1

1

1

1

)1(
)1(




















nn
n

xx

x






.   As )1()1( x  , we have 0

1

1
1













n

x


 as  n .  Also 0nx  

as  n  (  1x ) and 
xx 


 1

1

1

1


. That is, 

x1

1
 is bounded and moreover it is independent of 

x . Thus  0nR  as  n  for 01  x . Thus the conditions of Maclaurin’s Series are satisfied. 

..................
4

..
3

.
2

)1log(
432


xxx

xx to   is valid for 11  x  

 

EX-(11) Expand the function mxxf )1()(  , in a finite series in powers of x  ( i.e., in the 

neighbourhood of 0x ) with the remainder in Lagrange’s form and also in cauchy’s form. 

 

Solution : Given function is mxxf )1()(                                                         1)0( f  



 

28 

                                                 1)1()(  mxmxf                                               mf  )0(  

                                                 2)1)(1()(  mxmmxf                               )1()0(  mmf  

                                                        . 

                                                        . 

                                                        . 

                                                

                                                 nmn xnmmmmxf  )1)}(1()......{2)(1()(  

                                                                              nmn xnmmmmxf  )1)}(1)......{2)(1()(   

  Now, 

)(
!

)0(
)!1(

...........)0(
!3

)0(
!2

)0()0()( 1
132

xf
n

x
f

n

x
f

x
f

x
fxfxf n

n
n

n




 


 , where )(
!

xf
n

x n
n

  

is the remainder in Lagrange’s form, 10  .  

Hence expansion of the function mxxf )1()(  , ( 11  x )in finite form with remainder in 

Lagrange’s form is 

 

  nm
n

m x
n

x
nmmmm

x
mmmxx  )1(

!
)1)....(2)(1(.......

!2
)1(.1)1(

2

 ,  

10  …………..(1) 

 

Again,  

)(
)!1(

)1(
)0(

)!1(
...........)0(

!3
)0(

!2
)0()0()(

1
1

132

xf
n

x
f

n

x
f

x
f

x
fxfxf n

nn
n

n

















,       

where )(
)!1(

)1( 1

xf
n

x n
nn






 

 is the remainder in Cauchy’s form, 10  .         
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EX-(12)  Expand the function mxxf )1()(  , in powers of x  ( i.e., in the neighbourhood of 0x ) 

in infinite series and state the condition under which the expansion is valid. 
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CASE-1 : When m is positive(+) integer.  

Then 0)( xf n  for mn   and for every value of x . Hence the expansion stops after thm )1(   term 

and the expansion is finite. 
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CASE-2 : When m is negative(-) integer or a fraction. 
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Therefore, 0
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  as  n . Also 1)1(  mx  is finite. Again, if 1x , 0nx  as  n . 

Therefore, when 1x , 0nR  as  n .  Hence for 1x , Maclaurin’s infinite expansion for 

mxxf )1()(   is valid, m being a negative integer or fraction. 

 

REMARK : If 1x then nx  does not tend to 0 as n . Also 
)!1(

)1)....(2)(1(





n

nmmmm
 does not 

tend to 0 as n and hence nR  does not tend to 0 . 

 

INSTRUCTIONS FOR STUDENTS 
 

All the definitions, theorems, results, examples highlighted by yellow colour are very 

very important. 


