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UNIT-I                                                                                         Dr. Pradip Kumar Gain 

Syllabus for Unit-I:   Review of algebraic and order properties of R ,               

 neighbourhood of a point in R . Idea of countable sets, uncountable sets 

and uncountability of R . Bounded above sets, bounded below sets, bounded 

sets, unbounded sets. Suprema and infima. Completeness property of R and 

its equivalent properties. The Archimedean property, density property of 

rational and irrational numbers in R . Intervals. Limit point of a set, isolated 

points, open set, closed set, derived set, illustrations of Bolzano-Weierstrass 

theorem for sets, compact set in R , Heine-Borel Theorem.     

 

DEFINITION (Natural Numbers) : The numbers 1,2,3,……….that were discovered in the 

natural process of counting are known as natural numbers.  

The set of all natural numbers is denoted by N , i.e.,  .,.........3,2,1N . 

The set of natural numbers can be determined in terms of some axioms, formulated by G . 

Peano in 1889. 

Peano’s axioms : 

Axiom 1.    N1 . That is, 1 is a natural number. 

Axiom 2.    For every natural number Nn , there exists a unique natural number Nn  ,     

                   called the successor of n and n is called the predecessor of n . 

Axiom 3.    There exist no predecessor of N1 . That is, 1 is not successor of any natural  

                   number. 

Axiom 4.   If two natural numbers have the same successors then they are themselves  

                  equal. That is, mnmn   

Axiom 5.    If G  be any set of some natural numbers, such that (i) G1 and  

                   (ii) GnGn  , then G  contains all natural numbers, i.e., NG   

                   (Axiom 5 is known as principle of finite or mathematical induction) 

Well ordering principle of the set of natural numbers : 

THEOREM 1.1: (Well ordering principle ) Every non-empty subset of N has a least element. 



 

          The set  .,.........3,2,1N of all natural numbers is closed under addition and 

multiplication but not closed under the subtraction and division operations, i.e., the 

difference between any two numbers of N are not always a member of N and quotient of 

any two natural numbers are not always a member of N . That is why it became necessary 

to extend the system of natural numbers by introducing negative of natural numbers and 

the number zero 0. Thus to every natural number(positive integer) Nn there is a unique 

integer n , called additive inverse of n such that   0 nn , where 0 has the property 

such that nn 0 and 00. n for each integer n .  

DEFINITION : (Integers) The union of set of natural numbers and the set of all negative 

integers 1,2,3.........   and the singleton set   0  is called the set of all integers. The set 

of all integers is denoted by Z . That is,  ....,.........3,2,1,0,1,2,3......... Z . 

Clearly, ZN  . 

       Now the set  ....,.........3,2,1,0,1,2,3......... Z  of all integers is closed under addition, 

multiplication and subtraction but not closed under the division operation. That is why it 

became necessary to extend the system of all integers.  

DEFINITION : (Rational Numbers) Any number which can be expressed as the ratio
q

p
 

where Zp , Nq  and p and q are prime to each other is called a rational number. The 

set of all rational numbers is denoted by Q .  

Clearly, QZN  . 

EXAMPLE : i) 
1

5
5  , NZ  1,5  (ii) 

1

3
3


 , NZ  1,3 (iii) 

4

3

4

3
 , NZ  4,3 (iv) 

2

7

2

7 
 , NZ  1,7 . Clearly 5 , 3 ,  

4

3
, 

2

7
  are examples of rational numbers. 

 

pecial Characteristics of rational numbers : Any rational number can be transformed either 

into a finite decimal form or an infinite recurring decimal form. For example, let us consider 

the rational numbers 
4

3
and 

3

4
. We see that 75.

4

3
 (a finite decimal form) and 

3.1......33333333.1
3

4  (an infinite recurring decimal). 

Now the set Q  of all rational numbers is closed under addition, multiplication and 

subtraction and division. 

 

ORDER PROPERTIES OF Q : 

(i) If  a and b  are two rational numbers, i.e., Qba ,  then either ba   or ab  ( law of 

trichotomy) 



(ii) If a , b and c  are three rational numbers, i.e., Qcba ,,   then ba   and cb    

ca  (transitive law) 

(iii)  cbcaba  for any Qcba ,, . 

(iv)  ba   and bcacc  0  for any Qcba ,, . 

In view of the above order properties we say that the set Q  of all rational numbers is an 

ordered set. 

 

DEFINITION : (Irrational Numbers) Any number which is not a rational number is called an 

irrational number. The set of all irrational numbers is denoted by I .  

DEFINITION : (Real Numbers) The union of the set of all rational numbers and the set of all 

irrational numbers constitute the set of all real numbers. The set of all real numbers is 

denoted by R . That is, IZR  . 

Clearly, RQZN  . 

 

ORDER PROPERTIES OF R : 

(v) If  a and b  are two real numbers, i.e., Rba ,  then either ba   or ab  ( law of 

trichotomy) 

(vi) If a , b and c  are three real numbers, i.e., Rcba ,,   then ba   and cb    

ca  (transitive law) 

(vii)  cbcaba  for any Rcba ,, . 

(viii)  ba   and bcacc  0  for any Rcba ,, . 

In view of the above order properties we say that the set R of all real numbers is an ordered 

set. 

 

ALGEBRAIC PROPERTIES OF R : 

Addition and multiplication are defined on the set R . 

Under addition(+)  

(i) Rba   for all Rba , (Closure property) 

(ii)    cbacba   for all Rcba ,, (Associative property) 

(iii)  There exists an element 0 in (called the zero element or additive identity) such that 

aa 0  for all Ra .(existence of additive identity) 

(iv)   For each Ra  there exists an element Ra such that   0 aa ( existence of 

additive inverse for each element) 

(v)   abba   for all Rba , (commutative property) 

              Under addition R is an abelian group. 

Under multiplication(.)  

(vi)      Rba .  for all Rba , (Closure property) 

(vii)    cbacba ....   for all Rcba ,, (Associative property) 



(viii) There exists an element 1 in (called the unity or multiplicative identity) such    

that aa 1.  for all Ra .(existence of multiplicative identity) 

(ix)       For each Ra  there exists an element R
a


1
such that 1

1
. 
a

a ( existence of 

multiplicative inverse for each element) 

(x)      abba ..   for all Rba , (commutative property)                                                     

Under multiplication R is a commutative group. 

(xi)   cabacba ...   for all Rcba ,, (left distributive property) 

        cbcacba ...   for all Rcba ,, (right distributive property) 

The set R  of real numbers obeys all the field axioms. Also R  is an ordered set. 

 Hence R  is an ordered field. 

 

NOTE : It should be noted that the set Q  of all rational numbers also obeys all the field 

axioms as well as order properties and hence Q  is also an ordered field. 

 

DEFINITION : (Intervals)  Let Rba . such that ba  . We write 

(i)    bxaxba  :, (called closed interval) 

(ii)    bxaxba  :, (called open interval) 

(iii)    bxaxba  :, (called left closed right open interval) 

(iv)    bxaxba  :, (called right closed left open interval) 

 

DEFINITION : (Bounded above set)  A set S  of real numbers is called bounded above if 

there exists a real number b  such that bx  , Sx . The number b  is called upper bound 

of S . 

An upper bound may or may not belong to the set S . Every real number greater than an 

upper bound of a set is also an upper bound of that set. So a bounded above set has infinite 

number of upper bounds. 

EXAMPLE : Let us consider the following sets : 

 2,11 S  is bounded above set. Here 2 is obviously an upper bound of S since 2x , 

Sx . Every real number greater than 2 is also an upper bound of the set 
1S . 2 is the least 

of all upper bounds of the set 1S . 

 2,12 S  is bounded above set. Here 2 is obviously an upper bound of S since 2x , 

Sx . Every real number greater than 2 is also an upper bound of the set 2S . 2 is the 

least of all upper bound of the set 2S . 
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1
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1
,13S  is bounded above set. Here 1 is obviously an upper bound of 3S  

since 1x , Sx . Every real number greater than 1 is also an upper bound of the set 3S . 

1 is the least of all upper bounds of the set 3S .  



4S  is bounded above set. Here every real number is an upper bound of 
4S . 

Least of all upper bounds is called least upper bound  or l.u.b or supremum of the set. 

 

NOTE : A set may or may not contain l.u.b . In the above example 
1S  & 3S contain l.u.b but 

2S  does not contain l.u.b. 

DEFINITION : (Bounded below set)  A set S  of real numbers is called bounded below if 

there exists a real number a  such that ax  , Sx . The number a  is called lower bound 

of S . 

A lower bound may or may not belong to the set S . Every real number smaller than a lower 

bound of a set is also a lower bound of that set. So a bounded below set has infinite number 

of lower bounds. 

EXAMPLE: Let us consider the following sets : 

 2,11 S . Here 1 is obviously a lower bound of S since 1x , Sx . Every real number 

smaller than 1 is also a lower bound of the set 
1S . 1 is the greatest of all lower bounds of 

the set 
1S . 

 2,12 S . Here 1 is obviously a lower bound of S since 1x , Sx . Every real number 

smaller than 1 is also a lower bound of the set 2S . 1 is the greatest of all lower bounds of 

the set 2S . 









 ....,.........
3

1
,

2

1
,13S . Here 0 is obviously a lower bound of 3S  since 0x , Sx . Every 

real number smaller than 0 is also a lower bound of the set 3S . 0 is the greatest of all lower 

bounds of the set 3S .  

4S  is bounded below set. Here every real number is a lower bound of 4S . 

greatest of all lower bounds is called greatest lower bound  or g.l.b or infimum of the set. 

NOTE : A set may or may not contain g.l.b. In the above example 
1S  contains  g.l.b  but 2S &  

3S  do not contain g.l.b . 

 

DEFINITION : (Bounded set)  A set S  of real numbers is called bounded if it is both bounded 

above and bounded below. 

 

DEFINITION : (Suprema) Least of all upper bounds of a bounded above set is called least 

upper bound  or l.u.b or supremum or suprema of the set. 

EXAMPLE : Let us consider the following set : 


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1
,1S  is bounded above set. Here 1 is obviously an upper bound of S  since 

1x , Sx . Every real number greater than 1 is also an upper bound of the set S . The 

set of all upper bounds of S is  ,1 . Clearly 1 is the least of all upper bounds of the set S .  

Therefore, supremum or suprema of S is 1. That is, 1sup S  



 

DEFINITION : (Infima) Greatest of all lower bounds of a bounded below set is called 

greatest lower bound  or g.l.b or infimum or infima of the set. 

EXAMPLE : Let us consider the following set : 


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
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 ....,.........
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,
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1
,1S  is bounded below set. Here 0 is obviously a lower bound of S  since 

0x , Sx . Every real number smaller than 0 is also a lower bound of the set S . The set 

of all lower bounds of S  is  0, . Clearly 0 is the greatest of all lower bounds of the set 

S . Therefore, infimum or infima of S is 0. That is, 0inf S  

 

DEFINITION : (Greatest member of a set) A real number m is called the greastest member 

of a set S if (i) Sm (ii) m is an upper bound of S . 

EXAMPLE: Let us consider the set  2,1S . Clearly, 2 is the greatest member of the set S , 

since (i) S2 and (ii) 2 is an upper bound of S . 

Again if we consider the set  2,1S , we see that this set has no greatest member, for, 2 is 

obviously an upper bound of S since 2x , Sx but S2 . 

NOTE : An infinite bounded above set may or may not contain greatest member. 

NOTE : Every finite set has always a greatest member. 

 

DEFINITION : (Smallest member of a set) A real number n is called the smallest member of a 

set S if (i) Sn (ii) n is a lower bound of S .  

EXAMPLE: Let us consider the set  2,1S . Clearly, 1 is the smallest member of the set S , 

since (i) S1 and (ii) 1  is a lower bound of S . 

Again if we consider the set  2,1S , we see that this set has no smallest member, for, 1 is 

obviously a lower bound of S since 1x , Sx but  S1 . 

NOTE : An infinite bounded above set may or may not contain smallest member. 

NOTE : Every finite set has always a smallest member. 

 

THEOREM 1.2: Let L and U be two proper subsets of R of real numbers such that  

(i)  RUL   

(ii)  L , U    

Then either the subset L  has a greastest member or the subset U  has a smallest member. 

 

Completeness property of R  

THEOREM 1.3: (Least upper bound axiom) The set of all upper bounds of a bounded above 

set admits of a smallest member. 

Proof : Let S  be the given bounded above set. Let R  be the set of all real numbers. Let us 

consider two proper subsets L and U  of R defined as follows: 

 xxL : is not an upper bound of S  



 xxU :  is an upper bound of S  

Clearly, L  and U . Also RUL  and L , U   . Then by theorem 

1.2, we can say that either the subset L  has a greastest member or the subset U  has a 

smallest member. Let us suppose that L  has a greastest member(say  ). Now L .Then 

 U  is not an upper bound of S . Then there must exist a number S such that 

  . Let b is a real number such that   b . Now )1.....(..........Ubb   

Again bb   is not an upper bound of S and this implies )2......(..........Ub  

Here we see that (1) and (2) contradicts each other. So L  cannot have greatest member. 

Therefore, by theorem 1.2, we can say that U  has a smallest member. 

 

THEOREM 1.4: (greatest lower bound axiom) The set of all lower bounds of a bounded 

below set admits of a greatest member. 

Proof : Proof is left to the students. 

In view of above axioms, i.e., theorem 1.3 & theorem 1.4 , the set R of all real numbers is 

complete. 

 

 

ARCHIMEDEAN PROPERTY OF REAL NUMBERS 

 

THEOREM 1.5: (Archimedean property)  If  Ryx ,  and 0x ,then there exists a positive 

integer n such that ynx  . 

Proof :   If possible let ynx  . Let  ..,.........3,2,1:  nnxA . Clearly, y is an upper bound of 

0x . Therefore, A  is bounded above set. Also A . Hence by l.u.b axiom, least upper 

bound i.e., supremum of A ( Asup ) exists ( m say), where Rm . 

Now 0x  

  0 x  

  mxm   

  xm is not an upper bound of A . 

Therefore, pxxm  , for some integer p . 

That is,   kxxpm  1  (say) (taking 1 pk ) 

m is not an upper bound of A . 

m is not Asup ………… a contradiction.  

Hence ynx  . 

 

DENSITY PROPERTY  OF R  

 

THEOREM 1.6: (Density property)  If x and y  are two real numbers such that yx  , then 

there exists a rational number r  where yrx  . 



Proof :  Case-I  Let us suppose that 0x  and yx 0 . Then 0 zxy . Then by 

Archimedean property, there exists a positive integer n such that 1nz . That is, 

  1 xyn . Which implies  xy
n


1

.  

Let  








 x
n

m
NmmA ,: . Clearly, A .(by Archimedean property). By well-principle of 

natural numbers, we know bthat every non-empty subset of natural numbers has a least 

element. Let A  has the least element 1p . Then x
n

p
  but x

n

p


1
. Thus 

 xyx
n

x
n

p


1
. This implies y

n

p
 . Already we have x

n

p
 . So y

n

p
x  . 

Therefore, there exists a rational number r
n

p
 (say) contained in yx 0 . 

Case-II   Let us suppose that yx  0 . Then by Archimedean property, there exists a 

positive integer n such that 1ny . Therefore, y
n


1
.  This implies y

n
x 

1
. Therefore, 

there exists a rational number r
n


1
(say) contained in yx  0 . 

Case-III   Lastly, let 0 yx . Then xy 0 . Then by case-I, there is rational number 

r such that xry  . This implies yrx  .  

This completes the proof.  

 

CONCLUSION: The existence of one rational number between x  and y  implies the 

existence of infinitely many rational numbers between x  and y .  

Hence R  is dense with rational numbers. 

 

 

COUNTABILITY :  COUNTABLE SETS 
 

DEFINITION : (Equivalent set) For any two sets A  and B , if there exists a one-to-one 

mapping from the set A  onto the set B , we say that A  is equivalent to B . Symbolically, 

A ~ B . 

 

DEFINITION : (Enumerable/Denumerable set) An infinite set A  is said to be enumerable or 

denumerable if A  is equivalent to the set N of all natural numbers. In other words A  is said 

to be enumerable if there exists a bijective mapping ANf : . 

 

DEFINITION : (Countable set/ Uncountable set)  A set which is either empty or finite or 

enumerable is called countable set. Otherwise it is  uncountable. 

NOTE : An enumerable set is sometimes called countably infinite set. 



 

DEFINITION : (Atmost countable set)  A set A  is called atmost countable if A is either finite 

or a countable set.  

 

EXAMPLES OF COUNTABLE SETS 

 

(A)  The set  .,.........6,4,2S  of all even natural numbers is enumerable(i.e., countable) 

because there exists a a one-to-one onto mapping( bijective) SNf :  defined by 

,2)( nnf   Nn ( In other words S ~ N ) 

(B) The set  .,.........6,4,2,0S  is enumerable(i.e., countable) because there exists a a 

one-to-one onto mapping( bijective) SNf :  defined by 2,2)(  nnf  Nn ( In 

other words S ~ N ) 

(C) The set  ..........3,2,1 222S  is enumerable(i.e., countable) because there exists a a 

one-to-one onto mapping( bijective) SNf :  defined by ,)( 2nnf   Nn ( In 

other words S ~ N ) 

(D) The set  .,.........3,2,1N  is enumerable(i.e., countable) because there exists a a 

one-to-one onto mapping( bijective) NNf :  defined by ,)( nnf   Nn ( In 

other words N ~ N ) 

(E) The set  .,.........3,2,1,0 Z  is enumerable(i.e., countable) because there exists a 

a one-to-one onto mapping( bijective) ZNf :  defined by  

      
2

)(
n

nf  if n is even 

                    
2

1 n
  if n is odd ( In other words Z ~ N ) 

 

THEOREMS ON COUNTABILITY 

 

THEOREM : 1.7    An infinite subset of an enumerable set is enumerable. 

COROLLARY :       A subset of an enumerable set is either finite or enumerable. 

THEOREM : 1.8    The union of a finite set and an enumerable set is enumerable. 

THEOREM : 1.9    The union of two enumerable sets is enumerable. 

THEOREM : 1.10  The union an enumerable numbers of enumerable sets is enumerable. 

THEOREM : 1.11   Every superset of an uncountable set is uncountable. 

THEOREM : 1.12   If BAf : is a bijective mapping( i.e.,one-to one onto) and B  is  

                                  enumerable then A  is also enumerable. 

 

 

 

 



PROBLEMS : 

 

 

P-I : Show that the set Q  of rational numbers is countable. 

Solution:  Let Q  be the set of all positive rational numbers, Q  be the set of all negative 

rational numbers. Then obviously,  0  QQQ .  

Let us consider the following collection of sets: 
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                      . 

                      . 
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,
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,
1

n

n

nnn
An  

                       . 

                       . 

                       . 

                       . 

Clearly, 




 
1

321 ..............................
n

nn AAAAAQ .  Now 
1A  is enumerable 

since there exists a bijective mapping ( i.e.,one-to one onto) 1: ANf   defined by 

1
)(

n
nf  , Nn . Similarly, 2A  is enumerable since there exists a bijective mapping ( 

i.e.,one-to one onto) 2: ANf   defined by 
2

)(
n

nf  , Nn .    

Thus we can see that each of  the  sets ...,..........,,.........,, 321 nAAAA is  an enumerable set. 

Also the collection ...,..........,,.........,, 321 nAAAA is  an enumerable collection sets.              

Therefore, 




 
1

321 ..............................
n

nn AAAAAQ is the union of an 

enumerable collection of enumerable sets. Hence Q  is enumerable. Similarly, it can be 

shown that Q  is enumerable. [ Alternative proof : Since Q  is enumerable and there exists 

a bijective mapping ( i.e.,one-to one onto)  QQf :  defined by xxf )( , Qx ,  Q  

is also enumerable.] 

Therefore,   QQ  is enumerable because the union of two enumerable sets is 

enumerable. 



Since  QQ  is enumerable and 0 is finite set,  0  QQ  is enumerable. That is,     

Q    0  QQ  is enumerable. 

 

P-II : Show that the set  1,0  is not enumerable. Hence show that the set R of 

real numbers is not enumerable. 

Solution: If possible let the set  1,0  is enumerable. Then the numbers in the set  1,0  can be 

described as .......,.........,, 321 xxx .  That is, they can be arranged in a succession. Also each 

real number in  1,0  can be written as infinite decimal forms in the following way. 

    .01 x ..............54321 aaaaa  

    .02 x ..............54321 bbbbb  

    .03 x ..............54321 ccccc  

     . 

     . 

     . 

Let us consider a real number .0x .............pqrst  

where )(6 sayp  if 61 a                 )(5 sayq  if 52 b  

               )(7 say if 61 a                    )(6 say if 52 b           and so on. 

According to construction of x in the way described above,  1,0x . But According to the 

numerical value of  x ,  1,0x .  We thus arrived at a contradiction.   

Therefore, the set  1,0  is not enumerable.  

2nd  part :    R1,0 .  R i.e., the superset of a non-enumerable set  1,0  is not enumerable.  

 

COROLLARY :   The set I of all irrational numbers is non-enumerable. 

Proof :  Let I  be the set of all irrational numbers. Then RIQ  . We know tha the union 

of two enumerable sets is enumerable. Since R  is not enumerable, I cannot be enumerable 

although Q  is enumerable. 

 

DEFINITION : (Nested intervals)  If  ....,.........,, 321 III be a family of intervals such that 

nn II 1 , Nn  then the family  ....,.........,, 321 III is said to be a family of nested 

intervals. 

EXAMPLE :  Let  1,01 I , 









2

1
,02I , 










3

1
,03I ,…………… be a family of intervals. Clearly, 

.............321  III Therefore, the family  ....,.........,, 321 III is a family of nested 

intervals. 

 

THEOREM : 1.13   If       ...,.........,,,,, 332211 bababa be a family of nested closed and 

bounded intervals then        ...............,,, 332211 bababa   



 

P-III : Show that the closed interval  ba,  is not enumeable. Hence show that 

the set R of real numbers is not enumerable. 

Solution: If possible let the set  baI ,  is enumerable. Then the elements I of can be 

described as .......,.........,, 321 xxx .  That is, they can be arranged in a succession. That is, 

   ..,.........,,, 321 xxxbaI  . Let us divide the interval  baI ,  into three subintervals 

 ca, ,  dc, ,  bd , (say). Atleast one these three subintervals does not contain 
1x . Let us call 

that subinterval by 
1I . Again Let us divide the interval 

1I  into three subintervals such that 

atleast one these three subintervals of 
1I  does not contain 

2x . Let us call that subinterval 

by 
2I . So 

2I  does not contain both 1x and
2x . Continuing this process we can obtain a family 

of closed and bounded subintervals 3I , 
4I  , 5I ,…………………………………………………such that   

1I  does not contain 
1x  

2I  does not contain 
1x and

2x  

3I  does not contain 1x , 
2x , 3x  

       . 

       . 

nI  does not contain 
1x , 

2x , 3x ,…………….., nx  

      . 

      . 

      . 

Now by the construction of 1I , 
2I  , 3I ,……,   ......................321 nIIII ………(1) 

Again as   . . . . . . . .. . . . . . . . . .. . . . . . . . . .321  III ,  by the theorem of nested interval , we must 

have  ......................321 nIIII ………….(2). Clearly, (1) and (2) contradicts each 

other. Hence  baI ,  is not enumerable. 

2nd  part :    Rba , .  R i.e., the superset of a non-enumerable set  ba,  is not enumerable.  

 

P-IV :  Show that the set R of all real numbers is not enumerable(i.e., not 

countable).                

Solution: If possible let the set R  is enumerable (i.e., countable). Then the elements R of 

can be described as .......,.........,, 321 xxx .  That is, they can be arranged in a succession. That 

is,  ..,.........,, 321 xxxR  . Let us consider the following open intervals : 











21211
2

1
,

2

1
xxI  











32322
2

1
,

2

1
xxI  

         . 



         . 











 11 2

1
,

2

1
nnnnn xxI  

         . 

         . 

         . 

Now   1111 IxIx   

          2222 IxIx   

         . 

         . 

         . 

         nnnn IxIx   

        . 

        . 

        . 

Therefore,         ...................321  nxxxx  .....................321  nIIII  

That is, .....................321  nIIIIR  ……………(A). 

Length of 
2

1
1 I ,  length of 

22
2

1
I ,………, length of 

nnI
2

1
 ,………………. .    The total length 

of 1I , 
2I  , 3I ,…… 1

2

1
1

2

1
1

2

1
1

2

1

.........
2

1

2

1

2

1
32
















n

n

   when n  

Relation (A) shows that the whole real line ( whose length is infinite ) is contained in the 

union of intervals whose length add upto 1 which is clearly, not possible.  

Hence R  is not enumerable (i.e., not countable). 

 

DEFINITION : (  neighbourhood) Let   be a real number. Then any open interval of which 

  is a member is called a neighbourhood of  . 

In particular, for any 0 , the open interval    ,  is called  neighbourhood of 

 . 

 neighbourhood of   is denoted by )(N  

EXAMPLE :  By 01. neighbourhood of 5  we mean the open interval (5-.01 , 5+.01), i.e., we 

mean the open interval (4.99 , 5.01). Symbolically, )01(.5N (4.99 , 5.01). 

 

DEFINITION : (Interior point) Let A  be any non empty linear point set. Any element Ax  

is said to be an interior point of A  if there exists some neighbourhoods of x  which lie 

wholly in A . 



EXAMPLE :  Every point of  3,2  is an interior point. Where as every point of  3,2  except  2 

and 3 is an interior point. 

 

DEFINITION : (Interior of a set) The set of all interior points of a set A  is called interior of A . 

 

DEFINITION : (Open set)  A linear point set A  is called an open set if and only if every point 

of A  is an interior point of A . 

EXAMPLES : (i) Any open interval is an open set. (ii)   is an open set. (iii) The set 

  ,R  an open set. (iv) Afinite set is not an open set. 

(v)  The set Q  of all rational numbers is not an open set. 

 

 

P-V  Prove that the set Q  of all rational numbers is not an open set. 

Solution:  Let Qx . Let )(xN  be  neighbourhood of x , where 0 ,   is arbitrary. 

Since )(xN contains rational and as well as irrational numbers, QN x )( . Since   is 

arbitrary , there is no such neighbourhood of x  which lie wholly in Q . So, x  is not an 

interior point of Q . Hence Q  is not an open set.  

 

DEFINITION : (Boundary point)  A real number x  is said to be a boundary point or a frontier 

point of a set A  if every neighbourhood of x  contains atleast one point of A  and atleast 

one point that does not belong to A . 

EXAMPLE :  2 and 3 are two boundary points of the set  3,2A . 

 

DEFINITION : (Exterior point)  A real number x  is said to be a exterior point of a set A  if 

there exists some neighbourhood of x  which entirely lie outside of the set A . 

 

 

PROPERTIES OF OPEN SETS 

 

THEOREM 1.14:   The union of an arbitrary collection of open sets is an open set. 

Proof :  Let ......,.........,, 321 SSS be an arbitrary collection of open sets. Let 


n

nn SSSSSS  ..................321 . We shall show that S  is open set. Let 

Sx . Then x  be a member of nS for some n . Let kSx  ( kn  ) . Since every nS  is open 

set, kS is also open. Since kSx , x  is an interior point of kS . So there exists 0 such 

that kSxx  ),(  . As each SSk  , Sxx  ),(  . Thus x  is an interior point of 

S . Since x  is an arbitrary  point of S , every member of S is an interior point of S . 

Consequently, S  is open. 



 

THEOREM 1.15:   The intersection of finite number of open sets is an open set. 

Proof :  Let nSSSS .................,.........,, 321  be a finite collection of open sets. Let 


n

k

kn SSSSSS
1

321 ..................


 . We shall show that S  is open set. If S is 

empty, i.e., S  then there is nothing to prove because empty set is an open set. Let 

S . Let Sx . Then kSx  for every nk .,,.........3,2,1 . So is x  an interior point of kS  

for every nk .,,.........3,2,1 . Therefore, there must exist 0k , nk .,,.........3,2,1 , such that 

  kkk Sxx   ,  for every nk .,,.........3,2,1 . Let  n ,.......,,,min 321 . Then 

clearly,   kSxx   ,  for every nk .,,.........3,2,1 . Hence   
n

k

k SSxx
1

,


  . This 

shows that x  is an interior point of S . Since x  is an arbitrary  point of S , every member of 

S is an interior point of S . Consequently, S  is open. 

 

P-VI :  Show by an example that intersection of an arbitrary collection of open 

sets may not be open. 

Solution:  Let 






 


1

1
,

1

1
1S , 







 


2

1
,

2

1
2S , 







 


3

1
,

3

1
3S ,…………………. be an arbitrary 

collection of open sets. Then  0.......................321  SSSS  which is a finite set 

and hence S  is not open. 

Again let 






 


2

1
,

2

1
1S , 







 


3

2
,

3

2
2S , 







 


4

3
,

4

3
3S ,…………………. be an arbitrary 

collection of open sets. Then 






 


2

1
,

2

1
.......................321 SSSS  which is an open 

interval and hence open. 

 

DEFINITION : (Limit point)  A real number x , may or may not belong to a set A  is said to be 

a limit point or a accumulation point or a cluster point of a set A , if every neighbourhood 

of x  contains atleast one point of A  other than x .  

          Infact, every neighbourhood of x  contains infinitely many point of the set A . 

 

EXAMPLES :  

A) Every member of the set  3,2 is a limit point of this set. There is no other limit point 

of this lying outside of this set. 

B) Every member of the set  3,2 is a limit point of this set. There are another two limit 

points of this lying outside of this set, namely, 2 and 3. 



C) The set  








,........
4

1
,

3

1
,

2

1
,1  has only one limit point, namely, 0  but 0   does not 

belong this set. 

D) The set  






 

.....,........
7

8
,

6

7
.,

5

6
,.

4

5
,

3

4
,

2

3
 has two limit points, namely, 1  and 1  

but they do not belong this set. 

E) A finite set has no limit point but it does not necessarily mean that an infinite set has 

always a limit point. The set  ......3,2,1N of all natural numbers or the set 

 ...,.........3,2,1,0,1,2,3.......... Z  of all integers has no limit point. 

 

DEFINITION : (Isolated point)  A real number Sx is said to be an isolated point of S  if 

there exists a neighbourhood of x  which contains x  but no other point of S . 

EXAMPLE :   

 A finite set contains isolated points only. 

 Each point of the set of all integers is an isolated point. 

 The set  3,2  or the set  3,2  has no isolated point. 

DEFINITION : (Derived set)  The set of all limit points of a set S  is called derived set of that 

set. The derived set of a set S  is denoted by S  . 

 

DEFINITION : (Closed set)  A set S  is called closed if and only if every limit point of S  is 

member of S . That is, SS  . 

EXAMPLES  :. 

 The derived set of the set 








 ,........
3

1
,

2

1
,

1

1
,0S  is  0S ( the only limit point is 0 ). 

Clearly, SS  . Hence the set S  is closed. Whereas the set 








 ,........
3

1
,

2

1
,

1

1
S is not 

closed, since the only limit point of S  is 0 and   SS  0 . 

 The derived set of the set  3,2S  is  3,2S . As SS  , the set S  is not closed. 

 The derived set of the set  2,1S  is  2,1S . As SS  , the set S  is closed. 

 The empty set   is closed because   . 

 The set  R  of all real numbers is closed because every limit point of R is a member 

of R . That is, RR  . 

 The set  Q  of all rational numbers is not closed because every rational number as 

well as every irrarional number is a limit point of Q  and irrarional limit points do not 

belong to Q . That is, QQ  . Infact, QRQ  . 

 

DEFINITION : (Dense-In-Itself set)  A set S  is called Dense-In-Itself  if and only if every 

member of S  is a  limit point of S . That is, SS  . 



EXAMPLES  :. 

 The set  3,2S  is Dense-In-Itself because  3,2S  and SS  . 

 The set  2,1S  is Dense-In-Itself because  2,1S  and SS  . 

 The set  Q  of all rational numbers is Dense-In-Itself because RQ  and QRQ  . 

 The set  R  of all real numbers is Dense-In-Itself because every member of R is a 

limit point of R . That is, RR  . 

 

DEFINITION : (Perfect set)  A set S  is called Perfect set if SS  . That is, S  is both closed 

and  Dense-In-Itself ( SS  & SS  ).  

EXAMPLES  :. 

 The set  R  of all real numbers is perfect because RR  & RR  . 

 The set  2,1S  is perfect because SS  & SS  . 

 

DEFINITION : (Closure of a set)  The union of a set S and its derived set S   is called closure 

of S . The closure of a set is denoted by S . That is, SSS  . 

In case of closed set S , SS  . 

 

THEOREM 1.16:  If a set S  is open then its complement cS  is closed. Conversely, if a set S  

is closed then its complement cS is open. 

Proof : Let a set S  is open. We are to prove cS  is closed. That is, we shall prove cc SS 
 . 

Let cSx


 . We have show cSx . If possible let, cSx . Then Sx . Since S is open, x  is 

an interior point of S . That is, there exists a neighbourhood of x  lie wholly in S . So all the 

elements of that particular neighbourhood of x  will be in the set S not in cS ………………….(i). 

Again, cSx


 (assumption) implies x  is a limit point of cS . That is, every neighbourhood of 

x  will contain at least one element of cS other than x . Which implies that some points of 

every neighbourhood of x  will be in the set cS ………………….(ii). Clearly, the statements (i) & 

(ii) contradicts each other. So, our assumption was wrong. Hence cSx . Therefore, 
cc SS 

 . This implies cS  is closed. 

Conversely, let the set S  is closed. We are to prove cS  is open. Let cSx . Then Sx . 

Since the set S  is closed and Sx , x  is not a limit point of S . So there exist some 

neighbourhood of x  which do not contain any point of S other than x . That is, there exist 

some neighbourhood of x  which lie entirely in cS . This implies x  is an interior point cS . 

Since x  is arbitrary it follows that every point in cS  is an interior point of cS . Hence cS  is 

open. 

PROPERTIES OF CLOSED SETS 

 

THEOREM 1.17:   The union of a finite collection of closed  sets is a  closed set. 

Proof : Let nSSSS ,......,,, 321 be a finite collection of closed sets. Then c

n

ccc SSSS ,........,,, 321
is a 

finite collection of open sets. 



Therefore,   c

n

cccc

n SSSSSSSS  ............... 321321  (By De Morgan’s Law). 

Right hand side of the above relation is the intersection of finite number of open sets and 

hence the intersection is open ( by theorem 1.15). Thus   cnSSSS  .......321 is open. 

Clearly this implies nSSSS  ,......,321  is closed. 

 

THEOREM 1.18:   The intersection of an arbitrary collection of closed  sets is a closed set. 

Proof :  Let ......,.........,, 321 SSS be an arbitrary collection of closed sets. Then 

..,.........,, 321

ccc SSS is an arbitrary collection of open sets. 

Therefore,   ................... 321321  cccc
SSSSSS  (By De Morgan’s Law). Right 

hand side of the above relation is the union of an arbitrary collection of open sets and hence 

the union is open ( by theorem 1.14). Thus  cSSS .........321  is open. Clearly this 

implies .....,.........321  SSS  is closed. 

 

P-VII :  Show by an example that union of an arbitrary collection of closed 

sets may not be closed. 

Solution : Let  1,11 S , 









2

1
,

2

1
2S , 










3

1
,

3

1
3S ,………. be an arbitrary collection of 

closed sets. Then   1,1..,.........321  SSS  which is a closed interval and hence closed. 

Again let  2,11 S , 







 2,

2

1
2S , 








 2,

3

1
3S , ……… be an arbitrary collection of closed sets. 

Then   2,0..,.........321  SSS  which is not a closed set.  

 

BOLZANO WEIERSTRASS THEOREM 

 

Theorem 1.19: Every bounded infinite subset of the set of all real numbers has atleast one 

limit point.  

 

DEFINITION : (Covering of a set/ open covering/ subcovering) Let S  be a set of some real 

numbers. A collection F of sets is said to be a Covering of S if every Sx  is contained in 

some sets in F .  

If all the sets in F are open sets, then the collection F  is called open covering of S . 

If a subcollection of F  is also a covering of S  then this subcollection is called subcovering 

of S . 

 

EXAMPLE :  Let  1,0S . Let us consider the following collection of sets : 



































 .,.........

4

2
,

4

1
,

3

2
,

3

1
,1,

2

1
F . This collection of sets clearly covers the set S .  It is also 

an open covering. 

 

HEINE-BOREL THEOREM 

 

Theorem 1.20: (Heine-Borel Theorem) Every open covering of a closed and bounded set S  

of real numbers has a finite subcovering. 

         If a set S  is such that every open covering of S  has a finite subcovering then the set S  

is said to possess the Heine-Borel property. 

DEFINITION : (Compact Set)  A set S  is said to be Compact if and only if the set possesses 

the Heine-Borel property. That is, the set S  is Compact if and only if every open covering of 

S contains a finite subcovering. 

 

NOTE :  Heine-Borel Theorem is not true if the set S  is not closed and bounded. 

 

SOME EXAMPLES ON DERIVED SET 

 

EX : Find the derived set of the set 








 Nn
n

S :
1

. 

SOLUTION :  Let 0 . By Archimedean property there exist a positive integer n  such that 


n

1
0  

 
n

1
 

  0
1

0
n

 

   0,0
1

n
 neighbourhood of 0 contains points of the set S . Since   is 

arbitrary, we can say that any neighbourhood of 0 contains points of the set S . So, 0 is the 

only limit point of the set S . Therefore, the derived set of the set S  is  0S . 

 

EX : Find the derived set of the set 
 












 NnNm
nm

S

m

,:
11

. 

SOLUTION :  Let 0 . By Archimedean property there exist a positive integer m  such that 


m

1
0  

 
m

1
 



 
 




m

m
1

 

 
 




nnmn

m
1111

 

 












 

nnnm

m
1

,
111

 neighbourhood of 
n

1
contains points of the set S . 

Since   is arbitrary, we can say that any neighbourhood of 
n

1
contains points of the set S . 

So, 
n

1
 , Nn  is limit point of the set S . 

Again let 0 . By Archimedean property there exist a positive integer n  such that 


n

1
0  

     
 









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     











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









 

mmnm

mmm
1

,
111

 neighbourhood of 
 

m

m
1

contains points of 

the set S . Since   is arbitrary, we can say that any neighbourhood of 
 

m

m
1

contains points 

of the set S . So, 
 

m

m
1

is a limit point of the set S . 

Again let 0 . By Archimedean property there exist a positive integer n  such that 

 





nm

m
11

0  

 
 


 0

11
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nm
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 
 


  0,0

11

nm

m

 neighbourhood of 0 contains points of the set S . Since 

  is arbitrary, we can say that any neighbourhood of 0 contains points of the set S . So, 0 is 

a limit point of the set S . 

Therefore, the derived set of the set S  is 
 

 0,
1

,
1






















 Nm
m

Nn
n

S

m

. 

That is, 








 .,.........
3

1
,

2

1
,1,0S . 

EX : Find the derived set of the set 








 NnNm
nm

S ,:
32

. 

SOLUTION :  Left as an exercise. 

 
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EX : Find the derived set of the set  








 NnNm
n

S
m

,:
1

1 . 

SOLUTION :  Clearly,    










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                                          BA .  

Since, 








 Nn
n

,
1

 has only limit point 0 , the set A  has only limit point 1  and the set B  has 

only limit point 1 . Therefore, the derived set of the set S  is 

   1,1


 BABAS .  

EX : Find the derived set of the set  














Nn
n

n
S

n
:

1
1

1
. 

SOLUTION :  Clearly,  
 


















Nn
n

S

n
n

:
1

1
1

1
1

. Let 0 . By Archimedean property 

there exist a positive integer n  such that 



1

1
0

n
 

 



1

1

n
  

 
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 1
1

11
1

1

1
11
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nn

n
. Therefore,  neighbourhood of 

  1
1




n
contains points of the set S . So,   1

1



n

 , i.e., 1  and 1  are the limit points of the set 

S (according as n is odd or even). Therefore, the derived set of the set S  is  1,1S .  

 

 

QUESTIONS 
 Define “limit point” of a set. Show that a finite set cannot have any limit point. Give 

an example of an infinite set which does not have any limit point. 

 State Bolzano Weierstrass theorem. Verify this theorem for the set 

 












 Nn
n

S

n

,
1

1 . 

 Define interior of a set. Find the interior of the set  31:  xRxS . 

 State Peano’s axioms for natural numbers. Using this axioms prove that the set of all 

natural numbers has no upper bound. 

 Prove that 17  is not rational number. 

 Prove that the set Q  of all rational numbers is not complete. 



 If  Ryx ,  and 0x , then show that there exists a positive integer n such that 

ynx  . (Archimedean property)   

 If x and y  are two real numbers such that yx  , then show that there exists a 

rational number r  where yrx  . (Density property)   

 Define enumerable set. Prove that the set Q  of all rational numbers is 

enumerable(countable). 

 Is the set  ...,.........3,2,1,0 Z  of all integers enumerable(countable) ? -----justify 

 Show that the set  1,0  is not enumerable. Hence show that the set R of real 

numbers is not enumerable. 

 Show that the closed interval  ba,  is not enumeable. Hence show that the set R of 

real numbers is not enumerable. 

 Show that the set R of all real numbers is not enumerable(i.e., not countable).                

 Define “open set” , “closed set”. 

 Prove that the set Q  of all rational numbers is neither open nor closed. 

 Prove that the intersection of finite collection of open sets is open. Show by an 

example that the intersection of an infinite collection open sets may not be open. 

 Prove that the union of finite collection of closed sets is closed. Show by an example 

that the union of an infinite collection closed sets may not be closed. 

 Find the derived set of the set 
 












 NnNm
nm

S

m

,:
11

. 

 Find the derived set of the set 








 NnNm
nm

S ,:
11

. 

 Find the derived set of the set 








 NnNm
nm

S ,:
32

. 

 Find the derived set of the set  














Nn
n

n
S

n
:

1
1

1
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