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UNIT-I (Riemann Integration)                                                Dr. Pradip Kumar Gain 

Syllabus for Unit-I : Riemann Integration: Inequalities of upper and lower 

sums, Darbaux Integation, Darboux Theorem, Riemann Conditions of 

Integrability, Riemann sum and definition of Riemann Integral through 

Riemann sums, Equivalence of two definitions, Riemann Integrability of 

monotone and continuous functions, Properties of the Riemann Integral, 

Definition and integrability of piecewise continuous and monotone functions. 

Intermediate Value Theorem for Integrals, Fundamental Theorem of Integral 

Calculus.  

 

The famous German Mathematician B. Riemann was the First to remove the concept of 

definite integral from a geometrical basis and give an arithmetical approach to it.  

SOME DEFINITIONS AND NOTATIONS 

DEFINITION : (Division or Partition )  By a division or partition D ( or P )  of a closed interval 

 ba,  we shall mean a finite set of numbers  bxxxxxxxD nnrro   ,,.....,,,....,,, 1121  

satisfying bxxxxxxxa nnrro   1121 ........... . 

The rth subinterval of the division D  is denoted by 
r . That is,  rrr xx ,1 . The length of 

rth subinterval of the division D  is also denoted by 
r . That is, 1 rrr xx .  

DEFINITION : (Norm)  By the Norm of the division  D  we shall mean the length of greatest 

of subintervals created by the division D . The Norm of the division D  is denoted by D  or 

by  . 

DEFINITION : (Upper and Lower Sums)  The sums 

    nnnnrrrr MMMMMMfDUDS    11112211 .........................., , 

    nnnnrrrr mmmmmmfDLDs    11112211 ..........................,  are 

respectively, called the Upper Integral Sum (or Upper Sum) and Lower Integral Sum (or 

Lower Sum) of )(xf for the division/Partition D  where rM is the supremum of the function 



)(xf  for the subinterval  rrr xx ,1  and 
rm is the infimum of the function )(xf for the 

subinterval  rrr xx ,1 . 

DEFINITION : (Oscillatory Sum)                                   

The difference r

n

r

n

r

rrrr

n

r

rrrr OmMmMDsDS   
 


1 11

)()()( is called the 

oscillatory sum  and 
rrr mMO   is called the oscillation of the function in  rrr xx ,1 .                                                  

DEFINITION : (Refinement of division/Partition) If a division/Partition D  be constructed 

from D  by distributing a few additional division points between those already occurring we 

shall say that D  is a refinement of D . 

NOTE : If there are two refinements 
1D  and 

2D  the their common refinement will be 

21 DDD  . 

 

RIEMANN INTEGRABILITY 

Let f  be a bounded function defined in the closed interval  ba, . 

Let  bxxxxxaD nr  ,.......,.,,.........,, 210  be a division/partition of  ba, .  Then  10 , xx , 

 21, xx ,  32 , xx ,……………,  rr xx ,1 ,…………………,  nn xx ,1  are the subintervals in which the 

interval  ba,  is divided.  Let the length the rth interval ,i.e.,  rrr xx ,1  be 
r . Since the 

function is bounded in  ba,  is also necessarily bounded in each of the subintervals . Let 

rM and rm be the supremum and infimum of f  in  rrr xx ,1 . 

If M  and  m  be the supremum and infimum of f  in  ba,  then for every value of r , we 

have,   MMmm rr   

rrrrrr MMmm   . Putting nr .,,.........3,2,1  we have  

111111  MMmm   , 

 222222  MMmm  , 

  …………………………………………. , 

  …………………………………………. , 

  …………………………………………. , 

                                   nnnnnn MMmm           Adding these, we get,     

)...(......)...( 212211221121 nnnnnn MMMMmmmm  

)()()()( abMDSDsabm  . 

This is true for all possible divisions/partitions ..,.........,, 321 DDD . Therefore,  



)(..............),........(),(),(..................),........(),(),()( 2121 abMDSDSDSDsDsDsabm 

Therefore, the set of all lower sums ......),........(),(),( 21 DsDsDs and the set of all lower sums 

.......),........(),(),( 21 DSDSDS  are bounded.  

The infimum of the set of all upper sums .......),........(),(),( 21 DSDSDS is called the upper 

integral of f  over  ba,  and is denoted by 
b

a
dxxfU )( . 

The supremum of the set of all lower sums ......),........(),(),( 21 DsDsDs is called the lower 

integral of f  over  ba,  and is denoted by 
b

a
dxxfL )( . 

A bounded function f  is said to be Riemann Integrable or simply integrable over  ba, , if 

its upper integral and lower integral are equal. 

The common value of these integrals is called the Riemann Integral and is denoted by 


b

a
dxxfI )( . 

DARBOUX’S THEOREM 
 

THEOREM 1:  To every positive quantity  , however small it may be, there corresponds a 

positive quantity  such that 
b

a

dxxfDS )()(   D with D  

                                    and        
b

a

dxxfDs )()(   D with D  

 

RIEMANN CONDITION OF INTEGRABILITY 

 

NECESSARY AND SUFFICIENT CONDITION FOR INTEGRABILITY 

( FIRST FORM ) 

THEOREM 2:  A  necessary and sufficient condition for integrability of a bounded function 

is that to every 0 , there corresponds a 0  such that for every division D  whose 

norm is  , the oscillatory sum   )()()( DsDSD  

Proof :                                          The condition is necessary 

Let the given bounded function is integrable. Then we must have 
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dxxf )(  
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dxxfdxxf )()( . Let 0 .  By darboux’s theorem, there exists 0  such 

that for every division D  with D        
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 . This implies   )()()( DsDSD . 

The condition is sufficient 

Let 0 . There exists a division D  such that  )()( DsDS . 

That is, 






































  )()()()()()( DsdxxfdxxfdxxfdxxfDS
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. Since each of 

the three brackets is non-negative, we have  
b

a

b

a

dxxfdxxf )()(0 . As 0 is 

arbitrary, we see that the non-negative number  

b

a

b

a

dxxfdxxf )()(  is less than                  

every positive number, however small that number may be, and hence 

)()()(0)()( xfdxxfdxxfdxxfdxxf
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  is integrable. 

 

NECESSARY AND SUFFICIENT CONDITION FOR INTEGRABILITY 

( SECOND FORM ) 

THEOREM 3:  A  necessary and sufficient condition that a bounded real valued 

function )(xf be integrable in the closed interval  ba,  is that for each 0 , however 

small, there exists a division/partition D  of  ba,  such that  )()(0 DsDS , where 

)(DS and )(Ds are the upper sum and lower sum of )(xf  corresponding to the 

division/partition D . 

Proof :                                          The condition is necessary 

Since )(xf  is integrable,  

b

a

b

a

dxxfdxxf )()( . Also we can find a division/partition D for 

which the upper sum )(DS  (say) such that 
2
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dxxfDS  and for a division/partition 

D  the lower sum )(Ds  (say) such that 
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dxxfDs . Let D  be the common 

refinement of D and D  . Then 
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The condition is sufficient 

Let    )()(0 DsDS . Since 
b

a

dxxf )(  is the infimum  of the set of all upper sums 

corresponding to every possible divisions and 
b

a

dxxf )(  is the supremum of the set of all lower 

sums corresponding to every possible divisions, we must have, 
b

a

dxxfDS )()(  and 
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dxxfDs )()( . This implies  
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dxxfdxxfDsDS )()()()( . That is, 
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dxxfdxxf )()( . Since is arbitrary positive quantity, however small, it follows that 
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dxxfdxxf )()(  is less than every positive quantity, however small. So 

0)()(  
b
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dxxfdxxf . That is,  

b
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b

a

dxxfdxxf )()( . Hence )(xf  is integrable.  

 

RIEMANN SUM  &  RIEMANN INTEGRABILITY IN TERMS OF RIEMANN SUM   

 

DEFINITION : (Riemann Sum) Let )(xf  be a bounded function defined on the closed 

interval  ba, . Let  bxxxxxxxD nnrro   ,,.....,,,....,,, 1121 be a division of  ba, . Let 

n ...,,.........,, 321  are arbitrary chosen points such that 

       nnn xxxxxxxx ,...,,.........,,,,, 13232121011   . Then the sum 
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332211 )()(.............)()()(  is called a Riemann sum for 

the division D  and for the chosen point nrr ,........,3,2,1,  . It is denoted by  ,, fDR   or 

by  DR . 

NOTE : Let rM and rm be the supremum and infimum of f  in  rrr xx ,1 . Then 

rrr Mfm  )( , nr ,........,3,2,1  

rrrrrr Mfm   )(  
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)()()( DSDRDs  .   



That is, Riemann sum for a function f  corresponding to a division D  lies between the 

lower sum and the upper sum of corresponding to a division D . No matter how we select 

the intermediate points 
r  

DEFINITION : (Riemann Integrability in terms of Riemann Sum ) Let f  be a bounded 

function defined on the closed interval  ba, . Then f  is said to be integrable on  ba,  if 

there exists a real number A  such that ADRLim
D




)(
0

, where D  is the norm of the 

division D  of  ba, , )(DR  is a Riemann sum for f  corresponding the division D  of  ba,   

and corresponding to an arbitrary choice of intermediate points. In this case, 
b

a

dxxfA )( .   

 

EQUIVALENCE OF TWO DEFINITIONS OF INTEGRABILITY 

 

THEOREM 4 : (Equivalence of two definitions)  Let f  be a bounded function defined 

on the closed interval  ba, , ab  . The necessary and sufficient condition that f  be 

integrable over  ba,  and equal to A
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dxxf )( . 

Proof :                                          The condition is necessary 

Let f  be integrable over  ba, . That is, 
b

a

dxxf )(  exists.  Since f  is  integrable over        

 ba, , for any 0 , there exists a positive   such that  )()( DsDS  for all            

possible division D  of  ba,  with D  [ i.e., 0D ]. For every division D  of  ba, , 

)()()( DSdxxfDs

b

a

  and for every division D  of  ba, ,  )()()( DSDRDs   where 

)(DR  is a Riemann sum for f  corresponding the division D  of  ba,   and corresponding to 

an arbitrary choice of intermediate points . Therefore, for every division D  of  ba,  

)()()()( DsDSdxxfDR
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b
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dxxfDR )()(  for all division D  of  ba,  with 

D  [ i.e., 0D ].  Hence  ADRLim
D




)(
0 













 

b

a

dxxf )( . 

 

 

 



The condition is sufficient 

Let  ADRLim
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dxxf )( . Thus for each 0 there exists 0  with D  , 
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That is,  
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Since (1) holds for any choice of 
r  in 

r , let 
rr   , we have from (1) 
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whereby from (2) we have 
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Similarly taking rr    we have from (1), 
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Since  )()()()( DSdxxfdxxfDs
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  ,  we have,     AdxxfdxxfA

b

a

b

a

)()(  
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)( .  Since   is arbitrary small positive 

quantity, we must have  

b

a

b

a

dxxfdxxf )()(  and Adxxf
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Therefore,  

b

a

b

a

b
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dxxfAdxxfdxxf )()()( .  Hence f  is  Riemann integrable. 

 



INTEGRABILITY OF CONTINUOUS FUNCTION 

THEOREM 5 :  Every continuous function is integrable. 

Proof : Let a continuous function f  is defined on the interval  ba, . Let D  be a division of 

 ba,  which divides the interval  ba,  into a finite number of sub-intervals 

  nrxx rrr ,.......,3,2,1,,1   . Since f is continuous in  ba,  it is bounded in  ba, . So f is 

bounded in every sub-intervals   nrxx rrr ,.......,3,2,1,,1   of  ba, . Again  since f  is 

continuous, it is uniformly continuous in  ba, . That is, for any 0 , there exists a positive 

  such that 
ab

xfxf





)()( 21 whenever  21 xx ,  baxx ,, 21  ………………………..(1). 

Again since f  is continuous in  ba, , it is continuous in every sub-interval 

  nrxx rrr ,...,3,2,1,,1   . Therefore, there exist r  and r  in   nrxx rrr ,...,3,2,1,,1    

such that rr Mf )( and rr mf )(  where rM and rm are respectively, the supremum 

and infimum of the function f  in   nrxx rrr ,...,3,2,1,,1   . Then by (1), we have 
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 )()( . The oscillatory sum of f  for the division D , i.e., is 
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 )()( DsDS . Hence f  is integrable in  ba, . 

INTEGRABILITY OF MONOTONIC FUNCTION 

THEOREM 6 :  If a function f is monotonic in  ba,  then it is integrable in  ba, . 

Proof : Since f  is monotone in  ba,  it is bounded in  ba, . Let )(af  and )(bf  are the 

bounds. For the sake of definiteness, let us suppose that the function f  is monotonic 

increasing. Let 0 . Let  bxxxxxaD nr  ,.......,.,,.........,, 210  be a division/partition of 

 ba,  such that the length of each subinterval is  
1)()( 


afbf


 . Let the length of the rth 

subinterval  rr xx ,1  is 1 rrr xx  . Let ))(( sayMxf rr   and  ))(( 1 saymxf rr   are the 

bounds of f  in  rrr xx ,1 . 
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 )()( DsDS .      f  is integrable in  ba, . 



Properties of the Riemann Integral 

 

Prop-1:  If )(xf is integrable in bxa  , then it is integrable in dxc   where 

bdca  . That is, )(xf  is integrable in every subinterval. 

Prop-2:     If )(xf is integrable in cxa  and in bxc  , then it is integrable in 

bxa  . 

Prop-3:     If )(xf is integrable in bxa  , so also is )(xf  where   is any real number. 

Prop-4:  If )(xf  and )(xg are both integrable in bxa  , then )()( xgxf  are also 

integrable in bxa  . 

Prop-5:  If )(xf  and )(xg are both integrable in bxa  , then )()( xgxf   is also 

integrable in bxa  . 

Prop-6:     If )(xf  and )(xg are both bounded and integrable in bxa  , then 
)(

)(

xg

xf
 is 

also integrable in bxa   provided 0)( xg . 

Prop-7:  If )(xf is bounded and integrable in  ba, , then )(xf  is also bounded and 

integrable in  ba, . 

Proof : Evidently, there exists a positive real number k  such that kxf )( ,  bax , . 

Therefore, )(xf  is bounded. Next let 0 . Since )(xf  is integrable, there exists a division 

 bxxxxxaD nr  ,.......,.,,.........,, 210  such that the corresponding oscillatory sum for 

)(xf  is less than  , i.e.,  )()( DsDS . Let rM  , rM are the supremums and rm , rm are 

the infimums of )(xf and )(xf  respectively, in  rrr xx ,1 . Now rxx  21, , we have 

rr mMxfxfxfxf  )()()(( 121)2 .( See justification at the end of the proof) 

rrrr mMmM  .  

So       
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1

. Hence )(xf  is also integrable in  ba, . 

Converse of the above theorem is not true. 

Example : Let   Rbaf  ,  be defined by ,1)( xf    Qbax  ,  

                                                                                        ,1    Qbax  ,                      then f  is 

not integrable on  ba, .  But 1)( xf  for all  bax , . f  is integrable on  ba, .   

 



THEOREM 7 :   If )(xf  be bounded functions integrable in  ba, and 
x

a

dttfxF )()( , 

bxa  , then )(xF  is continuous function of x in  ba, . If however, )(xf  be continuous 

in  ba, . Then at every point of  ba, , )(xF  possesses a derivative and )()( xfxF  . 

 

 

MEAN VALUE THEOREM FOR INTEGRALS 

 

FIRST MEAN VALUE THEOREM 

(GENERALIZED MEAN VALUE THEOREM) 

 

THEOREM 8 :  Let  )(xf and )(x  be two bounded functions integrable on  ba,  and let  

)(x  keeps same sign in  ba, , then  

b

a

b

a

dxxdxxxf )()()(   where Mm   , m  and 

M are the greatest lower bound and least upper bound of f in  ba, . 

Proof : For the sake of definiteness let us suppose that )(x is non-negative. That is, 

0)( x  in  ba, . In  ba,  , Mxfm  )( .   )()()()( xMxxfxm   . Since )(xm , 

)()( xxf   and )(xM are each integrable in  ba, , we have     

dxxMdxxxfdxxm
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 Idxxxf
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  )()(  where Mm   .  

 dxxdxxxf
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  )()()(   where Mm    

COROLLARY : Let  )(xf  be a bounded function integrable on  ba, , then 

  

b

a

abdxxf )(  where Mm   , m  and M are the greatest lower bound and least 

upper bound of f in  ba, . 

Proof :  Let us put 1)( x  in the first mean value theorem(generalized meam value 

theorem) . Then  abdxdxxf
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b
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   1.1).( .  



 

ABEL’S INEQUALITY :  

       If (1) naaaa ...,,.........,, 321  is a non increasing sequence of n positive numbers 

           (2) nvvvv ,,.........,, 321   is a set of any n  numbers   

  and (3) h and H are two numbers such that Hvvvvh n  ......321 for np 1   

then  Havavavavaha nn 13322111 ......  . 

 

SECOND MEAN VALUE THEOREM (BONNET’S FORM) 

THEOREM 9 :  If )(xf  be a bounded monotonic non-increasing never negative function 

defined on  ba,  and )(x  be bounded function integrable on  ba, . Then there exists a 

number of x in  ba, such that dxxafdxxxf
a

b
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 )()()()(  where ba    . 

Proof : Let  bxxxxxaD nr  ,.......,.,,.........,, 210  be any division/partition of  ba,  and 

let 
rM and 

rm are respectively, the supremum and infimum of the function )(x  in 

  nrxx rrr ,...,3,2,1,,1   . Let  rrr xx ,1 .  

Now in  rrr xx ,1 , rr Mxm  )(     11
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and adding we get from (1)  
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Now since )(x  is integrable, 
x
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dxx)(  is a continuous function of x (by theorem )                      

and it must have its supremum ),( sayM and infimum ),( saym .    
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using Abel’s inequality we have  
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afdxxxf )()()(  , where Mm   . Since M and m are the supremum and         

infimum of the continuous function 
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dxx)( , the function 
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dxx)(  must assume every                   

intermediate value of M and m . Therefore, there must exists at least one value   in  ba,  

for which   dxxafdxxxf
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SECOND MEAN VALUE THEOREM (WEIERSTRASS FORM) 

THEOREM 10:  If )(xf  be a bounded and monotonic function defined on  ba,  and )(x  

be bounded function integrable on  ba, .Then there exists at least value of  x  , say  , in 

 ba,  such that  dxxbfdxxafdxxxf
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 )()()()()()(  where ba    . 

Proof : Let )(xf  be monotonically decreasing function so that )()()( bfxfx  is 

monotonically decreasing and positive. Then from S.M.V.T(Bonnet’s form) we have  
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That is, dxxbfdxxafdxxxf
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 )()()()()()(  where ba   .  

FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS 

 

THEOREM 11:  If )(xf is integrable on  ba, and if there exists a function )(x such that 

)()( xfx   on  ba, , then )()()( abdxxf

b

a

  . ( )(x is called primitive of )(xf and 

)(xf  is called derivative of )(x ).  

Proof : Let 0 . Since )()( xfx  is bounded and integrable on  ba, , there exists a 

division/partition  bxxxxxaD nr  ,.......,.,,.........,, 210  of  ba,  such that  

  


n

r

b

a
rr dxx

1

)()( ………….(1) Where r

n

r

r 



1

)( is the Riemann sum for the 

function )(x corresponding to a division D . Considering the rth subinterval       

 rrr xx ,1 , by the Lagrange’s Mean-Value Theorem of differential calculus, we have 

  rrrrrrr xxxx  )()()()( 11
    where  rrr xx ,1 .  

Therefore,   )()()()()(
1 1

1 abxx
n

r

n

r

rrrr   
 

 ……………….(2).   Then by (1) and (2), 

it follows that   
b

a
dxxab )()()( . As  is an arbitrary positive number, we conclude 

that 0)()()(  
b

a
dxxab    or  )()()( abdxxf

b

a

  . 

 

SOME IMPORTANT RESULTS 

RESULT 1:  If )(xf  be bounded in  ba,  and if M and m be the supremum and infimum of 

)(xf  in  ba, , then      
b

a

b

a
abMdxxfdxxfabm )()( . 

Proof : Let  bxxxxxaD nr  ,.......,.,,.........,, 210  be a division/partition of  ba, .  Then 

 10 , xx ,  21, xx ,  32 , xx ,……………,  rr xx ,1 ,…………………,  nn xx ,1  are the subintervals in 

which the interval  ba,  is divided.  Let the length the rth subinterval ,i.e.,  rrr xx ,1  be 

r . Let norm of the division/partition D  is D . Since the function is bounded in  ba,  is 

also necessarily bounded in each of the subintervals . Let rM and rm be the supremum and 

infimum of f  in  rrr xx ,1 . 



If M  and  m  be the supremum and infimum of f  in  ba,  then for every value of r , we 

have,   MMmm rr   

rrrrrr MMmm   . Putting nr .,,.........3,2,1  and adding, we have  





n

r

rr

n

r

r

n

r

rr

n

r

r MMmm
1111

 . 

)()()()( abMDSDsabm  .  

Now if 0D , then     
b

a

b

a
abMdxxfdxxfabm )()( . 

RESULT 2:  If )(xf  be bounded and integrable in  ba,  and if M and m be the supremum 

and infimum of )(xf  in  ba, , then      
b

a
abMdxxfabm )( . 

Proof : Since )(xf  is integrable in  ba,  we have  
b

a

b

a

b

a
dxxfdxxfdxxf )()()( . The form 

the conclusion of the result-1 we get     
b

a
abMdxxfabm )( . 

RESULT 3:  If )(xf  be integrable in  ba, , then there exists a number   where 

Mm   , M and m are the supremum and infimum of )(xf in  ba, , such that 

 abdxxf
b

a
 )( .  

Proof : Since Mm   the result follows from the conclusion of result-2. 

RESULT 4:  If )(xf  be integrable in  ba,  and 0)( xf ,then 0)( 
b

a
dxxf . 

Proof : By result-2, we have  abmdxxf
b

a
 )( . As 0)( xf , 0m and as  ab is the 

length ot the interval  ba, , we have   0ab . Therefore,   0)(  abmdxxf
b

a
. 

RESULT 5:  If )(xf and )(xg  be both bounded and integrable in  ba,  and )()( xgxf  , 

then  
b

a

b

a
dxxgdxxf )()( . 

Proof : Since )(xf and )(xg  be both bounded and integrable in  ba, , )()( xgxf   is also 

bounded and integrable in  ba, . Then by result-4, we have   0)()( 
b

a
dxxgxf . Hence 

 
b

a

b

a
dxxgdxxf )()( . 

RESULT 6:  If )(xf  be integrable in  ba,  then dxxfdxxf
b

a

b

a   )()( .  

Proof : Since )(xf  is integrable in  ba, , 
b

a
dxxf )(  exists and also dxxf

b

a )(  exists (by Prop-7). 

Now   )()()( xfxfxf   ( xx   ) 



  
b

a

b

a

b

a
dxxfdxxfdxxf )()()(  

dxxfdxxf
b

a

b

a   )()(  and  dxxfdxxf
b

a

b

a   )()(  

dxxfdxxf
b

a

b

a   )()( . 

EXAMPLES ON RIEMANN INTEGRATION 

EX 1:  Show by an example that if )(xf  is integrable then )(xf  may not be integrable. 

Solution : Let 1)( xf , when x is rational. 

                                   1 , when x is irrational. be defined in  ba, , ab  . Clearly )(xf is 

bounded in  ba, . Let Let  bxxxxxaD nr  ,.......,.,,.........,, 210  be a division/partition of 

 ba, .  Let the length the rth subinterval ,i.e.,  rrr xx ,1  be 
r . Since the function is 

bounded in  ba,  is also necessarily bounded in each of the subintervals . Let rM and rm be 

the supremum and infimum of f  in  rrr xx ,1 .  

Then   abMfPUDS
n

r

rr

n

r

r  
 11

.1),()(   and the same will be result for every 

possible division/partition of  ba, .  Hence the infimum of the set of all upper sums is clearly 

 ab  . That is,   
b

a
abdxxf )( . Again,  abmfPLDs

n

r

rr

n

r

r  
 11

.1),()(   

and the same will be result for every possible division/partition of  ba, . Hence the 

supremum of the set of all lower sums is clearly  ab . That is,   
b

a
abdxxf )( . 

Therefore,  
b

a

b

a
dxxfdxxf )()( . So )(xf  is not integrable.  

Where as for )(xf  ,   abDsDS
n

r

r  
1

.1)()(   ad it is true for every possible division. So 

in that case  
b

a

b

a
dxxfdxxf )()( and consequently )(xf  is integrable. 

 

EX 2:  If 2)( xxf  , when 10  x . 

                         x , when 21  x .  Evaluate  
2

0
)( dxxf   

Solution : Since 2)( xxf  and xxf )(  are both continuous in  1,0  and  2,1  

respectively, they are integrable in their respective interval. 

Now  
2

1

1

0

2

0
)()()( dxxfdxxfdxxf  

                            
3

1

3

242

1

1

0

2   dxxdxx . 



 

EX 3:  If  xxf  1)( , when 10  x . 

                          1 x , when 21  x ,  Evaluate   
2

0
1 dxx   

Solution : Since  xxf  1)(  and  1)(  xxf  are both continuous in  1,0  and  2,1  

respectively, they are integrable in their respective interval. 

Now  
2

1

1

0

2

0

2

0
)()(1)( dxxfdxxfdxxdxxf  

                             
2

1

1

0
11 dxxdxx . 

                            

2

1

2
1

0

2

22

















 x

xx
x  

                            1  

EX 4:  Show that abdx
x

xb

a

 ,   ba   

Solution : Case-1. When ba 0 . Then for all  bax , , 1)( 
x

x

x

x
xf  is continuous 

in  ba, and hence integrable in  ba, . Therefore,  

b

a

b

a

b

a

ababdxdx
x

x
dxxf )(  

( ba 0 ). 

Case-2. When ba  0 . Then the function 
x

x
xf )(  has only one point of discontinuity at 

0x and hence integrable in  ba, .  

Now if 0 xa , then 1)( 



x

x

x

x
xf  and if bx 0 , then 1)( 

x

x

x

x
xf . 

Therefore,      

0

0

0

0

)(
a

b

a

bb

a

b

a

abbaxx
x

x
dx

x

x
dx

x

x
dxxf     ( 0,0  ab ). 

Case-3. When 0 bxa . Then for all  bax , , 
x

x
xf )(  is continuous in  ba, and 

hence integrable in  ba, . Therefore,   

b

a

b

a

b

a

abbaabdxdx
x

x
dxxf )( . So 

in any case, abdx
x

xb

a

 . 

EX 5:   Using the relation     
b

a
abMdxxfabm )(  estimate 

3

4

sin





dx
x

x
. 



Solution : Since
x

x
xf

sin
)(   is continuous in 









3
,

4


, )(xf is integrable in 









3
,

4


. That is, 


3

4

sin





dx
x

x
 exists.  Also )(xf is bounded and monotonically decreasing in 









3
,

4


. The 

greatest lower bound ( m ) of is 




2

33
)

3
( f  and the least upper bound ( M ) of is 





2

24
)

4
( f  .  

Therefore,     
b

a
abMdxxfabm )(  


















  432

24sin

432

33 3

4













dx
x

x
 

6

2sin

8

3 3

4

 





dx
x

x
. 

EX 6:   Show that 1

1

1




dxx  and also show that   1

1

1




dxxx . 

Solution : xxxf )(  when 01  x  

                                     x    when    10  x .  

Since xxf )( and xxf )(  are both continuous in  0,1  and  1,0  respectively, they are 

integrable in their respective interval. 

Therefore,  




0

1

1

0

1

1

xdxxdxdxx  

                     1  

Also     0)(  xxxxxf  when  01  x  

                                   xxx 2      when    10  x .  

Since 0)( xf and xxf 2)(   are both continuous in  0,1  and  1,0  respectively, they are 

integrable in their respective interval. 

Therefore,    




0

1

1

0

1

1

1

1

2.0)( xdxdxdxxxdxxf  

                                                              1020 x  

                                                             1  

EX 7:   Show that  30234

3

1

3   dxx . 



Solution : Let 33)( xxf  . Clearly, )(xf  is monotonically increasing in  3,1 . Therefore, 

supremum ( M ) of )(xf  is 30)3( f  and infimum ( m ) of )(xf  is 24)1( f . Since 

)(xf  is monotonically increasing in  3,1 , it is integrable in  3,1 . That is, dxx 

3

1

33  exists.  

Therefore, using the relation     
b

a
abMdxxfabm )( , we can have 

   13303132

3

1

3   dxx  

30234

3

1

3   dxx . 

EX 8: If 10  x  show that 2
22

12
x

x

xx



  and hence show that 

3

1

123

1
1

0

2




  dx
x

x
. 

Solution : Let 
x

xf



1

1
)( . Clearly, )(xf  is monotonically decreasing in  1,0 . Therefore, 

supremum ( M ) of )(xf  is 1)0( f  and infimum ( m ) of )(xf  is 
2

1
)1( f . 

Now Mxfm  )(  

1
1

1

2

1





x
 

2
22

12
x

x

xx



   ( 0x ). 

Now for second part, let 
x

x
x




1
)(

2

 .   2x  is continuous and hence integrable in 1,0  and 

x1

1
 is monotonically decreasing in  1,0 and hence integrable in 1,0 . Therefore, 

x

x
x




1
)(

2

  is integrable in  1,0 . Thus dx
x

x




1

0

2

1
 and dxx

1

0

2  exist.  Now we have from the 

first part 2
22

12
x

x

xx



  

dxxdx
x

xx
 




1

0

2

1

0

21

0

2

12
 

3

1

123

1
1

0

2




  dx
x

x
. 

EX 9:   Show that  
3sin

2

9

2 22

6

2 





  dx
x

x
. 



Solution : Let 
x

x
xf

sin

2
)(  . Clearly, )(xf  is monotonically increasing in 









2
,

6


. Therefore, 

supremum ( M ) of )(xf  is 


)
2

(f  and infimum ( m ) of )(xf  is 
3

2
4)

6
(


f . Since 

)(xf  is monotonically increasing in 








2
,

6


, it is integrable in 









2
,

6


. That is, dx

x

x

2

6

sin

2





 

exists.   Now   Mxfm  )(  





x

x

sin

2

3

2
 

 
2

6

2

6

2

6

sin

2

3

2
















dxdx
x

x
dx  

3sin

2

9

2 22

6

2 





  dx
x

x
. 

 

EX 10:   Show that  
642

1
1

0
32





 

xx

dx
. 

Solution : 232 44 xxx    ( 10  x ) 

                     444 3232  xxxx   ( 10  x ) 

Therefore, 232 44 xxx   and 244 32  xx  . 

So, 
232 4

1

4

1

2

1

xxx 



 …………………..(1) 

 Now 
2

1
, 

324

1

xx 
and 

24

1

x
 are all continuous in  1,0  and hence they are intigrable in 

 1,0 . That is,  dx
1

0
2

1
,  



1

0
324 xx

dx
 and 



1

0
24 x

dx
 exist.  

 Now from (1) we have     
232 4

1

4

1

2

1

xxx 



  

                                          







1

0
2

1

0
32

1

0 442

1

x

dx

xx

dx
dx  

                                          
2

1
sin

42

1 1

1

0
32




 
xx

dx
 

                                          
642

1
1

0
32





 

xx

dx
. 



 

 

 

EX 11:   Prove that  5240
1

5
2

1

0
2




  xx

dx
. 

Solution :  11 2  xx    (
2

1
0  x )  and   22 11 xx x  .  Therefore, 11 2  xx  and  

22 11 xx x  .   These imply   
22 1

1

1

1
1

xx x 



 …………………………..(1) 

 Here 1, 
xx21

1


 and 

21

1

x
 are all  

 

continuous in 








2

1
,0  and hence they are integrable in 









2

1
,0 . That is, 

2

1

0

1dx , 


2

1

0
21 xx

dx
and 




2

1

0
21 x

dx
 exist.     Therefore, from (1)     







2

1

0
2

2

1

0
2

2

1

0 11
1

x

dx

x

dx
dx

x
 

                                                                
2

1
sin

12

1 1
2

1

0
2




  xx

dx
 

                                                                524
6

14163

61
5

2

1

0
2







 


xx

dx
 

 

EX 12:   Prove that 10

3

1

3

2

3

1
edte

x
Lim

x

t

x


 



.  

Solution :  At the point  3x ,   0
3

1 2


 dte

x

t . Then by L’ Hospital’s rule the given limit 

becomes  
1

1 2

3

xe
Lim
x




 (using theorem 7 ) 

                   10e  . 

 

EX 13:   Prove that 1
1 0

0

2

2





dte
e

x
Lim

x

t

xx
.  



Solution :  At the point  0x ,   0
0

2

 dte

x

t . Then by L’ Hospital’s rule the given limit 

becomes   

 2

22

1

00

0 x

x

t

x

t

x

e
dx

d

dtedte
dx

d
x

Lim
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2

0

0 x

x
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x xe

dtexe

Lim








 








form

0

0
 

               
22

222

2

2

0 42

2
xx

xxx

x exe

eexe
Lim







 

               1  

EX 14:   Prove that   
3

2
sin

3

0

0

2




 x

x

Lim

x

x
.  (task ). 

EX 15:   If )(xf  be continuous in  ba,  and 0)( xf for all x  in  ba, and if  

b

a

dxxf 0)( , 

prove that 0)( xf ,  bax , . 

Solution :   Let  c  be any point in  ba, . Since 0)( xf ,  bax ,  we must have 0)( cf . 

If 0)( cf then, the result follows immediately. Next let 0)( cf . Since )(xf  is continuous 

in  ba,  and c  be any point in  ba, , )(xf  must be continuous at c . Hence for every 

0 ,however small, there exists a 0  such that  )()( cfxf whenever  cx . 

Let us take 
k

cf )(
 where k is a large positive quantity. That is,  

k

cf
cfxf

)(
)()(   whenever  cx . 

k

cf
xf

)(
)(   

 

b

a

b

a

dx
k

cf
dxxf

)(
)( .( )(xf  is continuous in  ba, and hence )(xf  is integrable in  ba, ) 

  
k

cf
ab

k

cf
dxxf

b

a

)()(
)(    

0
)(

)(   
k

cf
dxxf

b

a

 ( 0)( cf and 0 ). But it is given that  

b

a

dxxf 0)( . Hence 

our assumption , that is, 0)( cf  is not true. Therefore, in any case 0)( cf  

 

 



APPLICTIONS OF MEAN VALUE THEOREMS 

 

EX 16:   If xx 0 then show that  
x

dx
x

x
x

x







2sin
. 

Solution :   Let 
x

xf
1

)(    and  xx sin)(  .  Clearly,  
x

xf
1

)(   is monotonically decreasing 

in  xx ,  and bounded. And xx sin)(  is continuous in  xx ,  and hence                

integrable in   xx ,  .  Then by Second Mean Value Theorem of Bonnet’s form we have 

dxxxfdxxxf

x

x x

 


 





 )()()()(   when  xx    . 

Or, 











x

x

x

xdx
x

dx
x

x
sin

1sin
 

                        xx
x




 cos
1

 

                        coscos
1




 x
x

 

Therefore,    cos
1

cos
1

coscos
1

coscos
1sin

x
x

x
x

x
x

x
dx

x

x
x

x
















 

                                                                                                        
xx

x
x 








2

2
1

coscos
1

                                                                                                         

                                                                                                                ( 1cos x and 1cos  ) 

 

EX 17:   If xx 0 then show that  
x

dx
x

x
x

x







4sin
. 

Solution :   Let 
x

xf
1

)(    and  xx sin)(  .  Clearly,  
x

xf
1

)(   is monotonically decreasing 

in  xx ,  and bounded. And xx sin)(  is continuous in  xx ,  and hence                

integrable in   xx ,  .  Then by Second Mean Value Theorem of Weierstrass’s form we 

have dxxxfdxxxfdxxxf

xx

x x

 


 






 )()()()()()(  when  xx   . 

Or, 














x

x

x

x

xdx
x

xdx
x

dx
x
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sin
1

sin
1sin

 

                          xx x
x

 x
x



 





 


cos

1
cos

1
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x

x
x







 coscos
1

coscos
1

  



Therefore,    x
x

x
x

dx
x

x
x

x












coscos
1

coscos
1sin

  

                                          x
x

x
x







 coscos
1

coscos
1

  

                                       x
x

x
x







 coscos
1

coscos
1

  

                                        x
xxx

x
x
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1

cos
1

cos
1

cos
1

  

                                            x
x

x
x







 coscos
1

coscos
1

  

xxxxxxx
dx

x

x
x

x




















 




42222
2

1
2

1sin
( 1cos x , 1cos x , 1cos  ) 

and  ( 
xxxx

xx












2211

 ). 

 

EX 18:     Show for  12 k ,      
   2

2

1

0
222

4

1
1

1

6116
k

xkx

dx






 


. 

Solution :   Let us chose   in 








2

1
,0 .  Applying First Mean Value Theorem, we get 

   





2

1

0
222

2

1

0
222 11

1

11 x

dx

kxkx

dx


 

                                     2
1

0

1

22
sin

1

1
x

k







 

                                    
221

1

6 



k
 ………….(1) 

Now let us put 0  and 
2

1
  in (1) to get the minimum and maximum values of 

  


2

1

0
222 11 xkx

dx
.  That is, 

   2

2

1

0
222

4

1
1

1

6116
k

xkx

dx






 


. 

EX 19 :   Verify Second Mean Value Theorem of Weierstrass form for the function xx cos2  in 

the interval 









2
,

2


.  



Solution :  Given integrand, that is, xx cos2  can be considered as the product of two 

functions )(xf and )(x  in the following way : 

                                       1) 2)( xxf  , xx cos)(   

                                       2) xxf cos)(  , 2)( xx   

                                       3) xxf )( , xxx cos)(  .  

Let 2)( xxf  , xx cos)(  . Then 2)( xxf   is not monotonic in 









2
,

2


 and hence 

Second Mean Value Theorem of Weierstrass’s form is not applicable for the integrand 

xx cos2 . 

Next let  xxf cos)(  , 2)( xx  . Then also xxf cos)(   is not monotonic in 









2
,

2


 and 

hence Second Mean Value Theorem of Weierstrass’s form is not applicable for the integrand 

xx cos2 . 

Lastly, let xxf )( , xxx cos)(  . Then xxf )(  is  monotonic in 









2
,

2


 and 

xxx cos)(   is integrable in 









2
,

2


 and hence Second Mean Value Theorem of 

Weierstrass form is applicable in 









2
,

2


 for the integrand xx cos2 . 
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