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UNIT-I (Riemann Integration) Dr. Pradip Kumar Gain

Syllabus for Unit-l : Riemann Integration: Inequalities of upper and lower
sums, Darbaux Integation, Darboux Theorem, Riemann Conditions of
Integrability, Riemann sum and definition of Riemann Integral through
Riemann sums, Equivalence of two definitions, Riemann Integrability of
monotone and continuous functions, Properties of the Riemann Integral,
Definition and integrability of piecewise continuous and monotone functions.

Intermediate Value Theorem for Integrals, Fundamental Theorem of Integral
Calculus.

The famous German Mathematician B. Riemann was the First to remove the concept of
definite integral from a geometrical basis and give an arithmetical approach to it.

SOME DEFINITIONS AND NOTATIONS

DEFINITION : (Division or Partition ) By a division or partition D ( or P) of a closed interval
[a, b] we shall mean a finite set of numbers D = {Xo,xl, D R I b}

satisfying a =X, <X, <X, <... <X, ; <X, <.oeee <X,4 <X, =b.

The r'™ subinterval of the division D is denoted by o,.Thatis, 6, = [Xr,l,Xr]- The length of

r

r" subinterval of the division D is also denoted by &, . Thatis, &, =X, —X, ;.

DEFINITION : (Norm) By the Norm of the division D we shall mean the length of greatest
of subintervals created by the division D . The Norm of the division D is denoted by D] or

by 0.

DEFINITION : (Upper and Lower Sums) The sums

S(D)=U(D, f)=M,5, + M,3, +......... +M, 0+ M5, + s +M_ 6, ,+M. S
s(D)=L(D, f)=m,, + M5, +......... M S A M F s, +m 5, ,+m35, are

respectively, called the Upper Integral Sum (or Upper Sum) and Lower Integral Sum (or
Lower Sum) of f(X)for the division/Partition D where M is the supremum of the function



f(x) for the subinterval 8, =[x,_,,x, ] and m, is the infimum of the function f(x)for the
subinterval 8, =[x,_,,x, |-

DEFINITION : (Oscillatory Sum)

The difference S(D)-s(D) = ZM,ﬁr -m o, = Z(Mr -m,)o, = ZOr5r is called the

r=1 r=1 r=1

oscillatory sum and O, = M, —m, is called the oscillation of the function ino, = [XH, Xr].

DEFINITION : (Refinement of division/Partition) If a division/Partition D’ be constructed
from D by distributing a few additional division points between those already occurring we
shall say that D' is a refinement of D.

NOTE : If there are two refinements D, and D, the their common refinement will be
D=D,uDb,.

RIEMANN INTEGRABILITY

Let f be a bounded function defined in the closed interval [a,b].

Let D ={a =Xy, X, Xy porrerene. X, ey X, =D} be a division/partition of [a,b]. Then [x,,x,],
[Xl,xz], [XZ,XS], ............... , [xH,xr], ..................... , [anl,xn] are the subintervals in which the
interval [a, b] is divided. Let the length the r'" interval ,i.e., &, = [x,_l,x,] be o, . Since the
function is bounded in [a, b] is also necessarily bounded in each of the subintervals . Let

M, and m, be the supremum and infimum of f in 5, =[x, X, |-

If M and m be the supremum and infimum of f in [a,b] then for every value of r, we
have, m<m <M, <M

=mo, <m0, <M, 56, <Mo, . Putting r=123,......... ., N we have
mo, <mo, <M;6, <Mg,,

ms, <m,s, <M,5, < M5,

mo, <m o, <M, 5, < Mg, Adding these, we get,

m(o, +9, +...+9,) <M, +m,0, +...+m. 8, <M,0, + M,0, +...+ M 5, <M (S, +J,...+,)
= mb-a)<s(D)<S(D)<M(b-a).

This is true for all possible divisions/partitions D, D,, D;,........... . Therefore,



m(b—a) < S(D),5(D,), (D, )seeeeerrverercers e < S(D),S(D,),S(D,)seeeeere v e <M(b-a)

Therefore, the set of all lower sums s(D),s(D,),S(D,),..ccccevvene. and the set of all lower sums
S(D),S(D,),S(D,),.ccore e are bounded.
The infimum of the set of all upper sums S(D),S(D,),S(D,),.ccccevcvneee. is called the upper

integral of f over [a,b] and is denoted by U = Ib f (x)dx.
The supremum of the set of all lower sums s(D),s(D,),S(D,),...ccccevrune. is called the lower

integral of f over [a,b] and is denoted by L = j: f (x)dx.

A bounded function f is said to be Riemann Integrable or simply integrable over [a, b], if
its upper integral and lower integral are equal.
The common value of these integrals is called the Riemann Integral and is denoted by

b
= j f (x)dx .
DARBOUX’S THEOREM

_ To every positive quantity ¢, however small it may be, there corresponds a

b
positive quantity S such that S(D) < I f(x)dx VD with ||D|| <6

b
and (D) > [ f(x)dx VD with D] <&

RIEMANN CONDITION OF INTEGRABILITY

NECESSARY AND SUFFICIENT CONDITION FOR INTEGRABILITY

BHEGRENIE A necessary and sufficient condition for integrability of a bounded function
is that to every ¢ >0, there corresponds a 6 >0 such that for every division D whose

norm is < §, the oscillatory sum »(D) =S(D)-s(D) < ¢

Proof The condition is necessary

Let the given bounded function is integrable. Then we must have

b b b

I f(x)dx = J. f(x)dx = J~ f (x)dX. Let &£ > 0. By darboux’s theorem, there exists 6 > 0 such
7 b £ g

that for every division D with ||D|| <o S(D) < J f (X)dx+5 = J f (x)dx+E and

s(D) >If(x)dx——:if(x)dx——



b
Therefore, | f (x)dx—% < (D)< S(D) < +§ . This implies @(D) = S(D) —s(D) < & .

Let £ > 0. There exists a division D such that S(D)-s(D) < ¢.

That is, {S(D) —j. f(x)dx} + {'T f (x)dx—j{ f(x)dx} +{

the three brackets is non-negative, we have 0

f(x)dx — S(D)} <¢&. Since each of

IN

D e T D —y T

b
f(x)dx—J.f(x)dx<g. As &> 0is

b b
arbitrary, we see that the non-negative number If(x)dx—jf(x)dx is less than
a a
every positive number, however small that number may be, and hence
b b b b
j f (x)dx— j f(x)dx=0= j f (x)dx = j f (x)dx = f (X)is integrable.
a a

a a

NECESSARY AND SUFFICIENT CONDITION FOR INTEGRABILITY

_ A necessary and sufficient condition that a bounded real valued
function f (X) be integrable in the closed interval [a, b] is that for each ¢ >0, however

small, there exists a division/partition D of [a, b] such that 0 < S(D)-s(D) < &, where
S(D)and s(D)are the upper sum and lower sum of f(X) corresponding to the

division/partition D .

Proof The condition is necessary

b b
Since f(x) is integrable, If(x)dX:If(X)dX. Also we can find a division/partition D'for

a

b
which the upper sum S(D’) (say) such that S(D’) < j f (X)dX+§ and for a division/partition

a

b
D" the lower sum s(D")(say) such that S(D”)>If(x)dx—g. Let D be the common

b b
refinement of D"and D" . Then S(D) < I f (X)dx+§ and s(D) > I f (x)dx—g.

a

Hence S(D)—§<Tf(x)dx:if(x)dx< s(D)+§:>Os S(D)-s(D)<e¢.



b
Let 0<S(D)-s(D)<e¢. Since J.f(X)dX is the infimum of the set of all upper sums

b
corresponding to every possible divisions and I f (X)dx is the supremum of the set of all lower
a
b
sums corresponding to every possible divisions, we must have, S(D)> I f(x)dx and

a

s(D) < j- f(x)dx. This  implies &>S(D)-s(D)>

D ey T

b

f (x)dx — j f(x)dx. That s,
a
b

f(X)dX—J.f(X)dX<5. Since is arbitrary positive quantity, however small, it follows that
a

b
f(X)dX—J-f(X)dX is less than every positive quantity, however small. So
a

Dy T D Cm— T QD C—— T

b b b
f(x)dx— [ f(x)dx=0.Thatis, [ f(x)dx= [ f(x)dx. Hence f(x) isintegrable.

a

_: (Riemann Sum) Let f(X) be a bounded function defined on the closed
interval [a,b]. Let D:{Xo,xl,xz,....,Xr_l,xr, ..... ,xn_l,xn:b}be a division of [a,b]. Let

&1 Er gy &, are arbitrary chosen points such that

& e, =[x, % )& e[, %[ & e[X, X oo Eoelx.,x,]. Then  the  sum

f(&5)0,+ T(&,)0, + T(&)0, + v + f(&,)0, = Z f(&,)0, is called a Riemann sum for
r=1

the division D and for the chosen point &,,r=12_3,........ , N. It is denoted by R(D, f,§) or
by R(D).

- Let M,and m, be the supremum and infimum of f in &, =[Xr_1,xr]. Then
m <f()<M,, r=123,..... ,n

= mr5r S f (§r)5r S M r5r
=>ms, <> (&) <D M6,
r=1 r=1 r=1



That is, Riemann sum for a function f corresponding to a division D lies between the

lower sum and the upper sum of corresponding to a division D. No matter how we select
the intermediate points ¢,

_: (Riemann Integrability in terms of Riemann Sum ) Let f be a bounded
function defined on the closed interval [a,b]. Then f is said to be integrable on [a,b] if

there exists a real number A such that HIB\i\”E)R(D):A’ where D is the norm of the

division D of [a,b], R(D) is a Riemann sum for f corresponding the division D of [a,b]

b
and corresponding to an arbitrary choice of intermediate points. In this case, A= j f (x)dx.

a

EQUIVALENCE OF TWO DEFINITIONS OF INTEGRABILITY

_: (Equivalence of two definitions) Let f be a bounded function defined

on the closed interval [a,b], b>a. The necessary and sufficient condition that f be

b b
integrable over [a, b] and equal to A (: I f(x)de is that Hllsﬁn!J R(D)=A (: I f(X)dXJ .

Proof The condition is necessary

b
Let f be integrable over [a,b]. That is, If(x)dx exists. Since f is integrable over
a

[a,b], for any &>0, there exists a positive & such that S(D)-s(D)<e& for all
possible division D of [a,b] with [D|< &5 [ie,

D| —0]. For every division D of [a,b],
b
s(D) < j f(x)dx < S(D)and for every division D of [a, b], s(D)<R(D) <S(D) where

R(D) is a Riemann sum for f corresponding the division D of [a, b] and corresponding to

an arbitrary choice of intermediate points . Therefore, for every division D of [a,b]

<S(D)-s(D) = < ¢ for all division D of [a,b] with

R(D) —.T f (x)dx

R(D) —.T f (x)dx

D] <5 lie.,

b
D| —0]. Hence H%‘i‘m0 R(D)=A (: j f (x)dx).

a



b
let LimR(D)=A (: _[ f(x)de. Thus for each &> Othere exists &>0 with ||D[<& ,

B0
b £ b c b .
R(D)—.a[ fgdx <. Thatis, {f(x)dx—§< R(D) <'£f(x)dx+5.
That s, A—g < Z f(&)o, < A+g for any choice of &, IN 8, cevveeevrreeverririccerecneienes (1)
r=1

Then for each subinterval o, of D, there exists «, and f such that

r r

2(bg— a)

&
M, ————< f <M d m <f <m_ +
r ZZ(t) _ Ei) ((Zr') r an r (/3r ) r

That is,

& &
f >M, ———— d f <m_+
(er ) r an (/3} ) r 22([) —a

2(b—a)

Then ; f(a,)o, > ;Mré', _ﬁéé‘r and ;f(ﬂr)5r < ;mr5r + 2(b8— a)zﬁr :

N—"

That s, if(ar)5r>S(D)—g and if(ﬂr)5r<s(D)+g ............................................. (2).
r=1 r=1

Since (1) holds for any choice of &, in J,, let & =¢,, we have from (1) Z f(a,)d, < A+%
r=1

whereby from (2) we have S(D) —% < z f(a,)o, < A+% = S(D) < A+ & o (3).

r=1

Similarly taking &£, = £, we have from (1), Z f(B.)o, > A—g whereby from (2) we have

r=1

s(D)+§>Zn:f(,Br)6r>A—g = (D) > A= o (4).
r=1

b b b b
Since (D) sj f (x)dx < j f(X)dx < S(D), we have, A—e <j f (x)dx < j f(X)dx< A+e

b
I f(x)dx — A‘ < &. Since & is arbitrary small positive

a

b b
Whereby J. f (X)dX—I f(x)dx < 2¢ and

b b b
quantity, we must have I f (x)dx :I f (x)dx and I f(x)dx=A

a

Therefore,

D ey T

b b
f(x)dx = I f(x)dx=A= '[ f (x)dx. Hence f is Riemann integrable.



INTEGRABILITY OF CONTINUOUS FUNCTION
_: Every continuous function is integrable.

Proof : Let a continuous function f is defined on the interval [a,b]. Let D be a division of

[a,b] which divides the interval [a,b] into a finite number of sub-intervals
o, :[xr_l,xr ],r =123,....... ,Nn.Since f is continuous in [a, b] it is bounded in [a, b]. So fis
bounded in every sub-intervals &, :[Xr_l,xr],r=12,3, ....... ,nof [a,b]. Again since f is

continuous, it is uniformly continuous in [a, b]. That is, for any & > 0, there exists a positive

J such that |f(x)— f(x,)< bLa whenever X, —X,| <&, X, %X, €[a,b] (1),

Again since f is continuous in [a b] it is continuous in every sub-interval
5r—[x,1, ]r 12,3,...,n. Therefore, there exist o, and g, in o, [,1, ]r 12.3,...,

such that f(a,)=M,and f(S,)=m, where M ,and m, are respectively, the supremum
and infimum of the function f in &, =[X,_1,Xr],r=12,3,...,n. Then by (1), we have

M, —m,|=|f(e,) - f(ﬂr)|<%a. The oscillatory sum of f for the division D, i.e., is

S(D)—s(D):rZ;:( m)§<zb ) r—( 25j )b a)=¢

= S(D)-s(D) < &.Hence f isintegrablein [a, b].

INTEGRABILITY OF MONOTONIC FUNCTION
_: If a function f is monotonic in[a,b] then it is integrable in [a,b].

Proof : Since f is monotone in [a,b] it is bounded in [a,b]. Let f(a) and f(b) are the
bounds. For the sake of definiteness, let us suppose that the function f is monotonic

increasing. Let £ >0. Let D= {a = Xgs Xps Xp yereens o Xy yeeeens X, = b} be a division/partition of

[a,b] such that the length of each subinterval is < d . Let the length of the r™
f(b)-f(a)+1
subinterval [x,_,,x ] is & =x, —x_, . Let f(x,)(=M,say) and f(x,_)(=m,say) are the

r

bounds of f in &, =[x, X ].

n

Now $(D)-5(D) =Y (M, -m )5, = ((F(x)- T (x.. )P,

r=1

1Zn: (Xr)_ f (Xr—l))

f(b)—f(a) =

g

T f(b)-f(a)+1

(f(o)-f(a))<e

= S(D)-s(D)<e. = f isintegrablein [a,b].



Properties of the Riemann Integral

Prop-1: If f(X)is integrable in a<x<b, then it is integrable in c<x<d where
a<c<d<b. Thatis, f(x) isintegrable in every subinterval.

Prop-2: If f(X)is integrable in a<x<cand in c<x<hb, then it is integrable in
as<x<bh.

Prop-3: If f(X)is integrable in a<x<b, so also is Af (X) where A is any real number.
Prop-4: If f(xX) and g(X)are both integrable in a<x<b, then f(x)%=g(x)are also
integrable in a< x<b.

Prop-5: Iff(X) and ¢(x)are both integrable in a<x<b, then f(x)eg(x) is also

integrable in a< x<b.

f(x)
g(x)

Prop-6: If f(X) and g(x) are both bounded and integrable in a<x<b, then is

also integrable in a<x<b provided |g(x) > 0.

- If f(X)is bounded and integrable in [a, b], then |f(x)| is also bounded and
integrable in [a,b].

Proof : Evidently, there exists a positive real number k such that |f(x)|<k, ¥xe[a,b].

Therefore,

f(x)| is bounded. Next let £ >0. Since f(x) isintegrable, there exists a division
D= {a: Xoy Xps X yeverrens oy Xy peeens X, = b} such that the corresponding oscillatory sum for
f(x) is less than ¢, i.e., S(D)-s(D)<¢. Let M/, M, are the supremums and m;, m_are
the infimums of f(x)and |f(X)| respectively, in &, = [X, . X, ]. Now ¥x,X, €5,, we have
[ £ 0| =1 F O] <[ (%) = (%) < M[ —m/_( See justification at the end of the proof)

M, —-m <M/ —m;.
S0 (M, —m, %, <3 (M! —mp, <.
r=1 r=1

=3 (M, —m, )5, <. Hence | f(x)| is also integrable in [a,b].
=1

Converse of the above theorem is not true.
Example : Let f =[a,b]—> R be defined by f(x)=1 xe[a,b]nQ

=-1 xe [a, b]—Q then f is
not integrable on [a,b]. But |f(x)|=1 forall x[a,b]. .|| is integrable on [a,b].



- If f(X) be bounded functions integrable in [a, b] and F(Xx)= I f (t)dt,

a<x<b, then F(X) is continuous function of Xin [a, b]. If however, f(x) be continuous

in [a, b]. Then at every point of [a, b], F (x) possesses a derivative and F'(x) = f(X).

MEAN VALUE THEOREM FOR INTEGRALS

FIRST MEAN VALUE THEOREM
(GENERALIZED MEAN VALUE THEOREM)

_ Let f(x)and ¢(x) be two bounded functions integrable on [a, b] and let
b b
#(X) keeps same sign in [a, b], then I f (X)p(x)dx = ,uj¢(x)dx where m< u<M , m and

M are the greatest lower bound and least upper bound of f in [a, b].

Proof : For the sake of definiteness let us suppose that ¢(X)is non-negative. That is,
$(x)>0 in [a,b]. In [ab] , m<F(X)<M. - mg(x) < f(X)(X) <Mg(X). Since mg(x),
f (X)p(x) and Mg(x) are each integrable in [a, b], we have

o= | (000 [ M.

= mi¢(x)dx < T f ()p(x)dx < M _T¢(x)dx

—ml < T f ()$(x)dx <Ml , where | = i¢(x)dx
i f (X)¢(x)dx =zl where m< u<M .

b b
= [ £ ()g()dx = j #(x)dx where m< g <M

COROLLARY : Let f(x) be a bounded function integrable on [a,b], then
b

I f(x)dx = u(b—a) where m< <M, m and M are the greatest lower bound and least

upper bound of f in [a, b].

Proof : Let us put ¢(X)=1 in the first mean value theorem(generalized meam value

b b
theorem) . Then I f(x).1dx= ,ujldX: ,u(b—a).



ABEL’S INEQUALITY :

If (1) a,,8,,85,.ccccnneeee ,a, is a non increasing sequence of n positive numbers

(2) v,V Vg ,V, isasetofany n numbers

and (3) handH are two numbers such that h<v,+v,+v,+....+Vv, <Hfor 1< p<n

then ah<ayv, +a,v, +av, +....+a,v, <aH.

SECOND MEAN VALUE THEOREM (BONNET’S FORM)

_ If f(x) be a bounded monotonic non-increasing never negative function
defined on [a,b] and ¢(x) be bounded function integrable on [a,b]. Then there exists a

b 5
number & of X in [a, b]such that I f(X)p(x)dx = f (a)j¢(x)dx where a<&<b .

Proof : Let D ={a =Xy, X, X;,errenn o X yeeeeneny X, =D} be any division/partition of [a,b] and
let M,and m, are respectively, the supremum and infimum of the function ¢(x) in

S, =[x_.x ]r=123..n.Let & €[x,x |-

r-1'r

Now in & =[x_;,X. ], m <p(x) <M, =m,(x —x )< f¢(x)dx§ VG I— (1)
and m, (X, =X, ) SAHENX, =X, )M, (X, =X,y ) corrrrrrrrrrs (2).  Putting r=123,..,p<n
p Xp P
and adding we get from (1) Zmﬁr < J.¢(X)dx Sz M, O, v (3)
r=1 a r=1
p p p
and from (2) get, Zmﬁ, < z¢(§r)5r SZM (O) et (4)
r=1 r=1 r=1

Xp p p p
Now from (3), we get I¢(X)dx < > M,6, and from (4) we get — Y ¢(&,)5, <-D_m, 5, .
3 r=1 r=1 r=1

M=

Adding,

-3 463, + [pax

gimrar—zp;mﬁr =

(M, -m, )5, srzn;(Mr—mr)fSr.

'L

r

n

or, J4(dx=3 (M, —m, 5, <3 4()5, < [#0)dx+ > (M, -m, s,

r=1
X
Now since ¢(X) is integrable, I¢(X)dx is a continuous function of X(by theorem )
a

and it must have its supremum (M, say) and infimum (m,say) .

Hence m_zn:(Mr _mrb‘r Si¢(§r)5r <M +Zn:(Mr _mrb‘r'

r=1



n

let a, = (&), Vv, =¢()5, h=m-> (M, -m),, H:M+Zn:(Mr—mr)5r.Then

r=1

using Abel’s inequality we have

n

f(a){m—Z(Mr—mrbr}ﬁzn:f(gr)(é(gr)&,s f(a){M +Zn:(Mr—m, } Let D[ -0, so

r=1

n b
that > (M, —m, )5, — 0 whereby mf (a) < j f (X)p(x)dx < Mf (@) . That is,
=1 a
b
I f(X)p(x)dx < uf (a), where m<u<M. Since Mand mare the supremum and

X X

infimum of the continuous function I¢(X)dX, the function J.¢(X)dx must assume every
a a

intermediate value of M and m. Therefore, there must exists at least one value £ in [a,b]

for which j f(X)p(x)dx = f (a)j¢(x)dx.

SECOND MEAN VALUE THEOREM (WEIERSTRASS FORM)

_ If f(xX) be a bounded and monotonic function defined on [a, b] and ¢(x)

be bounded function integrable on [a, b] .Then there exists at least value of x , say &, in
b é b

[a,b] such that j f (X)g(x)dx = f (a) j $(x)dx+ f (b) j #(X)dx where a<&E<b .
a a 9

Proof : Let f(X) be monotonically decreasing function so that w(x)= f(x)— f(b)is

monotonically decreasing and positive. Then from S.M.V.T(Bonnet’s form) we have

b ¢
j v (X)g(x)dx =y (a) j #(X)dx where a<&E<b.

b

S
or, [[f(x)- f (0)p(x)dx=[f (a) - f (0)][ #(x)dx
b b ¢ ¢
=N j f (X)p(x)dx = f (b) j F(x)dx+ f (a) j #(x)dx— f (b) j $(xX)dx
¢ b ¢
= f(a)[ g(x)dx+ f (b){ [0)dx- [ ¢(x)dx}

¢ a b
= f(a)[ g(xdx+ f (b){ [p0)dx+ [ ¢(x)dx}
a & a



é b
= ()] g(x)dx+ f (b) [ )dx.
a ¢

That is, j' f (X)p(x)dx = f(a)i¢(x)dx+ f(b)j'gzﬁ(x)dx where a< £ <b.
a a ¢

FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS

_ If f(x)is integrable on [a, b] and if there exists a function ¢(x)such that
b
#'(x)=1(x) on (ab), then j f(X)dx = g(b) —#(a). (#(x)is called primitive of f(x)and

f (x) is called derivative of #(x) ).
Proof : Let ¢£>0. Since ¢'(x)= f(x)is bounded and integrable on [a,b], there exists a
division/partition D = {a = X,, X, X eeeeev.. o X , X, = b} of [a,b] such that

pareeee

< E s (1) Where Z:(p'(ér)dr is the Riemann sum for the

r=1

()3, - [[#(00dx

function ¢'(X) corresponding to a division D. Considering the ™ subinterval

0, :[Xr_l,x,], by the Lagrange’s Mean-Value Theorem of differential calculus, we have

r

¢(Xr) _¢(Xr—1) = (Xr - Xr—l )¢I(§r) = ¢'(§r)5r Where gr € [Xr—l’ Xr ] .
Therefore, iw(;)a, = Zn:[¢(xr) I AR 1Y) I/ IC) J— (2). Then by (1) and (2),

it follows that < &.As ¢is an arbitrary positive number, we conclude

#(0) - 4(@) — [ #'(x)dx

that ¢(b) — #(a) — j:¢'(x)dx=o or j f (x)dx = ¢(b) — 4(a).

SOME IMPORTANT RESULTS

-: If f(x) be bounded in [a, b] and if M and m be the supremum and infimum of
b b
f(x) in [a,b], then m(b—a)< j f (x)dx < j f(x)dx<M(b-a).

Proof : Let D ={a=X,,%,X,,rmee.. 4 X ,X, =b} be a division/partition of [a, b]. Then

[XO,Xl], [Xl,xz], [Xz,x3], ............... ,[xH,xr], ..................... ,[XH,X”] are the subintervals in
which the interval [a,b] is divided. Let the length the r™" subinterval ,i.e., &, =[x, X, ] be
S, . Let norm of the division/partition D is |D||. Since the function is bounded in [a,b] is

also necessarily bounded in each of the subintervals . Let M and m, be the supremum and

infimum of f in &5, =[x, ,,x, ]

r-11 Nr



If M and m be the supremum and infimum of f in [a,b] then for every value of r, we
have, m<m <M, <M

=mo, <m.o, <M, 6, < M6, . Putting r =1,2,3,......... .,N and adding, we have

=mb-a)<s(D)<S(D)<M(b-a).
Now if [D] -0, then m(b—a)< jbf (x)dx < jbf (x)dx<M(b-a).

-: If f(x) be bounded and integrable in [a, b] and if M and m be the supremum
and infimum of f(x) in [a,b], then m(b-a)< I:f (x)dx<M(b-a).

Proof : Since f(X) isintegrablein [a, b] we have _[: f(x)dx = I:f (X)dx = J::f (x)dx. The form
the conclusion of the result-1 we get m(b—a) < I:f (x)dx<M(b-a).

-: If f(x) be integrable in [a,b], then there exists a number u where

m<u<M, Mand mare the supremum and infimum of f(x)in [a, b], such that

[t (dx= u(b-a).

Proof : Since m < 1z < M the result follows from the conclusion of result-2.

-: If T(x) be integrable in [a, b] and f(x)>0,then j: f(x)dx>0.

Proof : By result-2, we have J.:f(x)dxz m(b—a). As f(x)>0, m>0and as (b—a)is the
b

length ot the interval [a, b], we have (b—a)Z 0. Therefore, L f(x)dx > m(b - a)z 0.

-: If f(x)and g(x) be both bounded and integrable in [a, b] and f (x) > g(x),

then [ (x)dx> [ g(x)dx.

Proof : Since f(x)and g(x) be both bounded and integrable in [a,b], f(x)—g(x) is also

bounded and integrable in [a,b]. Then by result-4, we have jb{f(x)—g(x)}dXZO. Hence

[ (x> ["g(x)ax.

-: If T(x) be integrable in [a,b] then

Proof : Since f(X) isintegrablein [a, b], Lb f (x)dx exists and also I:| f (X)|dX exists (by Prop-7).

[t (x)dx‘ < 1 Gofdx.

Now —|f(x)|< f(x)<[f(X)| (.. x<|x)



= —[1F0olx< [ f (9dx< [ (0fdx
= [ f(x)dx<[f (ol and [ f (x)dx < [f (x)ex

=" f ()dx < [ (0)ldx.
IRICEEIE

EXAMPLES ON RIEMANN INTEGRATION

.: Show by an example that if |f(x)| is integrable then f(x) may not be integrable.
Solution : Let f(X) =1, when Xxis rational.
=-1, when Xis irrational. be defined in [a,b], b>a. Clearly f(x)is
bounded in [a,b]. Let Let D= {a= Xos Xgs Xo yerereens o Xy yeevenns , X, = b} be a division/partition of
[a,b]. Let the length the r'" subinterval ,ie., 5, =[x, ,,X, | be &,. Since the function is
bounded in [a,b] is also necessarily bounded in each of the subintervals . Let M, and m, be
the supremum and infimum of f in &5, =[x, |.
Then S(D)=U(P,f) :ZMrér :ZL& :(b—a) and the same will be result for every
r=1 r=1
possible division/partition of [a, b]. Hence the infimum of the set of all upper sums is clearly
(b—a). That is, jbf(x)dx:(b—a). Again, s(D)=L(P,f)=>'m, => -1, =—(b-a)
a r=1 r=1

and the same will be result for every possible division/partition of [a,b]. Hence the

b
supremum of the set of all lower sums is clearly —(b—a). That is, '[ f(x)dx=—(b—a).

Therefore, I:f (x)dx = _[:f (x)dx.So f(x) is not integrable.

Where as for

, S(D)=s(D) = Zlﬁr = (b - a) ad it is true for every possible division. So
r=1

in that case _[:| f (x)|dx = LB| f (x)|dxand consequently | f (X)| is integrable.

-: If f(x)=x?,when 0<x<1.
=\/;,when 1<x<2. Evaluate ij(x)dx

Solution : Since f(x)=x?and f(x)=+/x are both continuous in [01] and [12]

respectively, they are integrable in their respective interval.

Now [ £ (x)dx= [ £ (x)dx+ [ f (x)dx

—j xzdx+j \/_dx—ﬂ—%.



B f f(x)=(1-x), when 0<x<L.

=(x-1), when 1< x<2, Evaluate j02|1—x|dx

Solution : Since f(x)=(1—x) and f(x)=(x—1) are both continuous in [01] and [1,2]

respectively, they are integrable in their respective interval.

Now [ f (x)dx= [ JL—Xdx =] f (x)dx+ [  (x)clx

= Jj|1— x|dx+f|x—]4dx.

2 0 2 1

=1

¢
: Show that J;dx=|b|—

Solution : Case-1. When O<a<b. Then for all xe[a,b], f(x)=

, (a<b)

a

m=1:1 is continuous
X X
b b |X| b
in [a,b]and hence integrable in [a,b]. Therefore, jf(x)dx:j;dX=IdX:b—a:|b|—|a|
a a a

(*-O0<a<b).

X

Case-2. When a<0<b. Then the function f(X)="— has only one point of discontinuity at
X

x =0and hence integrable in [a, b].

X_- X
Now if a<x<0, then f(X):U:—X:—l and if O0<x<b, then f(x):U:
X X X

=1.

x| =<

b P L N L e I
Therefore, I f(x)dx=_|.?dx:]';dx+.|‘;:—[x]a +[x|, =a+b=p|-|]a] (~~b>0,a<0).
a a a 0
Case-3. When a<x<b<0. Then for all xela,b], f(x) :% is continuous in [a,b]and
b b |X| b
hence integrable in [a,b]. Therefore, I f(X)dX:I;dX:—JdX: [b-a]=a-b =|b|-|a] . So

. t1X
in any case, J‘;dx = |b| —|a|.
a

: Using the relation m(b - a) < ij (xX)dx<M (b — a) estimate wdx'

AN C——w|N
>



Solution : Since f (x) _ S is continuous in [% Z} f (x) is integrable “{Z 5} That is,
X

3.
J.wdx exists. Also f(x)is bounded and monotonically decreasing m{%%} The
v X
"
343
greatest lower bound (m) of is f( )—— and the least upper bound (M) of is
2w
f(Z):ﬂ _
4 27

Therefore, m(b—a)< Jj f(x)dx<M(b-a)

27 \3 4 X 27 \3 4
3
:ﬁsjﬂdxsﬁ.
8 < X 6
"

1 1
I: Show that .|.|x|dx:1 and also show that J.{x+|x|}dX:1.
1 -1

Solution : f(x)=|X=-x when —1<x<0
=X when 0<x<1.
Since f(X)=—xand f(x)=X are both continuous in [—ZLO] and [O,l] respectively, they are

integrable in their respective interval.
0

Therefore, Jl'|x|dx = J-— xdx+ j. xdx
-1 0

-1
=1
Also f(x) ={x+|x|}=x+(—x)=0 when —1<x<0
=X+Xx=2x when 0<x<I1.
Since f(x)=0and f(x)=2x are both continuous in [~10] and [0,1] respectively, they are

integrable in their respective interval.

Therefore, j f (x)dx = j{x +[x[}dx :}O.dx+ Jl‘2xdx
b i) I 0

=0+[x’}

=1

3
I: Show that 4SI\/3+X3dX£2\/%.
1



Solution : Let f(x)=+/3+x> . Clearly, f(x) is monotonically increasing in [1,3]. Therefore,
supremum (M ) of f(x) is f(3) =+/30 and infimum (m)of f(x)is f(2) =4 =2. Since

3
f (x) is monotonically increasing in [1,3], it is integrable in [1,3]. That is, I\/3+ x*dx exists.
1

Therefore, using the relation m(b—a)SIbf(X)dst(b—a), we can have

2(3-1)< T\/3+ x*dx <~+/30(3-1)

3
:>4£J\/3+ x3dx < 24/30.
1
x2 1 ¢ X 1
If 0<x<1 show that — S x* and hence show that dx < < =
l \/_ 32 ;[\/1+ X
Solution : Let f(X) :L. Clearly, f(x) is monotonically decreasing in [0,1]. Therefore,
V14X
supremum (M ) of f(x) is f(0)=1 and infimum (m)of f(x) is (1) =%.

Now m< f(x) <M

:>L< L <1
V2 ex
2 2
X X )
= =< <x° (--x=0).
V2 1+ x
2
X 2 . : . )
Now for second part, let ¢(x) = . X" is continuous and hence integrable in[0,1| and
V1+X [04]
1
is monotonically decreasing in|0,1land hence integrable in[01|. Therefore,
v o] [oa]
2 1
X 2 .
#(x) = is integrable |n 01 Thus dx and |X“dX exist. Now we have from the
V1+X '[\/ I
2 2
X X 5
first part <X
\/E 1+x
1 X2 1 X2 1
= | = < | —=dx < | x’dx
o e
1 2
-1 <| X gx<t
32 A1+x 3
2 2 X 2
Show that SJ._—dXSE—
° sinx 3
6



Solution : Let f(X) =_2—X . Clearly, f(x) is monotonically increasing in {%,%} . Therefore,
sinx
supremum (M ) of f(X) is f(%) =z and infimum (m) of f(x) is f(%) :\/_:2—7[ . Since

ﬂdx

f (x) is monotonically increasing in E,Z , it is integrable in Z,— That is,
6 2 6 2 sinx

o|ye—|y W

exists. Now m< f(x)<M

2—7Z-<—2X <r

3  sinx

1
: Show that —<
. J-\/4 X2 +x3

Solution: 4— x> +x*>4—-x? (--0<x<1)
4—x2+x3>4—(x2—x3)<4 (-0<x<1)

Therefore, V4—x2 +x* >vV4—x? and V4—x2+x* <J4=2 .

So, %< ! < L (1)

Va—x2+x®  Ja-x?

1 1 1
Now —, and are all continuous in [0,1] and hence they are intigrable in

Ja-x2+x° Ja—x2

1.t dx todx

01(. Thatis, | =dX, | —— and | ——
oal s, 300 | e ™ e
1 < 1
Va—-x2+x3  Ja—x?

exist.

Now from (1) we have

5 TNA— X2 +x° oAA—x?
1
:>£<J' dx <sin?t=
2 o\A-x*+x
1 7 dx T
:>—<_[ <=,
2 yNa—xP4x® 6



1
2
: Prove that -53'[ d <0-524.

0 1-—x**

Solution : 1-x**<1 ('.'OSXS%) and 1-x*>1-x%.

V1-xZ >~41-x2. Theseimply 1< ! < !

V1I-x%* A1-x°
1
Here 1, and are all
J1- x> 1-x°

1dx

Therefore, V1—x* <1 and

(1)

| =

. exist. Therefore, from (1)

O N |
o
>

O NV |

1
2

:lsj. dx ssin‘1l

2 0 1—X2X 2

1
2

3'53_[ dx SZ=31416
0 1—X2X 6 6

. 1 ¢ 2
: Prove that le—je Wt — V10,
X—3 X_33

IA
O N |
o
>
IA
O NV |
o
>

Solution : At the point X=3, J.emdtzo. Then by L" Hospital’s rule the given limit
3

2

. evl+x
becomes Lim (using theorem 7))

x—>3

—el

. X ¢ e
: Prove that Lim _ Jet dt=-1.
x—0 1_ex °




Solution : At the point x=0, Ietzdt:O. Then by L’ Hospital’s rule the given limit
0

xi _[etzdt +Ie‘2dt
. dx\ 3 0
becomes Lim

ST

X
2 2
xe* +_[et dt

=Lim———2—— P form}
x—0 2xex 0
e +2x%" ¥
= Lim .
x>0 _2e* _4x%e*
=1
Jsin& 5
: Provethat Lim%——==. (task).
x—0 X 3

b
.: If f(x) be continuous in [a,b] and f(x)>0for allx in [a,b]and if If(x)dX:O,

prove that f(x) =0, ¥xe|[a,b].

Solution : Let c be any point in [a, b]. Since f(x) > O,VXe[a,b] we must have f(c)>0.
If f(c)=0then, the result follows immediately. Next let f(c)>0. Since f(x) is continuous
in [a,b] and ¢ be any point in [a,b], f(x) must be continuous at c. Hence for every

&> 0,however small, there exists a ¢ >0 such that |f(x)— f(c)| < & whenever |X—C| <0.

f
Let us take ¢ = % where K is a large positive quantity. That is,

f(c)
k

|f(x)—f(c)|<

:>f(x)>¥

whenever |X - C| <0.

b b
:>j f (x)dx>¥'|‘dx .+ f(x) is continuous in [a, b]and hence f (X) is integrable in[a, b])

:Tf(x)dx>$(b—a)>¥5

b b
:>Jf(x)dx>%5>0 (- f(c)>0and 5>0). But it is given that If(x)dX:O. Hence

our assumption, thatis, f(c)> 0 is not true. Therefore, in any case f(c)=0



APPLICTIONS OF MEAN VALUE THEOREMS

.: If 0<x'<x"then show that

1 1
Solution: Let f(X)== and ¢(x)=sinx. Clearly, f(x)== is monotonically decreasing
X

J~S|nx 3

X <

in [x,x"] and bounded. And ¢(x)=sinxis continuous in [X,x"] and hence

integrable in [X’,X”] . Then by Second Mean Value Theorem of Bonnet’s form we have

X' ¢
[ 00p(x)dx= f(x)[#(x)dx when x'<E<x" .
X sinx 1% .
Or, J'—dx:—,J'smxdx
X X'
1 £
=—|—COSX|,
Xy[ ]X

= ir[cosx' —cosé]

Therefore, jsmx ‘:‘%(cosx'—cosd :‘l,|cosx’—cos§| < lr|cosx’|+ l,|cos§|
X X X X
=‘i,(}cosx' )g %‘-2:%
X X X
("r|cosx’| < <1)

SInX
f x| <

.: If 0<x' <x"then show that i'

1 1
Solution: Let f(X)== and ¢(x)=sinx. Clearly, f(x)== is monotonically decreasing
X

in [X,x"] and bounded. And ¢(x)=sinxis continuous in [X,x"] and hence

integrable in [x',x"] . Then by Second Mean Value Theorem of Weierstrass’s form we
have j f (X)g(x)dx = f(x") j F(x)dx+ f (x") j #(x)dx when x'<E<x".

r 1%
_X[ sin xdx+7.§fsm xdx

Or, dex_

1

X'

1 1 X"
—;[ cosx[;, + X”[—cosx]é
1

X'

[cosx’ —cos§]+xi[cos§ cosx”]



X"

sinx

Therefore, Ide‘ = ‘%(cosx' —COS&)+ %(cosf —cosx”)(
’
1 , 1 y
< ;(cosx —cos§){+ 7(cos§—cosx %
1 ! 1 14
:‘?|cosx —COS&|+ 7|cos§—cosx |
1 1 1 1
< 7|cosx’|+ ;|cos§|+ 7|cos§|+ 7|cosx”
1 ! 1 14
= ‘; Qcosx |+|cos§|)+ 7(]cos§|+|cosx )
X" -
A g < 1 24 1 -2=£+£<£+£=i ("r|cosx’|<1,|cosx”| <1, [cosé|<1)
X X’ X” X’ X” XI X’ X!
’
and (- x'<x":>i"<—, %<3,).
X" X' x" X

Show for k? <1,

1 1
j~ dx _ 1 J% dx
o =2 J1-k2x?)  \1-k2E% o 1-x2
1
- = [sin‘lx 2
1-k°¢
V4 1
=5 DO (1)
Now let us put £=0 and §=% in (1) to get the minimum and maximum values of
1 1
2 dx 2 dx V4 1
. That < <Z.
ey ) A Y e e

-ty
4

- : Verify Second Mean Value Theorem of Weierstrass form for the function x*cosx in

T

the interval ,
2 2

|



Solution : Given integrand, that is, x?cosx can be considered as the product of two
functions f(x)and ¢(x) in the following way :

1) f(x)=x?, ¢(x) =cosx
2) f(x)=cosx, ¢(x)=x>
3) f(x)=x, ¢(X)=xcosx.

Let f(x)=x%, #(x)=cosx. Then f(x)=x2 is not monotonic in |—2,~| and hence
2 2

Second Mean Value Theorem of Weierstrass’s form is not applicable for the integrand

X2 COSX.

Next let f(x)=cosx, ¢(x)= x*. Then also f(X)=cosx is not monotonic in {—%%} and

hence Second Mean Value Theorem of Weierstrass’s form is not applicable for the integrand
2
X" COSX.

Lastly, let f(x)=x, #(x)=xcosx. Then f(x)=x is monotonic in {—%%} and
#(x) = xcosx is integrable in {—%%} and hence Second Mean Value Theorem of

Weierstrass form is applicable in [—%,%} for the integrand x° COSX.

All Definitions, Theorems, Results, Properties and Examples highlighted by

REBIGGIGER - c very important.



