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CORE COURSE---C 3T
UNIT-I (MARKS-24)

UNIT-I Dr. Pradip Kumar Gain

Syllabus for Unit-I: Review of algebraic and order properties of R,
¢ —neighbourhood of a point in R. Idea of countable sets, uncountable sets
and uncountability of R. Bounded above sets, bounded below sets, bounded
sets, unbounded sets. Suprema and infima. Completeness property of R and
its equivalent properties. The Archimedean property, density property of
rational and irrational numbers in R. Intervals. Limit point of a set, isolated
points, open set, closed set, derived set, illustrations of Bolzano-Weierstrass
theorem for sets, compact setin R, Heine-Borel Theorem.

DEFINITION (Natural Numbers) : The numbers 1,2,3,.......... that were discovered in the
natural process of counting are known as natural numbers.
The set of all natural numbers is denoted by N ,i.e., N = {1,2,3, .......... }

The set of natural numbers can be determined in terms of some axioms, formulated by G.
Peano in 1889.

Peano’s axioms :

Axiom 1. 1< N.Thatis, 1isa natural number.

Axiom 2. For every natural number n e N, there exists a unique natural number n"e N,
called the successor of nand nis called the predecessor of n'.

Axiom 3. There exist no predecessor of 1 N . That is, 1 is not successor of any natural
number.

Axiom 4. If two natural numbers have the same successors then they are themselves
equal. Thatis, N"=m'=n=m

Axiom 5. If G be any set of some natural numbers, such that (i) 1e Gand
(i) neG=n"eG, then G contains all natural numbers, i.e., G=N
(Axiom 5 is known as principle of finite or mathematical induction)

Well ordering principle of the set of natural numbers :

THEOREM 1.1: (Well ordering principle ) Every non-empty subset of N has a least element.



The set N = {1,2,3, ......... .}of all natural numbers is closed under addition and
multiplication but not closed under the subtraction and division operations, i.e., the
difference between any two numbers of N are not always a member of N and quotient of
any two natural numbers are not always a member of N . That is why it became necessary
to extend the system of natural numbers by introducing negative of natural numbers and
the number zero 0. Thus to every natural number(positive integer)n e N there is a unique
integer—n, called additive inverse of nsuch that n+(— n):O, where 0 has the property

such that n+0=nand n.0 =0for each integern.

DEFINITION : (Integers) The union of set of natural numbers and the set of all negative

integers {......... —3,-2,~1} and the singleton set {0} is called the set of all integers. The set
of all integers is denoted by Z . That is, Z :{ ......... -3-2,-10123............. }
Clearly, Nc Z.

Now the set Z = { ......... -3,-2,-1012,3,............. } of all integers is closed under addition,

multiplication and subtraction but not closed under the division operation. That is why it
became necessary to extend the system of all integers.

DEFINITION : (Rational Numbers) Any number which can be expressed as the ratioB

q

where peZ, qe N and pand gare prime to each other is called a rational number. The
set of all rational numbers is denoted by Q.
Clearly, NcZ cQ.

EXAMPLE : ) 5=% 5¢Z1leN (i) —3=T3, ~3eZ1e N iii) %:%, 3eZ,4¢eN (iv)

—% =_77, —7eZleN . Clearly 5, -3, %, —% are examples of rational numbers.

pecial Characteristics of rational numbers : Any rational number can be transformed either
into a finite decimal form or an infinite recurring decimal form. For example, let us consider

the rational numbers %and % We see that %=.75(a finite decimal form) and

g =1.33333333.....=1.3 (an infinite recurring decimal).

Now the set Q of all rational numbers is closed under addition, multiplication and

subtraction and division.

ORDER PROPERTIES OF Q:
(i) If aand b are two rational numbers, i.e.,a,b € Q then eithera<b or b <a( law of

trichotomy)



(ii) If a, band c are three rational numbers, i.e.,_a,b,ceQ then a<b and b<c
= a < C (transitive law)
(i) a<b=a+c<b+cforany a,b,ceQ.
(iv) a<band c>0=ac<bc forany a,b,ceQ.
In view of the above order properties we say that the set Q of all rational numbers is an

ordered set.

DEFINITION : (Irrational Numbers) Any number which is not a rational number is called an
irrational number. The set of all irrational numbers is denoted by | .

DEFINITION : (Real Numbers) The union of the set of all rational numbers and the set of all
irrational numbers constitute the set of all real numbers. The set of all real numbers is
denoted by R.Thatis, R=ZuUll.

Clearlyy, NcZcQcR.

ORDER PROPERTIES OF R :
(v) If aand b are two real numbers, i.e.,,a,b € R then eithera<b or b<a( law of

trichotomy)
(vi)If a, band c are three real numbers, i.e.,_a,b,ce R then a<b and b<c
= a < C (transitive law)
(vii) a<b=a+c<b+cforany a,b,ceR.
(viii) a<band c>0=ac<bc forany a,b,ceR.
In view of the above order properties we say that the set R of all real numbers is an ordered
set.

ALGEBRAIC PROPERTIES OF R :
Addition and multiplication are defined on the setR .
Under addition(+)

(i) a+beR forall a,b e R(Closure property)

(ii) (a+b)+c = a+(b +C) for all a,b,c € R (Associative property)

(iii) There exists an element 0 in (called the zero element or additive identity) such that
a+0=a forall a e R.(existence of additive identity)

(iv) Foreach aeR there exists an element —a € Rsuch that a+(— a): 0 ( existence of
additive inverse for each element)

(v) a+b=Db+a forall a,b € R(commutative property)

Under addition R is an abelian group.
Under multiplication(.)
(vi) abeR forall a,b e R(Closure property)

(vii) (a.b).c = a.(b.c) for all a,b,c € R (Associative property)



(viii)  There exists an element 1 in (called the unity or multiplicative identity) such
that a.1=a for all a € R.(existence of multiplicative identity)

. . 1 1 .
(ix) For each aeR there exists an element — € Rsuch that a.— =1( existence of
a a

multiplicative inverse for each element)
(x) ab=ba for all a,b € R (commutative property)
Under multiplication R is a commutative group.
(xi) a.(b + C) =ab+ac forall a,b,c € R (left distributive property)
(a+ b).c =ac+b.c forall a,b,c € R (right distributive property)

The set R of real numbers obeys all the field axioms. Also R is an ordered set.
Hence R is an ordered field.

NOTE : It should be noted that the set Q of all rational numbers also obeys all the field

axioms as well as order properties and hence Q is also an ordered field.

DEFINITION : (Intervals) Let ab € Rsuch that a<b. We write

(i) [a, b] = {X rasx< b}(called closed interval)

(ii) (a, b) = {X ra<x< b} (called open interval)

(iii) [a, b) = {X rasx< b}(called left closed right open interval)
(iv) (a, b] = {X ra<x< b}(called right closed left open interval)

DEFINITION : (Bounded above set) A set S of real numbers is called bounded above if
there exists a real number b such that x<b, ¥x e S.The number b is called upper bound
of S.

An upper bound may or may not belong to the set S. Every real number greater than an
upper bound of a set is also an upper bound of that set. So a bounded above set has infinite
number of upper bounds.

EXAMPLE : Let us consider the following sets :

S, =[1,2] is bounded above set. Here 2 is obviously an upper bound of Ssince X<?2,

VX € S. Every real number greater than 2 is also an upper bound of the set S, . 2 is the least
of all upper bounds of the set S, .

S, :(1,2) is bounded above set. Here 2 is obviously an upper bound of Ssince x<2,
VX € S. Every real number greater than 2 is also an upper bound of the set S,. 2 is the

least of all upper bound of the set S, .
11
S, ={1,—,—, ............. } is bounded above set. Here 1 is obviously an upper bound of S,

since X<1, ¥x e S. Every real number greater than 1 is also an upper bound of the set S,.

1 is the least of all upper bounds of the set S,.



S, = ¢ is bounded above set. Here every real number is an upper bound of S, .

Least of all upper bounds is called least upper bound or l.u.b or supremum of the set.

NOTE : A set may or may not contain Lu.b . In the above example S, & S, contain L.u.b but

S, does not contain Lu.b.

DEFINITION : (Bounded below set) A set S of real numbers is called bounded below if
there exists a real number a such that x> a, YxeS. The number a is called lower bound
of S.

A lower bound may or may not belong to the set S. Every real number smaller than a lower
bound of a set is also a lower bound of that set. So a bounded below set has infinite number
of lower bounds.

EXAMPLE: Let us consider the following sets :

S, :[1,2]. Here 1 is obviously a lower bound of Ssince x>1, VxeS. Every real number

smaller than 1 is also a lower bound of the set S,. 1 is the greatest of all lower bounds of
the set §;.

S, =(1,2). Here 1 is obviously a lower bound of Ssince x>1, Vx &S . Every real number
smaller than 1 is also a lower bound of the set S,. 1 is the greatest of all lower bounds of

theset S,.
11 . . .
Sy =91 —,— . Here 0 is obviously a lower bound of S; since x>0, VxeS. Every

real number smaller than 0 is also a lower bound of the set S;. 0 is the greatest of all lower
bounds of the set S,.

S, = ¢ is bounded below set. Here every real number is a lower bound of §,.

greatest of all lower bounds is called greatest lower bound or g.1.b or infimum of the set.
NOTE : A set may or may not contain g.L.b. In the above example S, contains g.Lb but S, &

S, do not contain g.Lb .

DEFINITION : (Bounded set) A set S of real numbers is called bounded if it is both bounded
above and bounded below.

DEFINITION : (Suprema) Least of all upper bounds of a bounded above set is called least
upper bound or l.u.b or supremum or suprema of the set.
EXAMPLE : Let us consider the following set :

S ={ Ty peeenreeen e } is bounded above set. Here 1 is obviously an upper bound of S since

X <1, ¥xeS. Every real number greater than 1 is also an upper bound of the set S. The
set of all upper bounds of Sis [1, oo]. Clearly 1 is the least of all upper bounds of the set S.

Therefore, supremum or suprema of Sis 1. That is, supS =1



DEFINITION : (Infima) Greatest of all lower bounds of a bounded below set is called
greatest lower bound or g.l.b or infimum or infima of the set.
EXAMPLE : Let us consider the following set :

11
S = {155 ............. } is bounded below set. Here 0 is obviously a lower bound of S since
X >0, VX eS. Every real number smaller than 0 is also a lower bound of the set S. The set
of all lower bounds of S is [-0,0]. Clearly 0 is the greatest of all lower bounds of the set

S . Therefore, infimum or infima of Sis 0. Thatis, infS=0

DEFINITION : (Greatest member of a set) A real numberm is called the greastest member
of aset Sif (i) meS(ii) misan upper bound of S.

EXAMPLE: Let us consider the set S = [1,2]. Clearly, 2 is the greatest member of the set S,
since (i) 2 € Sand (ii) 2is an upper bound of S.

Again if we consider the set S = (1,2), we see that this set has no greatest member, for, 2 is
obviously an upper bound of Ssince x<2, VxeSbut 2¢S.

NOTE : An infinite bounded above set may or may not contain greatest member.

NOTE : Every finite set has always a greatest member.

DEFINITION : (Smallest member of a set) A real numbern is called the smallest member of a
set Sif (i) ne S(ii) nis a lower bound of S .

EXAMPLE: Let us consider the set S = [1,2]. Clearly, 1 is the smallest member of the set S,
since (i) 1e Sand (ii) 1 is a lower bound of S.

Again if we consider the set S = (1,2), we see that this set has no smallest member, for, 1 is
obviously a lower bound of Ssince x>1, YxeSbut 1¢S.

NOTE : An infinite bounded above set may or may not contain smallest member.

NOTE : Every finite set has always a smallest member.

THEOREM 1.2: Let L and U be two proper subsets of R of real numbers such that
() LOUU=R
(i) ael, peU =a<p
Then either the subset L has a greastest member or the subset U has a smallest member.

Completeness property ofﬂ

THEOREM 1.3: (Least upper bound axiom) The set of all upper bounds of a bounded above
set admits of a smallest member.

Proof: Let S be the given bounded above set. Let R be the set of all real numbers. Let us
consider two proper subsets Land U of R defined as follows:

L = {x: xis not an upper bound of S}



U = {x: x is an upper bound of S}

Clearly, L#¢ and U #¢. Also LuU =Rand aael, feU = a < f. Then by theorem
1.2, we can say that either the subset L has a greastest member or the subset U has a
smallest member. Let us suppose that L has a greastest member(say &). Now £ € L.Then
&¢U = & is not an upper bound of S. Then there must exist a number « € S such that
& <a.let bisareal numbersuchthat £ <b<a.Now E<b=beU......... (@]

Again b < o = b is not an upper bound of S and thisimplies bgU................ (2)

Here we see that (1) and (2) contradicts each other. So L cannot have greatest member.
Therefore, by theorem 1.2, we can say that U has a smallest member.

THEOREM 1.4: (greatest lower bound axiom) The set of all lower bounds of a bounded
below set admits of a greatest member.

Proof : Proof is left to the students.

In view of above axioms, i.e., theorem 1.3 & theorem 1.4, the set R of all real numbers is
complete.

ARCHIMEDEAN PROPERTY OF REAL NUMBERS

THEOREM 1.5: (Archimedean property) If X,y € R and x > 0,then there exists a positive
integer nsuch that nx>y.
Proof: If possiblelet nx<y. Let A= {nx: n=123,........ } Clearly, yis an upper bound of
X > 0. Therefore, A is bounded above set. Also A # ¢ . Hence by l.u.b axiom, least upper
bound i.e., supremum of A (sup A) exists (= msay), where meR.
Now x>0
= -—x<0
=m-x<m
= M—Xis not an upper bound of A.
Therefore, m—x < px, for some integer p .
Thatis, m< (p +1)x =kx (say) (taking k = p+1)
= Mis not an upper bound of A.
= Mmis not SUPA......... a contradiction.
Hence nx>y.

DENSITY PROPERTY OF R

THEOREM 1.6: (Density property) If xandy are two real numbers such that X <y, then
there exists a rational number r where X <r<y.



Proof : Case-l Let us suppose that x>0 and O<x<y. Then y—x=2z>0. Then by
Archimedean property, there exists a positive integer nsuch that nz>1. That is,

n(y — x)>1. Which implies % <(y—x).

Let A= {m ‘meN ,m > x}. Clearly, A # ¢ .(by Archimedean property). By well-principle of
n

natural numbers, we know bthat every non-empty subset of natural numbers has a least

-1
element. Let A has the least element p>1. Then £>x but P <X. Thus
n n
1
££X+—<X+(y—x). This implies B<y. Already we have B>X. So x<P < y.
n n n n n

Therefore, there exists a rational number P_ I (say) containedin 0 < x<y.
n
Case-ll Let us suppose that X<0<Yy. Then by Archimedean property, there exists a

1 1
positive integer nsuch that ny >1. Therefore, —<y. This implies X <—<y. Therefore,
n n

. . 1 . .
there exists a rational number — =r (say) containedin Xx<0<y.
n

Case-lll Lastly, let x<y<0.Then 0<-y<—Xx. Then by case-l, there is rational number
r such that —y <r <—X. This implies x<-r<y.

This completes the proof.

CONCLUSION: The existence of one rational number between X and Yy implies the
existence of infinitely many rational numbers between X and y.

Hence R is dense with rational numbers.

COUNTABILITY : COUNTABLE SETS

DEFINITION : (Equivalent set) For any two sets A and B, if there exists a one-to-one
mapping from the set A onto the set B, we say that A is equivalent to B . Symbolically,
A~B.

DEFINITION : (Enumerable/Denumerable set) An infinite set A is said to be enumerable or
denumerable if A is equivalent to the set N of all natural numbers. In other words A is said
to be enumerable if there exists a bijective mapping f : N — A.

DEFINITION : (Countable set/ Uncountable set) A set which is either empty or finite or
enumerable is called countable set. Otherwise it is uncountable.
NOTE : An enumerable set is sometimes called countably infinite set.



DEFINITION : (Atmost countable set) A set A is called atmost countable if A is either finite
or a countable set.

EXAMPLES OF COUNTABLE SETS

(A) Theset S = {2,4,6, ......... } of all even natural numbers is enumerable(i.e., countable)
because there exists a a one-to-one onto mapping( bijective) f : N — S defined by
f(n)=2n, ne N (Inother wordsS~N )

(B) The set S = {0,2,4,6, ......... } is enumerable(i.e., countable) because there exists a a
one-to-one onto mapping( bijective) f : N — S defined by f(n)=2n,-2 ne N (In
other wordsS~ N )

(C) The set S = {12,22,32 .......... } is enumerable(i.e., countable) because there exists a a
one-to-one onto mapping( bijective) f:N — S defined by f(n)=n% neN{(In
other wordsS~ N )

(D) The set N :{1,2,3, ......... } is enumerable(i.e., countable) because there exists a a
one-to-one onto mapping( bijective) f:N — N defined by f(n)=n, neN{( In
other words N ~ N )

(E) The set Z = {O,i],iZ,iB,......... } is enumerable(i.e., countable) because there exists a

a one-to-one onto mapping( bijective) f : N — Z defined by

f(n) =gif nis even

:]'_Tn if nis odd ( In other words Z ~N)

THEOREMS ON COUNTABILITY

THEOREM : 1.7 An infinite subset of an enumerable set is enumerable.

COROLLARY : A subset of an enumerable set is either finite or enumerable.
THEOREM : 1.8 The union of a finite set and an enumerable set is enumerable.
THEOREM : 1.9 The union of two enumerable sets is enumerable.

THEOREM : 1.10 The union an enumerable numbers of enumerable sets is enumerable.
THEOREM : 1.11 Every superset of an uncountable set is uncountable.

THEOREM :1.12 If f : A— Bis a bijective mapping( i.e.,one-to one onto) and B is

enumerable then A is also enumerable.



PROBLEMS :

P-I : Show that the set Q of rational numbers is countable.
Solution: Let Q" be the set of all positive rational numbers, Q~ be the set of all negative

rational numbers. Then obviously, Q = Q" UQ™ U {0}.

Let us consider the following collection of sets:

111 1
N LU ,
222 2
123 n
P LI
Clearly, Q" =A UA, UA U..cceuu . UA U, =UAn. Now A, is enumerable

since there exists a bijective mapping ( i.e.,one-to one onto) f:N — A defined by

n
f(n)=I, neN. Similarly, A, is enumerable since there exists a bijective mapping (

i.e.,one-to oneonto) f:N — A, defined by f(n)= g ,neN.

Thus we can see that each of the sets A, A, A;,........ o AL is an enumerable set.

Also the collection A, A, A;,......... A is an enumerable collection sets.

Therefore, Q" =A UA, UA, U............. UA, Ui v = UAn is the union of an
n=1

enumerable collection of enumerable sets. Hence Q" is enumerable. Similarly, it can be
shown that Q™ is enumerable. [ Alternative proof : Since Q" is enumerable and there exists
a bijective mapping (i.e.,one-tooneonto) f :Q~ — Q" definedby f(X)=-—x, xeQ™, Q~
is also enumerable.]

Therefore, Q" UQ™ is enumerable because the union of two enumerable sets is

enumerable.



Since Q" UQ" is enumerable and {O}is finite set, Q" LUQ~ u{O} is enumerable. That is,
Q (= Q" uQ” u{O}) is enumerable.

P-Il : Show that the set (0,1) is not enumerable. Hence show that the set R of
real numbers is not enumerable.
Solution: If possible let the set (0,1) is enumerable. Then the numbers in the set (0,1) can be
described as X;, X,, X3 eeves cunnne . That is, they can be arranged in a succession. Also each
real number in (0,1) can be written as infinite decimal forms in the following way.

X =0.8,8,8,8,85....c000n

X, =0.bb,bb,bs..............

Xz =0. C,C,C5C,Cnrrnnnnnnnnn.

Let us consider a real number X, =0. pgrst............
where p =6(say)if a, #6 q =5(say)if b, #5
=T7(say)if a, =6 =6(say)if b, =5 and so on.
According to construction of X, in the way described above, X, ¢ (0,1). But According to the
numerical value of X, , X; € (0,1). We thus arrived at a contradiction.
Therefore, the set (0,1) is not enumerable.

2" part: (01)c R. Ri.e., the superset of a non-enumerable set (0,1) is not enumerable.

COROLLARY : The set | of all irrational numbers is non-enumerable.

Proof : Let | be the set of all irrational numbers. Then QU | = R. We know tha the union
of two enumerable sets is enumerable. Since R is not enumerable, | cannot be enumerable
although Q is enumerable.

DEFINITION : (Nested intervals) If {Il, ([ }be a family of intervals such that
l,,c1,, neN then the family {l,,1,, 15 ccoreec.... }is said to be a family of nested
intervals.
1 1 . .

EXAMPLE : Let |, =(0,1), I, = O’E , g = 0,5 T, be a family of intervals. Clearly,
ILol,ol; o Therefore, the family {Il, PR PO }is a family of nested
intervals.

THEOREM : 1.13 If {[a,b |[a,,b,][a;,0,] oo ... Ibe a family of nested closed and

bounded intervals then [a,,b, ] [a,,b, |~ [as,bs ] # ¢



P-lll : Show that the closed interval [a,b] is not enumeable. Hence show that
the set R of real numbers is not enumerable.

Solution: If possible let the set | :[a,b] is enumerable. Then the elements| of can be
described as X , X,, Xg,eeerrnr e . That is, they can be arranged in a succession. That is,
| :[a,b]:{xl,xz,xg, ........... } Let us divide the interval | :[a, b] into three subintervals

[a, c], [C,d], [d,b](say). Atleast one these three subintervals does not contain X, . Let us call
that subinterval by 1,. Again Let us divide the interval |, into three subintervals such that
atleast one these three subintervals of |, does not contain X,. Let us call that subinterval
by I,.So 1, does not contain both X ;and X, . Continuing this process we can obtain a family
of closed and bounded subintervals 1, 1, , lg, i, such that
I, does not contain X,

I, does not contain x,and X,

I, does not contain X;, X,, X,

I, does not contain X;, X,, Xg,eeeereeennnes » X,

Now by the constructionof I, I, , I5,...., I, nl,nl;N...... [ Y e PSR =@, (1)
Againas |, ol,>l;>.......cc..iiuue..., by the theorem of nested interval , we must
have I, NI, Nl; M. AL, N E P (2). Clearly, (1) and (2) contradicts each
other. Hence | = [a, b] is not enumerable.

2" part: [a, b]c R. Ri.e, the superset of a non-enumerable set [a, b] is not enumerable.

P-IV : Show that the set R of all real numbers is not enumerable(i.e., not

countable).
Solution: If possible let the set R is enumerable (i.e., countable). Then the elements R of
can be described as X;, X,, Xg,.ceieiis vunne . That is, they can be arranged in a succession. That

is, R= {Xl, Xy s Xgperereeson } Let us consider the following open intervals :

1 1
I, = Xl_z_z'xl+2_2

1 1
I, = xz—?,xﬂt?



Now x, € I, = {x,}c I,

X, el, :>{X2}C I,

X, €l, :>{Xn}c I,

Therefore, {X, } U {X, U {Xs } U OU{X, JU e clLul,Ul, U Ul U,
Thatis, Rcl,ul,Ul;U..... Ul Uit (A)
Lengthof |, =, lengthof I, =— ... ylengthof I = — e, The total length
1 1 1 ;[1—21j 1
of I, 1,, I5,... =ttt =———2=1-—=1 whenn—w
2 2° 2 1_} 2"
2

Relation (A) shows that the whole real line ( whose length is infinite ) is contained in the
union of intervals whose length add upto 1 which is clearly, not possible.
Hence R is not enumerable (i.e., not countable).

DEFINITION : (¢ —neighbourhood) Let & be a real number. Then any open interval of which
& is a member is called a neighbourhood of ¢ .

In particular, for any ¢ >0, the open interval (5—5,§+g) is called & —neighbourhood of
£

¢ —neighbourhood of ¢ is denoted by N (¢)

EXAMPLE : By .01—neighbourhood of 5 we mean the open interval (5-.01, 5+.01), i.e., we
mean the open interval (4.99, 5.01). Symbolically, N.(.01) =(4.99, 5.01).

DEFINITION : (Interior point) Let A be any non empty linear point set. Any element x e A
is said to be an interior point of A if there exists some neighbourhoods of x which lie
wholly in A.



EXAMPLE : Every point of (2,3) is an interior point. Where as every point of [2,3] except 2

and 3 is an interior point.
DEFINITION : (Interior of a set) The set of all interior points of a set A is called interior of A.

DEFINITION : (Open set) A linear point set A is called an open set if and only if every point
of A isaninterior point of A.
EXAMPLES : (i) Any open interval is an open set. (ii) ¢ is an open set. (iii) The set

R= (— o0, oo) an open set. (iv) Afinite set is not an open set.

(v) The set Q of all rational numbers is not an open set.

P-V Prove that the set Q of all rational numbers is not an open set.

Solution: Let xeQ. Let N (¢) be & —neighbourhood of X, where £>0, ¢ is arbitrary.
Since N, (&) contains rational and as well as irrational numbers, N, () z Q. Since ¢ is
arbitrary , there is no such neighbourhood of X which lie wholly in Q. So, X is not an

interior point of Q. Hence Q is not an open set.

DEFINITION : (Boundary point) A real number X is said to be a boundary point or a frontier
point of a set A if every neighbourhood of X contains atleast one point of A and atleast
one point that does not belong to A.

EXAMPLE : 2 and 3 are two boundary points of the set A=[23].

DEFINITION : (Exterior point) A real numberX is said to be a exterior point of a set A if
there exists some neighbourhood of X which entirely lie outside of the set A.

PROPERTIES OF OPEN SETS

THEOREM 1.14: The union of an arbitrary collection of open sets is an open set.
Proof : Let S;,S,,S; be an arbitrary collection of open sets. Let

S=5uUS,uS,u.... US, Ui :USn. We shall show that S is open set. Let

X € S.Then X be a member of S, for some n.Let xS, (n=Kk). Since every S is open
set, S, is also open. Since x€S,, X is an interior point of S,. So there exists &> 0such
that (X—¢&,x+¢)cS,. Aseach S, ¢S, (X—¢&,x+¢&)cS. Thus X is an interior point of

S. Since X is an arbitrary point of S, every member of Sis an interior point of S.
Consequently, S is open.



THEOREM 1.15: The intersection of finite number of open sets is an open set.

Proof : Let S,,S,,S; i S, be a finite collection of open sets. Let
n

S=5 NS, NnS; M. NS, N :ﬂSk . We shall show that S is open set. If Sis
k=1

empty, i.e.,, S =¢ then there is nothing to prove because empty set is an open set. Let
S#¢.Llet xeS.Then xe§, forevery k=123,......... ,N.Sois X an interior point of S,
for every k =1,2,3,......... ., N. Therefore, there must exist &, >0,k =123,......... ., N, such that
(x—gk,x+gk)c S, for every k=123,...... LN, Let ¢= min{gl,gz,gg, ....... , gn}. Then

clearly, (x—g, X+5)c S, forevery k=123,......... ., N. Hence (X—g, X+8)C ﬂSk =S . This
k=1

shows that X is an interior point of S. Since X is an arbitrary point of S, every member of
Sis an interior point of S. Consequently, S is open.

P-VI : Show by an example that intersection of an arbitrary collection of open
sets may not be open.

Solution: Let S, = _—1,:—L , S, = _—1,1 , Sy = _—1,l e be an arbitrary
11 2 2 3 3
collection of open sets. Then S=S5 NS, NS; Murei i, ={0} which is a finite set
and hence S is not open.
-11 -2 2 -3 3
Again let S, =|—,=|, S,=|—,=|, S;=|—,= [,orrrrrreren. be an arbitrar
: 1[22j 2(33) 3(44) !
. -11 S

collection of open sets. Then S=5, NS, NS, M i, =133 which is an open

interval and hence open.

DEFINITION : (Limit point) A real number X, may or may not belong to a set A is said to be
a limit point or a accumulation point or a cluster point of a set A, if every neighbourhood
of X contains atleast one point of A other than x.

Infact, every neighbourhood of x contains infinitely many point of the set A.

EXAMPLES :
A) Every member of the set [2,3]is a limit point of this set. There is no other limit point

of this lying outside of this set.
B) Every member of the set (2,3)is a limit point of this set. There are another two limit

points of this lying outside of this set, namely, 2 and 3.



C) The set {1%%% ........ } has only one limit point, namely, 0 but 0 does not

belong this set.
D) The set {E,_—4,§,._—6.,Z,_—8., ............ } has two limit points, namely, —1 and 1

but they do not belong this set.
E) A finite set has no limit point but it does not necessarily mean that an infinite set has
always a limit point. The set N ={L23....}of all natural numbers or the set

Z= { .......... -3-2,-10123............. } of all integers has no limit point.

DEFINITION : (Isolated point) A real number X e Sis said to be an isolated point of S if
there exists a neighbourhood of X which contains X but no other point of S.
EXAMPLE :

e A finite set contains isolated points only.

e Each point of the set of all integers is an isolated point.

e The set [2,3] or the set (2,3) has no isolated point.

DEFINITION : (Derived set) The set of all limit points of a set S is called derived set of that
set. The derived set of aset S is denoted by S’.

DEFINITION : (Closed set) A set S is called closed if and only if every limit point of S is
member of S. Thatis, S'cS.
EXAMPLES :.

e The derived set of the set S = {0,%,%,

Clearly, S" =S . Hence the set S is closed. Whereas the set S = {%,%,%, ........ }is not

closed, since the only limit point of S is 0and S'={0}« S.
e The derived set of the set S=(2,3) is S'=[2,3]. As S’ S, the set S is not closed.
e The derived set of the set S = [1,2] is S'= [1,2]. As S'c S, theset S is closed.
e The empty set ¢ is closed because ¢' < ¢.

e The set R of all real numbers is closed because every limit point of Ris a member
of R.Thatis, R'cR.

e The set Q of all rational numbers is not closed because every rational number as
well as every irrarional number is a limit point of Q and irrarional limit points do not
belongto Q. Thatis, Q"¢ Q.Infact, Q'=R «z Q.

DEFINITION : (Dense-In-Itself set) A set S is called Dense-In-Itself if and only if every
member of S isa limit pointof S.Thatis, S S’.



EXAMPLES :.
e Theset S =(23)is Dense-In-Itself because S'=[23] and S S'.
e Theset S =[L2]is Dense-In-Itself because S’ =[1,2] and S S'.
e Theset Q of all rational numbers is Dense-In-Itself because Q' =Rand Qc R=Q".

e The set R of all real numbers is Dense-In-Itself because every member of Ris a
limit point of R. Thatis, Rc R’.

DEFINITION : (Perfect set) A set S is called Perfect setif S=S'. Thatis, S is both closed
and Dense-In-Itself ('S &S <=S’).
EXAMPLES :.

e Theset R of all real numbers is perfect because R"c R& R R’.

e Theset S= [1,2] is perfect because 'S &S < S’.

DEFINITION : (Closure of a set) The union of a set S and its derived set S’ is called closure
of S. The closure of a set is denoted by S . Thatis, S =SuUS’.
In case of closedset S, S =8S.

THEOREM 1.16: If a set S is open then its complement S° is closed. Conversely, if a set S
is closed then its complement S° is open.

Proof : Let a set S is open. We are to prove S° is closed. That is, we shall prove S¢ — S°.
Let x € S¢. We have show x € S°. If possible let, X ¢ S°. Then x e S. Since Sis open, X is
an interior point of S. That is, there exists a neighbourhood of x lie wholly in S. So all the
elements of that particular neighbourhood of x will be in the set Snotin S°........c............. (i).
Again, X € S¢ (assumption) implies X is a limit point of S°. That is, every neighbourhood of
x will contain at least one element of S®other than x. Which implies that some points of
every neighbourhood of x will be in the set S°.........ccoc........ (ii). Clearly, the statements (i) &
(i) contradicts each other. So, our assumption was wrong. Hence X e S°. Therefore,
S¢ < S°. This implies S° is closed.

Conversely, let the set S is closed. We are to prove S° is open. Let xe S°. Then x¢8S.
Since the set S is closed and x¢ S, X is not a limit point of S. So there exist some
neighbourhood of X which do not contain any point of S other than X. That is, there exist
some neighbourhood of x which lie entirely in S°. This implies X is an interior point S°¢.
Since X is arbitrary it follows that every point in S¢ is an interior point of S°. Hence S° is
open.

PROPERTIES OF CLOSED SETS

THEOREM 1.17: The union of a finite collection of closed sets is a closed set.

Proof : Let S,,S,,S,,....., S, be a finite collection of closed sets. Then S/,S;,S;,........ ,S%isa

finite collection of open sets.



Therefore, (S, US, US, U.....US, ) =Sf NS NSS M........ NS¢ (By De Morgan’s Law).
Right hand side of the above relation is the intersection of finite number of open sets and
hence the intersection is open ( by theorem 1.15). Thus (S, US, US, U....... USS, )°is open.

Clearly this implies S; US, U S,u,......,US, is closed.

THEOREM 1.18: The intersection of an arbitrary collection of closed sets is a closed set.

Proof : Let S,,S,,S; i, be an arbitrary collection of closed sets. Then
S.1S5,S5 e is an arbitrary collection of open sets.
Therefore, (S, NS, NS, M......... ) =S USLUSE U, (By De Morgan’s Law). Right

hand side of the above relation is the union of an arbitrary collection of open sets and hence
the union is open ( by theorem 1.14). Thus(S, NS, NS, M......... )'is open. Clearly this

implies S, NS, NS; My is closed.

P-VIl : Show by an example that union of an arbitrary collection of closed
sets may not be closed.

Solution : Let S, :[—l,l], S, ={_—11} S, ={_—1£} be an arbitrary collection of
2 2 33
closed sets. Then S, US, US,u,........... = [~1,1] which is a closed interval and hence closed.

Again let S, = [1,2], S, = [%,2}, S; = E,Z] ......... be an arbitrary collection of closed sets.

Then S, US, US, u............ =(0,2] which is not a closed set.

BOLZANO WEIERSTRASS THEOREM

Theorem 1.19: Every bounded infinite subset of the set of all real numbers has atleast one
limit point.

DEFINITION : (Covering of a set/ open covering/ subcovering) Let S be a set of some real
numbers. A collection F of sets is said to be a Covering of Sif every x € S is contained in
some setsin F .

If all the sets in F are open sets, then the collection F is called open covering of S .

If a subcollection of F is also a covering of S then this subcollection is called subcovering
of S.

EXAMPLE : Let S = (0,1). Let us consider the following collection of sets :
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an open covering.

F= {(1 ,1],(1 2),(£ Ej, .......... } This collection of sets clearly covers the set S. Itis also

HEINE-BOREL THEOREM

Theorem 1.20: (Heine-Borel Theorem) Every open covering of a closed and bounded set S
of real numbers has a finite subcovering.

If a set S is such that every open covering of S has a finite subcovering then the set S
is said to possess the Heine-Borel property.
DEFINITION : (Compact Set) A set S is said to be Compact if and only if the set possesses
the Heine-Borel property. That is, the set S is Compact if and only if every open covering of
S contains a finite subcovering.

NOTE : Heine-Borel Theorem is not true if the set S is not closed and bounded.

SOME EXAMPLES ON DERIVED SET

EX : Find the derived set of the set S = {l ‘ne N}.
n

SOLUTION : Let ¢ > 0. By Archimedean property there exist a positive integer n such that

0<1<8
n

1
=>-e<—<¢
n

:>0—g<£<0+g
n

1
= = e(0-£,0+ &)= & —neighbourhood of 0 contains points of the set S. Since & is
n

arbitrary, we can say that any neighbourhood of 0 contains points of the set S. So, 0 is the
only limit point of the set S . Therefore, the derived set of the set S is S’ = {0}.

EX : Find the derived set of the set S ={ﬂ+l:me N,ne N}.
m n

SOLUTION : Let &> 0. By Archimedean property there exist a positive integer m such that

0<l<£
m

1
= -<—<¢



1
=S —g<
n m n n

:ﬂ+le(l_8,l+5j: £ —neighbourhood of lcontains points of the set S.
m n \n n n

1
Since ¢ is arbitrary, we can say that any neighbourhood of — contains points of the set S.
n

1
So, — , ne N is limit point of the set S.
n
Again let ¢£>0. By Archimedean property there exist a positive integer n such that

0<1<g
n

1 _q\m _\m 1 \m
= —<¢&<—<¢& :u_g<ﬂ+l<ﬂ+g
m m n m

:(_1) +le((_1) - &, (_1) +g]:8—neighbourhood of (_icontains points of

m

. — . (-1)" o

the set S. Since ¢ is arbitrary, we can say that any neighbourhood of ——— contains points
m

—1)"
of theset S. So, u is a limit point of the set S.
m

Again let £ >0. By Archimedean property there exist a positive integer n such that

0<ﬂ+—<g
m n
:>—g<ﬂ+—<g :>O—g<ﬂ+—<0+g
m n m n
-1)" 1 . . . .
= T+_ € (0-£,0+&)= & —neighbourhood of 0 contains points of the set S. Since

£ is arbitrary, we can say that any neighbourhood of 0 contains points of the set S. So, 0 is
a limit point of the set S.

Therefore, the derived set of theset S is S’ = {1, ne N}u{ﬂ,m € N}u {0}
n m

Thatis, S'= {O,il,l,il, .......... } )
2 3

EX : Find the derived set of the set S ={E+§:me N,ne N}.
m n

SOLUTION : Left as an exercise.



EX : Find the derived set of the set S :{(—1)m +1:m eN,ne N}.
n

SOLUTION : Clearly, S ={(—1)2k +%:m eN,ne N}u{(—l)z“ +%:m eN,ne N}
=AUB.

Since, {%n € N} has only limit point 0, the set A has only limit point 1 and the set B has

only limit point —1. Therefore, the derived set of the set S s

S'=(AUB) = A'UB' = {-11}.

EX : Find the derived set of the set S = ——Nne N}

SOLUTION : Clearly, S :{(—1)“_1 C 1)1 ‘ne N} Let &> 0. By Archimedean property

. e 1
there exist a positive integer n such that 0 < 1 <ég
n —

1
> &< —<E
n-1

n-1

n-1
= ()" —e< (1) + 1) <(-1)""+&.  Therefore, ¢ —neighbourhood  of

n-1

(— 1)”“l contains points of the set S. So, (—1) ,i.e., 1 and —1 are the limit points of the set

S (according as nis odd or even). Therefore, the derived set of the set S is S’ = {~11}.

QUESTIONS

e Define “limit point” of a set. Show that a finite set cannot have any limit point. Give

an example of an infinite set which does not have any limit point.
e State Bolzano Weierstrass theorem. Verify this theorem for the set

S={1+(_i)n ,neN}.

e Define interior of a set. Find the interior of the set S ={x e R:1<x <3}.

e State Peano’s axioms for natural numbers. Using this axioms prove that the set of all
natural numbers has no upper bound.
e Provethat 17 is not rational number.

e Prove that the set Q of all rational numbers is not complete.



If X,yeR and x>0, then show that there exists a positive integer nsuch that
nx > y. (Archimedean property)

If xandy are two real numbers such that X<y, then show that there exists a
rational number r where X <r < y. (Density property)

Define enumerable set. Prove that the set Q of all rational numbers is
enumerable(countable).

Istheset Z = {O,il,iZ,i?,, ............ } of all integers enumerable(countable) ? ----- justify
Show that the set (01) is not enumerable. Hence show that the set R of real
numbers is not enumerable.

Show that the closed interval [a,b] is not enumeable. Hence show that the set R of
real numbers is not enumerable.

Show that the set R of all real numbers is not enumerable(i.e., not countable).
Define “open set” , “closed set”.

Prove that the set Q of all rational numbers is neither open nor closed.

Prove that the intersection of finite collection of open sets is open. Show by an
example that the intersection of an infinite collection open sets may not be open.

Prove that the union of finite collection of closed sets is closed. Show by an example
that the union of an infinite collection closed sets may not be closed.

Find the derived set of the set S = {( 1) +1 meN,ne N}
n

Find the derived set of the set S = 1 +1 meN,ne N}

m n

=REN)

Find the derived set of the set S ={ +§ meN,ne N}
n

Find the derived set of the set S ={(-1)"" —:ne N}



