| Chapt’er 12
Fourier Series

12.1 Introduction

The question of representing a function by a trigonometrical series of the form

o0
-(129 + Z(aﬂ cosnr + by, sinnz) (12.1)

n=1
L

arises in many problems. For example it comes up in the solution of certain partial
differential equations by the method of separation of variables. We are not going to
pursue these applications in this treatise, but are mentioning them here merely to point
out that the study of trigonometric series has intimate connections with many branches
of mathematics.

Before beginning our discussions on the series (12.1), we observe that if the series
converges, or diverges at a point z = zg, then it converges or diverges at zg + 2w,
gince each term has period 27; for periodicity implies that the partial sums at zq are
identical with the partial sums at zo + 27, or for that matter at zg + 2nw, where
n is any integer. Thus whenever (12.1) represents a function, it represents a periodic
Junction with period 2x. That means the function f(z), say, must satisfy the functional

equation f(z + 27) = f(z).
Periodic Extension.
Now if we have s function f(z) defined on —x < r < +n, we can define the periodie

extension of f(z). This is indicated in Fig. 12.1, and is obtained by shifting the graph
of f(z)in ~7 <z < 7w by 27, 47, .. 1o the night or 1o the left. '

Figuse 12.1

Observe that the periodicity formuls provides the definition of f{z) outside
~f &£ g w Thusfor ran -32 < 7 € =¥, flz) is defined by J(z) = flz + 2n)

and for z on # < £ < 37, [(2) s defined by J{z) = J{z = 2%) and so on. This leaves
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the value of f(z) undetermined at odd multiples of =. There it can be defined in t_my
manner for that will not affect the form of the series (12.1) associated with it.

We now put below a few results which will be much useful throughout this chapter.
In these calculations m and n are non-negative iniegers not necessarily different.

. x
(i) | sinnzdz=0 =/ sinmz cos nz dz
- =

(i1) cosn:dz:{ 22: 2>0

I
o

T 0, m#n
(iii) sinmzsinnzdr=¢ 7, m=n>0 .
-7 0,b, m=n=0
) T 0, m#Fn
(iv) cosmrcosnzdzr=¢{ @« m=n>0
2y, "m=n=10

-%

These integral formulae (1) — (iv) are called orthogonality formulae.

12.2 Fourier Series: Determination of Fourier Constants
Assuming that f(z) can be représented by a series of the form (12.1) i.e.,
o .
%’- +§(a,; cosnz + bn sinnz) (12.1)

and that the series (12.1) converges uniformly to f(z) on —7 < z < 7, we have

ap = -H i
=) = D) + nZl(a,1 cosnz + b, sin n:::’). _(12.2)

We want to enquire, first of all, into the relations between f(z) and the coefficients

ap, {as} and {b,}. '

Determination of ao, {an}, {bn}.
Assuming that the series (12.1) converges uniformly to f(z) on —7r < 'S
permit term by term integration, we have from _ /=) TRl S B

a [o) . : ‘

f(:z:)): -50- + ’;(an €osnz +.b, sinnz) (12.2) -

x 'ao n hd L : T l .i

/;”f(z)dm:-Q—‘/_ d:c—{-Z(an/ cosn:z:da:+b,,/ sinn:cd:c)
¥ n=1 =x3 7 -
= 7ay. ' ; !
Thus
1 [ " '
A e 4}(:1:) dz. - 5 gt i(12:8)

Next if we multiply (12.2) by coskz (k> 1) it rem- i : EETIETE
—7 <z < 7 and can be integrated term b(y te—rm.) mains uniformly convergent in |
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Thus for k > 1,

x ®
1 dg
f(z)eos kzdr = 7;-/ cos by dr
- - ot 4
E

o ¥

ull

+ 2 lu,l'/ cmurcusl;:d:+b,,/ sinnzu.mkrdr}
n=] - ~

By the results of integration given in int : . . i
- : ) ; rfiven in introduction, there is only one non-vanish .
in this series, and it comes when n = k. Thus ¥ n-vanishing term

/ f(z)coskzdzr = apw ”

whereby j
1 ki
S = ;/ f(z)coskzdz. (12.4)

Similarly multiplying (12.2) by sinkz (k > 1) and integrati ' y
: ying . b - egrating term by term, we
obtain after the application of orthogonality formulae, h

by = %/ f(z)sinkzrdr. (12.5)

Turning the problem around, we can ask how to choose a, and bn so that for a

given function f(z) we have
oQ

fle) = 922 + Z(an cosnz + b, sinnr)

{ n=1

f and we see that if they can be so chosen that term-by-term integration is permissible,
then they are determined by formulae (12.4) and (12.5). In general, if f(z) be only
integrable on —7 < & < 7, the coeflicients {an}, {bn}, can be computed by formulae,
(12.4) and (12.5). In this case the resulting series (12.1) is called the Fourier Series of

f(z) and the numbers are called the Fourier Coefficients. Hence we come to a formal

“definition. _
DEFINITION. Fourier series corresponding to a function f(z) in an interval -7 <z <«

under ceriain conditions (to be specified in the next article) is the trigonometric series

of the form (12.1), i.e,,
. oo

a N -

?0 + Z(an cos nz + b, sin nz) (12.1)

n=1

where ao, {a.}, {bn} are constants determined from

" 1/ - Y A ‘
ao-:._:F/f(x)d;g’ an:;[ﬂf(x)cosnxda; and bnz;[”f(z)smm:dz.

Observation. . '
1. Toindicate that a Fourier series arises from a function f(=), we need another symbol
th it the connotation of convergence. The most

than =, for the equality sign carries wi
is ~. which is read ‘generates’. Thus

common symbol is ~,
f(x) o 922 + z:(a71 cos nz + by, sin nz)

‘n=1

- where {a,} and {b,} are computed by formulae (12.4) and (12.5). '
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k = 0. This is the reason for

2. Note that (12.3) arises from (12.4) by putting
covers both cases.

taking the constant term as %ao rather than ag, for now (12.4)
eriodic, the integrals in (12.4) and (12.5)

3. Since f(z) by its very definition is p ]
could equally well be taken over by any interval of length 2, as shown 1n periodic

extension. ' . _
. 4, The numbers aq, {an}, {bn} are called Fourier constants or Fourier coefficients.
They were applied by the Erench

Series (12.1) has already been called Fourier series.
mathematician J.B.J. Fourier to the study of heat conduction.

12.3 - Dirichlet’s Conditions

In the previous article for the expansion of f(z) in a trigonometric series (12.1); ..

(a) we have assumed the possibility of the expansion of the function in the series,

(b) we have integrated the series term-by-term, (This would have been allowable
but this properties has not been Sﬂoved

if th(_a convergence of the series were uniform, ] : ;

and indeed is not generally applicable to the whole interval in these expansions) and
(c) the discussion does not give us any information as to the behaviour of the

series at points of discontinuity, if such arise, nor does it give any suggestion as to the

conditions to which f(z) must be subjected if the expansion is to be valid.
nt simply because the coefficients

The series thus formed is not necessaril con\_fergg: :
{a,} and {bp} are so defined, and even if the series be convergent, it may not converge

to the function which generated it.

For example, let ‘
f(z)=0 when —m<z<0

=1 when 0<z<m,

1% 1-f7 ;
Then, ag = — f(z)dz = = dr =1,
) T J-x T Jo
1 T T

n = — f(z)cosnzdz = —1—/ cosnzdz = 0,
™ mJo-

-T

1.f* . 1—cosnm 2/nm, n odd
b, == [ sinnzde=——"—=
7 Jo nw 0, n even.

Th.us_ f~ a_;_ + Z(a"_ cos nz + by, sin nz)

n=1
_1+2 sinz+sin3z+sin5:r+
T2 7 1 3 b A

Note that at z = 0, the sum of the Fourier series generaled by f is % and hence is not
equal to f at z = 0 which is 1.
In order to ensure that the Fourier series corresponding to f(z) converges and has

the sum f(z), it is necessary to impose certain conditions on f(z). There are several sets
of sufficient conditions to ensure the convergence of Fourier series, the most important
of which is due to Dirichlet, which we are going to discuss prese,ntly. For that let us

define certain terms.

Piecewise continuous.

A function f(z) is said to be piecewise continuous on [a, b] (i) if th - ‘tion
Pof [a, b] for whi§}} f is continuous on each su-b-inter\[rai, ](18)1} f?::ri-e(;()lsatrsl: })(a:rrtl—-l%)
exist at each partition point z, of R, and finally (iii) if f(a+0) andrf(b—[)) both:axist-
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In dealing "."ith.a function which is piecewise continuous on [—, +n] we will assume
that the function is extended by periodicity. Also we will normalise the value of the
function at the partition points of P by . | ‘

1 . At
(o) = 5 {f(we +0) + flzr =0} .
By periodicity this implies p o : sl
|
f(m) = f(=m)= S {f(-7 +0) + f(x - 0)}.
~ At all other points z, f is continuous, so that

f&)= S Uz +0)+ fz-0))

_holds for all points.

Piecewise monotone.

A function f is called piecewise monotone on [a, b], if there exists a partition P of [a, b)
such that f is monofone on each of the sub-intervals.

Thus if f be piecewise, monotone and bounded on [a, b}, it can have discontinuities
~ of the first kind only. , :

The possibility of the expansion of a function {(z) on —7 < z < 7 in the correspon-
ding Fourier series depends upon some integrals by means of which Dirichlet gave the
first rigorous proof that for a large class of functions the Fourier series converges to
f(z). These integrals again exist under certain conditions, called Dirichlet’s conditions.

Dirichlet’s conditions.

A function f(:::i) will be said to satisfy Dirichlet’s conditions on an interval —~r <z <71
in which it is defined when it is subjected to one of the two following conditions:

(i) f(z) is bounded periodic with period 27 and integrable on —7 < z < 7 and
the interval can be broken up into a finite number of open partial intervals in each of
which f(z) is monotonic; [or in a simpler formm: f(z) is bounded periodic with period
27 and integrable-bn [—7, 7], and piecewise monotonic on [—, 7]};. '

(ii) f(z) has a finite number of points of infinite discontinuity in the interval.
When arbitrary small neighbourhoods of these Eointq are excluded, f(z) is bounded in -

_ the remainder of the interval, and this can be broken up into a finite number of open
partial intervals, in each of which f(z) is- monotonic. - -

Further the improper integral f:' f(z)dz is to be absolutely convergent.

‘Convergence.

When f(z) satisfies Dirichlet’s conditions on —r < . < , the Fourier series correspon-
ding to f(z) converges to f(z) at any paint z on —7 < z < x when f(z) is continuous
“and conveérges to § {f(z+0)+ f(z — 0)} when there is an ordinary discontinuity at
the point. In particular at z = x and z = =7 it converges to'1 {f(—7 + 0) + f(x = 0)}

when f(—= +0) and f(7 — 0) exist. . oy . ’
 We merely content ourselves by stating the conditions, proofs of which are beyond .
the scope of this book. ‘ : :

Observation. ‘ . W

- I the f'uilctions of boimded variation be 'inclut.:led in’ the class of fuﬁdiom avmlable for
discussion, f(z) may be said to satisfy Dirichlet’s conditions. (i) whea it is of bounded
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variation in the whole interval, or_(ii wh:en it haé a finite number of points of infinite
of bounded variation in the remainder of that

discontinuity in the interval and it is
interval, when the arbitrary small neighbourhoods of these points have been excluded:

provided that the improper integral [~ f(z)dz be absolutely convergent.
12.4 0Odd and Even Func.tion's' .
When we corhpute the coeﬁicients.‘.of a Fourier series from its defining function, it is
useful to recall the following facts: ok o
f(c) is even implies f(~z) = f(z) . - S | s
f(z) is odd implies f(-z)=-f(z) . : ! . | -
© f(2) is even implies / f(z)dz = 2 / f(z)dz
K ' -a C ) 0 . -
f(z) is odd implies f(z)dz = 0.
g i . —a I
Thus when f(z) is odd, f(z) 'c§s nz'is c'_>dd whereas f(z)sin nz is even whereby
1 T

an = — f(’z)cosnz&z:ﬂ
-r

x ; ) ; x '
and by = 1 f(z)sinnzdz = -2—/ f(z)sinnzdz "
g T ex - T Jo : ;

. . [ <]
which represent a sine series Z b, sinnz only.
" © n=l1 ' :

Again if f(z) be even, f(z)cosnz is even and f(
Gn = 2—/ f(z)cosnzdz  and b =0
. T Jo .

z)sin nz is odd. Hence

o3 e il . . @p -
indicating a cosine series —- + z an cos nz only.

n=1

12.5 Change of Scale

In-1<y<l!. '
We can havé Fourier serics over other intervals than {—x < z < w}. Let é(y) be
integrable over {=1 € y <1}. If we substitute y = lz/r and let f(z) = ¢(Iz/m), we |
htain Fourier series corresponding to f(z) as - ‘ ,

LI Ll
|

o0
ap - po [
7 3 Z(Gn cos nz + bn sin nz)

n=1
or corresponding to é(y) as
. a . : !
.G N DAY L DY
FrEe o)
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where 1
: W e 1!
| = — _rf(a:) cos nr dz = T‘[qu(y) cos n_;rgdy
and '1
| by, = - f(::) sinnzdr = - / ¢(y) sin —-—-dy

vadently No new problems arise in discu

ssin convergence We have simply made -
a change of scale taking {=7 < z < 7} into -? <y <I}. It is clear. that ghyere are

. sine and cosine series for this new interval.

: Sumimary.

Thus, if f be bounded periodic with penod 2l and mtegrable on [—1 l] and plecewxse '
monotone on [~! I] _

(z).~.—+ 5 (anc08 22 4 by 0in 222)

n=1

where:

/ f(z) coq dz b, = ’/ fa:)sm-*l-—-d:c

Convergence

When f(z) satisfies Dirichlet’s conditions on —I < z < [, the Fourrier series correspon-
ding to f(z) converges to f(z) at any point z on —I < z < I when f(z) is continuous
and converges to 3{f(z+0) + f(z—0)} when theére is an ordinary discontinuity at the

pomt In pa.rtlcular at z'=1 and at z = —I, it converges to 2{f( l+ 0) + f(I =0)}. -

In0<z<27r.
TS

: Substltutmg y = z+nand letting f(z) = ¢(z+1r) (), Fourier series éorrmpohding
to ¢(y) on {0 < < z<- 21r] wnll be - _ : : : :

=3 Z{a,, cos n(y - 'n') + bn sin n(y - 1r)} =3 1 E( 1)"{a,. cosny + b ,8in ny}

2 n=1 : n= 1 | A
where _ _ .
. 1 or : (_l)n 2x
an =2 [ w)cosnly—m)dy= "1 | $l)cosnydy
and _ 1; o : (_l)n. et '
by =— [ @(y)sinn(y—m)dy= ¢(y)sin ny dy
T Jo : T Jo |

or, in aiher words, Fourier series will be

+ Z(a,, cos ny + b sinny)

2x v i 1 ir L ’
'a,.=-;- ; q‘)(y)c’.mﬂyd]{ ~and bn_=-; ; ¢(y) sin ny dy.
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. Summary.

Thus if f be bounded periodic with period 2z and integrable on [0, 2x] and piecewise |
moénotone on {0, 27}, , |

J(z) ~ 2;5- + z(ancosnz-i- b, £in nz)

n=1

whete

Couwrz;m'wc. o, ;
When f(z) satisfies Dirichlet’s conditioris on 0 <z< .2'1', the Fourier series correspon- |
_ ding to f(z) converges to f(z) at any point zon 0 <z < 2x when f(z) is continuous
and converges to §{f(z+0)+ f(z —0)) when there is an ordinary discontinuity at the |
point, In particular, at z =0 and at z = 2, it converges to HIO+0)+ f(27 = 0)}. |

12.6 Sine and Cosine Series: The Interval 0 to = Only

(A) Cosiue serles.

" Let f(z) satisfy Dirichlet’s conditions on 0 € £ < #. That means if f be bounded, |
integrable and piecewise monotone on [0, 7], thén :

&5 -
ap
— + E a, cosnr
2

n=1

where

ao:%/{) f(z)dz and  a, =§/ f(z)cosnzdz
! : 70 ' ’

is .;alled Fourier cosine series corre_spongliné to f(z) on the interval. The series is equal
to %(f(Z-f-U) + f(z — 0)} at every z on 0 < z < x where f(z + 0) and f(z — () exist;
and ié equal to f(0+0) at z = 0 and equal to f(x —0) at z = , provided both f(0+0)
- and f(# — 0) exist. R . o h
If moreover f(z) be continuous on-the interval, the cosine series represents f(z) on
the closed interval 0 < z < . . |
Defining f(z) on —x < z < 0 by the equation f(~z) = f(z), i.e., taking f(z) as an-
_even function we can at once prove the results. , + |

i
H

- 4

(B) Slm'a_serieﬁ.. e
Defining f(z) on <2< by the equation f(~z) = — f ie. i ‘ ¢
odd function, we can show that: 4 f(=2) 5 f(z): m a tak_mg f(x) a8 an 5

If f(z) satisfies Dirichlet’s conditions on 0 < .z < =, that is if f be bounded,

integrable and piecewise monotone on [0, 7], then ;

oo, ." . ~ 4. _ ) »
an sinnz = where b, = 3/ f(z)sinnzdz °
7 Jo .

n=1
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represents f(z) in Fourier sine series on the interval. The series is equal to Hf(z+

0) + f(z — 0)} at every point
w)hen r =0 and £ = m, the SllI:Itl ?snzgrg. z.< 7 when f(z +0) and f(z — 0) exist; and

ObServa.tion.
It may be noticed that when fﬁ{is continuous at the end points z = 0-and z = 7, the
)

cosine series gives the value of the function at th 5 o !
' nct) ese points, th
only gives the value of f(z) at these points only if f(z% is zero 51::2? o e

12.7 Tllustrative Examples

Ex. 1. Expand f(z) = = in Fourier series on th-e iritérfal —7r5 <7 -

Solution. Observe that f(z) = z is bounded and- integrable on ¥ <z £ 7,
(z) = 1 > 0 indicates that f(z) is monotone

; _since‘itf is.continuous there. Further f’
increasing on the entire interval. Thus f(z) satisfies Dirichlet’s conditions on [-m, 7]
Hence the Fourier series corresponding to f(z) =z 18 o :

@ | - R
3 7 ?;l(an cosnz + bp sin nz)

whhere‘ - ;
1 (" : ; 1 [T

' an=—/ zcosnzdzr =0, aos—/' zdzr =0

- ’ o T :

L T

nd z are odd functions, and

1: % s 9 Lt )
b,,:—'—/ #sinnrdz = = rsinnzdz
TJ-x ’ \ . T™Jo

since- £ cosnz a

since z sinnz 18 even. Thus
—2/n, n even

2 [_ cosnz]*+2/’ cosnz:dz___?_'cosnﬂ;_
z o T e 2/n, n odd.

=7 n Jo 0w n
Hence f(z) =< generates Fourier series in the.. form
%9 + Z..(a,-. cosnz + b, 8in nz) — z_: bn gin nz
- n;l n=1 .
e b, sinz+bgsin'2z+basiri3z+b4sin4z+ T
_,[sinz sin2z  sindz sin4z+ R T i 12.6 ~
Fad AN R (12:6) -
Observations. _
s function on the interval. Hence (12.6) is

(1) See that f(z) = z is also a continuou
n-r<z<m

equal to f(z) at any point o That meanson —7 < Z < 7,

i sifi sin2:v+sin3::: sin4z+”
i 1 2 3 4 ;
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Thus when & = §, |
= : 11 T
I S o s IPERN -
7 {l 3 l } whereby 7 T :
~ Again (l') 6) converges to 0 at £ = and at & = -, since f(r ~0) =7 aridd

f(v-»ir +0) = =r,
(3)  For other values of z il converges to t.lu. pcnodnc t.xtcn:slon

(4) f(=) = = being an odd function lms genoratcd a sine series only as cx]:cctcd

Ex. 2. Find  series of cosines of muluplcs of z which will represent f(z) = z on the
closed interval ) € x < m, .

f(x) = x satisfies Dirichlet’s condxtlons on( <z < ™ b

i' the arguments
series in the

‘ml uly on,
form

given in Ex. 1. Hence it can be expanded in Fourier cosine

nu I 2
+ E apcosne  where ao=-— [ zdzr=m
T Jo .

n=1
0, n even

‘ ishar .
ap = ;-‘/; rcosnzrdr = ;.——(cosnw -1)= { ~4/mn?, n odd.

Also f(a:) = r is continuous on 0 < £ < = and hence on 0 < z < m,

!
_ag r 4 [cosz cosaz cos Oz
ek E“"C‘W—r;{ TR i }

ﬁcductlon. ‘ .
g w471 1 1 1 - 1 1 1 e

t - e 4 i —_— e — R
Ak mly O=g { tptes } o mEtgEtgto=g
Ex. 3. Fmd a series of sines of multiples of z wlnch will rcpresent zonl0<z<m,

. Solutwn Let f(::) =z on0 <z < 7. We may define f(z) at the end point =
arbltra.nly (See introduction). But for convenience let us define f (::) =zon0< <.
Then as in EX. 1, we can verify that f(z) = z satisfies Dirichlet's conditions on [0 7).

Hence Fourier sine series correspondmg to f(z) =z is

an sin ne
n=1 .

' ﬁhere X . i -
; ‘ bn——/‘ zsinnz:da:={ =2/n, n even |
T Jo ‘ 2/"» n odd. -

<and therefore for 0 < z <, since f(z) = z is continuous there,
sinz sin2z s i Y
z:::2{ +sm3z . sindz +}

1 2. 773 T34
Observe that f(z) = z being continuous gives the value of ‘
f(z) is zero there, but not atz =m. f(z:) atz =0 only since
Hence
4

- f _1_2 ‘1.3,1,..‘;-' _
r=2 s.n_x—agln z+§§m 17'—.33111413-{-‘...}‘ for 0< 7z <.

R
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Ex. 4. Develop f(2) in Pourier series on R T RS R |
fx) =0, I ~vrezed
=%, for O<xcuw.

Solution. See that f(z) is not defined at z = 0, 7, —7 where it can be defined in sny
manner. For convenience let us take =) =0 olz=-v 0and ”‘ja raiz = r}
, ‘I’!ms [{r)‘!ming continuous on —7 < z < r except 8t r = 0 where there is an mﬂg;,,,;
‘1’5"f0““‘7“"‘}‘, is bounded and integrable there. Further f(z) s monotone on each of
the open intervals —x < z < 0 and 0 < z < ». Thus f(z) satisfies Dirichlet’s condition

on {~#,+x]. Now
» 0) 4
{/ 0'd2+/ td:}:r’
0 ) ,
{/ U«c.ognzdz-i»/ :cosn:dx}:()
n vr
{/ U~sinnz-dr+/ rsinn:d:}

0, n even

L 1
| “;(l—cosmr):{ 2/n, n odd.

The Fourier series corresponding to f(z) on —= < r < 7 18 then

ag =

2
3
i
LN

b
{1
ERE

-;—+2{sin:r+ %sin&r + %sin5z+ }

Ex. 5. Expand in Fourier series z + z? on —x < z < r and deduce that

$om .

=1+ttt
| Solution. Let f(z) = z+ 2% on —7 < z < . We may define f(z) at the end points
| - = 4 arbitrarily. But for convenience we take fz) =z+2?on-x <z <™
Now f(z) is bounded and integrable on [—, +#) because of its continuity on the same

closed interval. Further f'(z) = 1+ 2z, so that f'(z) > 0 forz > —3 and f(z) < 0 for
z< —-;—. ‘Thus f(z) is monotone decreasing on =7 < z < -::,- ‘and monotone increasing
on —1 < z < = whereby f(z) is piecewise monotone on —x < z < 7. Hence f(z)
satisfies Dirichlet’s conditions on [—m, +7]. '

Now

ml*

1 d T g 2 2
x - =t ) dr = =2
ap = _r(:f:+:c)d:z: 37

L/ , 4 - 4/n%, n even
bo T /_,,:(ac.+z Jreenede i memny { —4/n, n odd:

' 'Similarly b, = —2/n when n is even and b, = 2/n when n is odd. |
|  Thus, :
a oo
T+ ?2 e _20_ Yy Z(a,.l cosnz + b sinnz) |
n=1 ‘ » :
7% cosz cos2r cosdz. sinz - sin2z sindzy .
‘“?"4{ PR PR R *2 DL g }

\
[y

s
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And z + z? is a continuous function; hence on —7# < Z < T,

: in % sin 3z
x? {cosz coa2z+cossz____}+2{smz smz.z_*______.,z,.}‘

i 3

1 2

12 93 32

Next at,c—:i:ar, the sum of the series
="'U(""f-f'0)+,I'(1|' 0)}=—{—1r+1r +r+ 77} =7’

whereby

: ’ 1 1 1 1 '____1_2
W2=112—4{-—-1--—1— ------ } or, —+2—2+§7+' _._Gn"

Ex. 6. Obtain the Founer séries expansion of the functlon f(z) = zsinz on [, 7).
Hence deduce that : . : ;

- T
12713 35757

(C.H. 1908)

Solution. First verify that f(() = zsinz satisfies Dirichlet’s conditions on [—, +1r]
Also see that zsin z is an even function of z indicating that it represents a cosine series

of the form 4 + Z a, cosnz. And

n=1

A , 1 . o
ap = -1-/ zsinzdr = —{[-zcosz|%, + coszdz}
TJoxr . o -

1
= ;{——7rcos1r —meosw}p=2. .

LT, L, s S . :
ay= ;r—/ zsinz cosnzdz = 5 z{sin(n + 1)z — sin(n — 1)z}dz

- . -

'When n # s

: __L zcos(nb—-‘l)z_ -<':os(n;+ 1 ):: *
e DA n-1 ’ n+1 I

1 [T fcos(n+1)z cos(n—1)z
: +27r./—1{ n+1 4 n-1 }dz

2 {214'- GoR(n = &, 21r___t°s(" + 7]
2r n—1 n+1 .

= (-1t {ni fon 41r '1}

] I :
= (—1\n-1, Sl , h
—_— ( l) n2 — 1 ¥ —(-l)ﬂ > n2 = 1 ) Slnce cosnm = (__l)n. f

Whenn=1, a; = = zsinz coszdr = =5

r

; 1 = (=1)" cos nz
Hence f(:r) ~1 — 5087 — 2}; ~
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CHAP 12: FOURIER SERIES _ 287
And f (z) = rsinz is continuous, henceon —# <z <7

(—1)" cosnz
n? —1

. 1 1 .
sy B e &
{22_1 42—1+62—1_ }
and the result follows.

Ex. 7. Find the Fourier series of the periodic function f with period 2w, where

1 oo
rsinz=1— —cosz — 2
R AT

Put:r_ﬂ

Y

f@)=0, -r<z<a fl@)=1, a<z<b f(z)=0, b<z<m

* Find the sum of the series for t = 4dn 4 a aﬁd deduce that

men(b—a) 7T—b+a
n

C.H. 2000
5 ( ]

n=]l,

Solution. Argue as in Ex. 4 to show that f satisfies Dirichlet’s conditions.

1.[™ | 1 [t B —
Qg = — f(:L)d:E = - ] dr = a7
FLINTY ; T Ja T
R i . .
Q, = — cos nx dx = —(sin bn — sin an),
T s nm , _
! . 1
by = — / sinnz dr = —(cos an — cosbn)
T nw.
b

-n.'—l

f(x) ~ 2_1r {Z ~(sinbn — sinan) cos nx.+ Z (cosan — cos bn) sinnz }

Since f satisfies Dirichlet’s conditions on convergence, we have

- 7T n=1 ’ n=1

¢ Bea 1.0 , |
f(z) = b2 2.4 1 {Z %(sinbn—s‘man) cosn:n-i—z E(cosan— cos bn) si.nn:c}

Atz = 4m+a, that isatzx=a (period 2), the series converges to § {f(a — 0) + f(a +0)} ‘

(() + 1) = 3, a being an ordinary d15contmu1ty

= : : n=1

1 b= L '
Z = inbn — sinan =
> = {2 s inan) cosan + Z —(cosan — cos bn) sin an}

b -{a T—b+a 1 Z sinbn cosan — cos bn sin an
o o '

1
ThUS 5 - == =

nl

Ex. 8, Compute f(z) in Fou11e1 series on the interval - 2 <z <?2if

, i s 12 - f(m):O, for =2 <7< 03
TR

=1, for O0<z<?2.
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Solution. Argue asin B 4, and show that f(z) satisfies Dirichlet’s conditions. Now

1 0 2
g = ;,‘{/ 0-d;c+/ 1-dz}=1
S -2 0 .
1 q n 2 nw Tz § i )
an=;;{/ ()cos(2 )dl—l—/o 1-cos(7.7:)(1 =
~2

I

by = j {/_02 O‘. sin (92335) il i /02 1.sin (%ﬁx) da:}

1 ] | 0, 7 even
- ;"-7?( ‘—‘cosmr) - {2/n1r n odd.
Thus on —2 < < 2, Fourier series corresponding to f(z) is

_1_+ 2o 7r1:+ i P ‘37r:v+ lsin@-i----}
2T |2 T3y T o
Examples XII

1. Show that on:—7 < z < , if f(z) be even, b, = O and that if f(z) be odd,

a, = 0.
2. (i) Obtain Fourier series corresponding to f(z) = z on [—7, +7] and show that
. " {sin:c sin2z  sin3z  sindz 3 }

1 5 T3 Ty
and hence deduce that 1 — 1 3+ £ = ; P B
(ii)- Show that Fourier series concspondmg tox?on —m<z<7is

cosnr
~4 12( b

n=1

and hence deduce that

1 11 1 T R A 1
y Py e oy Je e Foe L e
taEtpt=gT RiE gt T

1 1 I %
1 ._!_...2_2.
+32 51 87T

(iii) Prove that f(z) = 242 on —7 < z < 7 has the Fourier series

2
. 2_ T cosT  cos2r cos 3T -
r+z ——3——4{.12 ~ 53 + 3 _}
‘ sinz  sin2z sin3z
+2 — - —— 4y 2= L
{ 1 2 7 3 }
Deduce that
: 1 ol 1 el 1 1 1,
]_2 22 32 -”I_-Eﬂ. »

(iv) If f(z) = -z, for —r<z<0
= 0, for O<z<qm
then show that Fourier series conespondmg to f(z) on Lo e 58

o e Z co(s2(jn =il )m Z (— 1)" sin nz

nl
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CHAP 12: FOURIER SERIES i, 289

(v) State Dirichlet’s conditions for convergence of a Fourier series. Prove that if
the periodic function (with period 27),

-1 for —Tt<z<0.

flz) =
= 0 for - z=0,
= +1 for O<z<m,
then f(x )_=%(Si“‘“+5i“31+51“5“’+---), : i . [C.H. 1996}

Deduce that T=1- 3 Lid g—= Lo
What is the value of the series for £ = :!:7r and T = 07

(vi) Prove that the even functlon f(z) = |z| on — < z < 7 has a cosine series in
Fourier’s form as

|T| T 4 ;}_c033m+c0552:+;l |
x 5 o7 COST P 2 4 .

Apply Dirichlet’s conditions of convergence to show that the series converges
to |z| throughout —7r Ly < i

Also show that 14+ % + & + % + - = 72 [C.H. 1994]
(vii) Let. f(z) = =, 0<2<E, '
= T—x, % S T S m,

—f(-=z ) -t <x<0.
Verify that f satisfies Dirichlet’s condition on [—7r 7]. Obtain the Fourier

series for f in |-, Tr] [C.H. 1988
[Ans. 320, -4, sin 27 sinna i

3. Obtain the Fourier series corresponding to the following functions on [—m,7]:

(i) f(z) = 0, when —mr <z <0
- =, when O<z<m
[Ans. Z +2(sinz + 4 sin3z + §sin5z + - )]
(i) f(z) = —%F, when -7 <z <0 '
= 7, Wwhen O<z<m

.[Ans. sinz + %sin3z + £ sin5z + -]

(iii) f(z) = 0 for -1 <z <0
%at z=0
1 for 0<:z:<7r

"'"" [

[Ans. 1+ 2(sinz + §sin3z + Lsinbz +-- )
(iv) f(z) = =, for -7 <2 <0 [C.H. 1985
= 2z, for 0Lz <7
(v) f(z) = 0, for —m<x<0
= sinz, for 0<zx <7
[Ans. 2 - 2% | -l cos2nz + 4 sinz] |
(vi) f(x) 0, when -t <2 <0 . [C.H. 1993)

i

1, when 0<z<m
[Ans. 3+ 23> ~l_sin(2n+1
S 31 7 2n=o 3oy SID(2n + 1)1
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