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ELEMENTS OF CRYSTAL STRUCTURE

—t

The solid state of matter can be put into two broad categories
on the basis of their structure : the crystalline or non-crystalline
(or amorphous). The’distinction between the two does not, how-
ever, depend on their external appearance or macroscopic form ;
instead, they are distinguished from one another primarily by the
degree of order exhibited by the arrangement of the fundamental
particles—atoms, molecules or ions comprising them. In crystal-
line solids, the atoms or the molecules or ions (which may be
compared with ‘building blocks’) are stacked in a regular manner,
Just like the soidiers do on the parade ground, thus forming a
three-dimensional pattern which may be obtained by a three-dimen-
sional repetition of a building block or ‘pattern unit’. When
the regularity of the pattern extends throughout a certain piece
of solid, then 1t can be treated for many purposes a ‘single crystal’
acrd would be so called. However, most of the solids of technical
interest, such as merals, ceramics, ionic salts, are not single
crystals, but often consist of a large number of small crystal sections
(grains) of various shapes and sizes packed to one another in a
quite irregular way along the interfaces called the grain boundaries.
In such materials the regularity or periodicity is interrupted at the
grain boundaries though the structure may be more stable. These
materials are cailed polycrystalline. The size of grain in which the
structure is periodic may vary from submicroscopic (several
Angstroms) upwards and when it becomes comparable to the size
of pattern unit, one can no longer speak of crystals, since the
essential feature of a crystal is its periodicity of structure. One
then speaks of amorphous substances. '

Most solid matter is crystalline i.e. nature favours the crystal-
line state of solids. This is because the energy of the ordered X
atomic arrangement is lower than that of an irregular packing of
atoms. However when the atoms are not given an opportunity to
arrange themsclves properly, e.g , the temperature of a liquid is
dropped abruptly arresting the motion of atoms before they can
rearrange themselves, the amorphous material may be formed. We
shall presently deal with the structure of perfect (ideal) or nearly
perfect crystals. These studies form the basis for studying the
influence of imperfections and impurities in an otherwise perfectly
periodic crystal, as we shall see in a later chapter.

Crystal Translational Vectors

Let us consider an ideal crystal. As has been indicated, it is
composed of atoms or groups of atoms arranged in a regular pattern
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so that the atomic arrangement at one Jocation looks cxactly the
sameinall respects as the arrangement at al corresp0nd|. :
locationsomewhere else. In the language of crysta sf,_ We Say fhay
in such a crystal there exists some smallest group of atoms (,call' i
the pattern-unit) that repeats itself exactly 1n .,':11(1l (}Il‘C((:itIOHS in the |
crystal by means of the translation operation T defined as

T—=n,a-+nb+nsc, ()]

where 1, ny, ns are arbitrary integers and a. b, ¢ are vectors defineg ]
as the fundamental translation vectors. Moreover, see that the
application of this operation (1) to any point r (measured from
some arbitrary origin) results in a point r’ :

' =r+T=r+ma+nzb+nsc, ()

which is identical in all respects to the original point r, and thug

satisfies the essential feature of a perfect crystal. This is not possible
for an imperfect crystal : there r’ is not identical to r for any .
arbitrary choice of n;, n;, ng and the vectors a, b, ¢ are not trans-
lational vectors. Thus in order for an assembly of atoms to be

defined as crystal structure, it must be possible to find three trans-
lation vectors a, b, ¢ which satisfy (2) such that r’ is identical to r, |
In other words, we can say that if no a, b, ¢ exist according to the |
above prescription, the assembly cannot be classified to be a
crystal. These translation vectors a, b, ¢ are often called as crystal |
axes, or basis vectors. 3

Now, with reference to a given crystal there may be many
ways of choosing these translation vectors. Fig. 1 (representing,
for simplicity, the part of a two-dimensional crystal with only two
fundamental translation vectors a and b) illustrates two such choices:
here a;, b; and a,, b, ate translation vectors. However, a; and by

° ° L s -

=

€ ° \J
o ° ® - °
Fig. I Primitive (a,, b,) and non- Fig. 2. Possible primitive and non-
primitive (as, bg) translation vec- primitive cells of a lattice. Other
tors of a lattice. cells are also possible.

are such that every identical point in the crystal can be reached by |
an application of the translation operation
i T=11n1+b,nz :
with some combination of n, and ny. For example, we can gt
P’ from P by using the operation T=0.a,+1,b, and can write ‘
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P’ ==P‘|"0.81-|‘ l.bl.

Such translation vectors are called the primitive translation
vectors.  On the other hand, the vectors a; and by cannot do it.
When we try to do it using a, and b, we get

P'=P-+{as+3b,.

But this involves non-integer coefficients of a; and by and thus is
not in accord with the periodicity of the crystal. Such axes are
called the non-primitive translation vectors. For the description
of the crystal structure either type of the translation vectors may
be used. Usually, one which is orthogonal is convenient, specially
for calculating purposes. Further, they must be shortest in length.
Keeping these factors in mind, the vectors a, and b, are regarded
as convenient for the description of the lattice shown in fig. 1.

Unit Cell

Now, consider the parallelograms or the rectangles based on
the translation vectors as shown in fig. 2. These are defined as
the unit cells of the crystal. To understand the importance of the
unit cells, let us consider only one of them. It is apparent that
under the action of the translation operation (1) for some com-
bination of n’s, it is carried into a region which is exactly identical
to the original 1egion and under the action of the various possible
translation operations, it reproduces the entire crystal. Thus, in a
way it serves as a ‘unit’ in terms of which the crystral can be con-
sidered to be constructed and is so called. We can suitably compare
it with the building block of a wall. It must also be clear that to
know the properties of a crystal, it is only sufficient te know the
properties of a unit cell of the crystal.

Since with reference to a given crystal there exists a number
of possible unit cells (see fig. 2), the next thing which must be con-
sidered is which one to choose as a conventional unit cell. In fact,
the ¢hoice of a conventional unit cell is a matter of convenience.
Usually, a cell with shortest possible size (area ax b in two-dimen-
sions and volume a.bx ¢ in three-dimensions) and sides is chosen
as a convenient unit cell. In this respect the parallelogram A in
fig. 2 is taken as convenient and conventional unit cell for the
concerned lattice. We see that this cell contains lattice points
(to be defined in the next section) only at the corners. Since ‘a
lattice point is shared by four unit cells whjch touch there, we can
say that } of a lattice point is associated with this cell and thus
there is a lattice density of one point associated with this cell. But
this is the character of what is known a primitive unit cell. Thus,
the convenient unit cell is minimum area-primitive cell with shortest
possible sides. Sometimes it is, however, more convenient to use a
cell of larger arca and thus containing more than one lattice point.
The rectangle C shown in fig. 2 is one such cell, for example. The
cells of this type are known as the non-primitive unit cells. ' The
most important reason for chocsing a non-primitive unit cell is that
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it satisfics the symmetry elements better. This point will be i,
trated at the appropriate discussion. .

Lattice and Basis

A lattice is a regular perio
that looks a net-like structure.

dic arrangement of points in spa
The environment about any parg

cular point is in every way the same as that about %ny other Poiny,
All the points are connected, as we would expect, by the trungy

tion operation T defined as 1
T=n1a +ﬂ2b -+/—n30

In other words, the lattice can be th/ought of as generated by the
translation operation T ; for, if one point and a set of translatjop
vectors are chosen, then the application of T with all possipje
values of #’s will do it of course. It is now essc;ntlal to distinguigh
a lattice from the crystal structure : a lattice is a mathematic|
concept whereas the crystal structure is a physical picture, and j
is formed by associating id:ntically with every lattice point g
structural or a building unit. This structural unit is called the
basis. The basis consists of an atom or a group of atoms'2 and iy
an ideal crystal it is identical in composition, arrangement ang
orientation. The distinction between the crystal and the lattice js
illustrated in fig. 3 and the logical relation is LI

lattice} basis=crystal structure

° ° . o i L @piziio ° ] ® [ J ) |

ol Tl o0l o OMENG =
Basis (contalning

. . . 5 - gwo differentions) @ ® @ o @
O 10 {0 RO
A
s o . ARt e 8 s tiedlle
0., 0 .ol HOSIG P
2 TR e s ° o o o <
; 0. 0" 0 hoHNG A
Lattice Crystal Structure 4

Fig. 3. Distinction between a lattice and crystai structure.

The crystal structure is thus specified charac:eristically by the
type of the lattice associated with it, which in turn requires ‘hé
fundamental translation vectors and their relations with each othe
to be specified. These relations emerge from the consideration ol
the symmetry operations of the crystal structures. We now discusi
them. For simplicity we shall discuss them for a two-dimensioﬂ'ﬂa

1. The basis generally contains sev / "

R : eral atoms to pe

h.a:.)s 100 in inorganic crystals and 10* in proteimr cr (:ia lmole]culcie:;lilépcd X
it is composed of two distinct types of ions 2 Al 47

2, The number of atoms in the b

A e asis gi oms i
primitive cell as there it a density of one gives the number of atoms =

lattice point per primitive cell.
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orystal. ‘The discussion shall apply fairly completely to three-
dimensional crystals,

Symmctry Operatios for a Two-Dimensional Crystal

A symmetry operation is one which leaves the crystal environ-
ment invaiiant. ‘We have already seen that the translations fulfil
this requirement, but these are not the only type of symmetry
operations. Rotallo_n about an axis, reflection in a plane and
inversion about a point and combination of these are the other
symmetry operations. These operations, however, form a distinct
class—called the point Symmetry operations and apply to all
objects whereas the translations apply only to lattices. We now
understand the meaning of the various symmetry operations, Since
we are hmntmg our discussion to two-dimensions, we will consider
only rotational and reflection point symmetry operations (as these
are the only point operations in two dimensions) and the transla-
tions. We shall remember that in two-dimensions an axis of
rotation is a point and a plane of reflection is a line.

Translations. The translation symmetry is the manifestation
of the order of crystalline solids. According to it, if we are at r
and then translate the crystal by an amount T defined by (1), then
the new environment arround r appears identical to the old.

Rotations. A body is said to possess the rotational symmetry
about an axis if the rotation of the body about this axis by some
angle 0 leaves the body invariant, that is, if after rotation the body
appears as it did prior to rotation. In order for the body to be
truly invariant by the rotation, there must be an integral number
of such rotations in one complete revolution of the body. Thus,
the rotational angle 0 must be an integral submultiple of 2z ; that
18, 0 must be equal to (2z/n) with n an integer. The integer n is
called the multiplicity of the rotation axis. The rcgular polygons
are examples of the bodies having rotational symmetry : with n
sides, a polygon have an n-fold rotation axis. A rotation axis is
designated by the symbol #.

Since our concern here is with lattices and crystal structures,
we must now discuss the rotational symmetry as applied to them.
Suppose, then the point r of a lattice is a rotation axis ; then every
point r' =r--T must also be a rotation axis in order to satisfy the
translational symmetry. This requirement has the important result
that certain rotations are not compatible with the translation
operation. That is, for certain rotations Ts£ma-n.b+nsc in a
lattice. In fact, only 1-, 2-, 3-, 4- and 6-fold rotations axes can
exist in a lattice, We now set out to prove this restriction.

With reference to fig. 4 suppose that R; and R, are two
vectors drawn to the two closest lattice points. Letting these
points are in the direction of the primitive translation vector a
(taken in fig. along the x-axis), | a |[=| Ry—R. | is the minimum



separation distance between lat=

tice points in that direction.
Now assume that 2 lm:l
perpendicular to the page a'nt
passing through the lattice poin
defined by Ry is an n-fold axis
of rotation. Since all lattice
points are equivalent, there
must also be a  similar axis
through the tip of Ra. Taking
then §=2x/n, consider a counter-

clockwise rotation 8 of a about
R, : it produces a new lattice —

/)

vector Ry'. Similarly, a clock-  Fig. 4. Geomet?ry used in provin
wise rotation by the same angle that only 1-, 2-, 3-, 4. and 6-folq
6 of a about R, produces a new Totation axes o ek a
lattice vector Ry’. The tips of latuice. _ 4
these vectors Ry’ and Ry’ are the new lattice points ; as such,
R;’—R,’ must also be a lattice vector. From the fig. 4 we see that
R,'—R,’ is parallel to the x-axis and we must therefore haye
R:;'—R;’ to be equal to some integral multiple of a i.e. we must’
have 7

| Ri'—R:' | = | pa | ; p an integer. ‘,

If it is not, then Ry’ —Ry’ is not a translation vector of the lattidef
and the array is not periodic. : B |
Now, with the aid of figure 4, it is a simple matter to write
|pal = a] +2]a|sin(0-7)

= |a| (1-2 cos §) e
. p=1-2cos 6 -l
1_ B
or |cos0|={—2p'|<1

]
i)
This equation can be satisfied onl 239 150 =
Consequently, y for p=3,% L

1.

0_2'": 2r 2r 2 n

i —7! T) '4—9 F“, T,
giving n=1, 2, 3, 4 and 6 only.

We thus see that a crysta] o _. 4
6-fold axes of rotation. It i)s, ;dhucsa? have only 1-, 2-, 3-, 4-, at[‘;«

nteresti t, 10
example, a crystal cannot have five resting to. notci e

: -fold* rotation axis. In Oth‘
words, translational symmetry is not ‘compatible with five

*To prove exclusively that a five-fold
lattice. prove that equation (3) is not satisfied fo

symmetry is impossible i
r 0=2r/S.
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axis of symmetry. Fig. 5
makes this convincing phy-
sically : here we see that a
connected array of penta-
gons dces not fill all the
nace. The array itself has
a five-fold symmetry about
point 4, but there exists no
set of vectors that satisfies
the translation operation
and thus the array cannot
be classified as a lattice. In
other words, the array has
5.fold rotational axis but
not the translational sym-

metry. Similarly, other FE =3 == 5
rotations, like 7-fold can be E= == =
excluded. = LE = = =

Reflections. A body is

said fo possess the reflection Fig. 5. Demonstrat.on th2* a five-fold
symmetry if a plane can be axis cannot exist in a latt ce.

drawn in the body dividing it into two exactly similar parts, so
that one half is the reflection of the other half. In other words,
according to this symmetry one half of the body when reflected in
the above plane reproduces the other half. The plane is known as

the reflection plane (or line) and is
designated by m. The notched wheel,
for example, shown in fig. 6 has a
reflection plane through the centre of
the notch.

Concerning ourselves with lattices
and crystal structures, we next consider
the combinations of the reflections
wi h allowed rotations. Since these
two operations are tl ¢ only point
operations in two din ensions, such
combinations will determine the total Fig 6 T
symmetry types of lattices about a reflection symmetry
point. In fact, the total symmetry of about-dotted line.

space about a point is determined by a collection of symmetry
elements at that point. For instance, symmetry of a cube about
its centre is described by collecting all the symmetry elements
there. The group of such a set of symmetry operations at a
point is called a ‘point group.” Now, since there arz two possible
point groups associated with a rotation axis (with or without
reflection symmetry). there are therefore a total of ten possible
point groups permissible in two-dimensional crystal. These are
designated as under:

Line.of Reflection
Symmetry
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1, Im, 2, Zmm, 3, 3m, 4, 4mm, 6, 6mm.

bout a point ; d
to the folathﬂﬂ a th
The first sym6bg(1) ; te:f;: 6-fold rotations. T hchsccond Y|
the point 8“’;‘31 ection line (or lines) parallel to t clrotatlon 1;
refers 10 a’I‘h ¢ third symbol refers 10 the reflection lines perpgn.
aor a;’mt)o the rotation axis (or axes). These ten p;)lnt Eroups are
bl e e havans any patcua poin gy
;yxl;:metry is said to belong to 2 par “Cu]” Dyt L "

anm 4

i \ Rt

- 1‘1

v e::
Amm {I

|

@U” '
i )

Fig. 7. Ten two-dimensional point groups consisting of rotation
and reflection operations illustrated by means of
notched wheels.

Two-Dimensional Bravais Lattices

We now have means of classifying two-dimensional lattices:
The point groups 1 and 2 obviously require a general lattice such
as one shown in fig. 9 (a¢)—called an oblique lattice. It hasno
restrictions on the length of a and b and on the angle between
them. It is easily seen that it is left i invariant under rotations 0
2= and = about any lattlce point. The point group 4 requires a
square lattice shown in fig. 9 (b). In this lattice a—b and the
angle between them is 90°., The point groups 3 and 6 requir¢ 2
hexagonal lattice shown in fig. 9 (¢). This lattice has a=bh and
the angle between aand bis 120°. Thus, the pure rotati ons
predict only three distinct two-dimensional lattices. o’
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We now consider the reflection symmetry. We note that it is
imperative for the square and hexagonal lattices to possess the
reflection symmetry : there are two sets of reflection planes. But
the oblique lattices in general do not have this symmetry. When

they do, it is a little more significant : two additional lattice types
result, as we see below.

Let us consider an oblique lattice, as illustrated in fig. 8 with
primitive translation vectors a and b. We wish to find out what
relations between a and b result when we impose reflection sym-
metry on this lattxce.. With reference to a cartesian co-ordinate
system (x, »), we begin with

a:aa:i,
b=ba;i+b»yj.

y

o
S
iﬁ

/
]
!

Fig. 8. Illustrating that the lattice will have reflection symmetry about
x-axis only when the vector b’ lies on a lattice point.

~ Let us assume that the x-axis is a reflection line. The reflec-
tion of the lattice in this line then produces new vectors a’, b :
al—:ami,
b’ =bgi—byj. ...(4)
If the lattice is invariant under the reflection operation, then
a’ and b’ must also be the lattice vectors, i.e. they must be of the
form nja+n.b, where n, and n, are integers.
Since a’ is evidently so (a’=a), let us therefore set
b’ =n,a-+nb=mazi+ny (bzi-+byj). 68)
Equating coefficients of i and j in equations (4) and (5), we get
bx—_-nlaz -‘l"nzbw and '—‘by=112bu
or ng=—1,
s

Tl =
herefore ba > (6)
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and by is arbitrary. One possibility of choosing b is then giVen“’"_
v b

T e
n,=0. We hav s by=arbitrary

b=bj

a=ai
: ice i imiti lar lattice (sinps
ting lattice is a primitive rectangu (Singe

; b:'I(‘)he resul‘};‘fgooy This is shown in fig. 9.(d)..

Another possibility of choosing a and b is given by ‘,,1':!.

We have : ‘

so that
and

1
k|
|
8

" |
A
8|

bngs- or 2bs=a, : by=arbitrary
so that b =1ai+byj
and a=ai.

This choice gives another type of lattice invariant under
reflection. It is shown in fig. 9 (¢) and is a centered-rectangular:
lattice. We could have also chosen b and a—b as the primitive"
translation vectors. In that case we would note that | b |[<] a—b|
when b;=a,/2 i.e. the primitive translation vectors are equal ip
magnitude and the primitive cell is a rhombus. The rectangular
translation vectors (non-primitive) would be a and (2b—a) since
2.(2b— a)=0 when b;=az/2. '

These are the only distinct lattice types in two-dimensions
which are consistent with the point group operations applied to!
lattice points. Bravais lattice is a common phrase for a distinct!
lattice type : we say that there are five Bravais lattices in two-

dimensions. These are summarised in the table no. 1 with their®
characteristic symmetry elements. i
TABLE No. 1

: Conventional | Axes of conven- Point-group symmetry J

Lattice unit cell tional unit cell of lattice a!) out é

lattice points

—

Oblique Parallelogram | ax=b, y<90° 152 ‘ : <

|

Rectangular Rectangle axb, y=90° 1m, 2mm i A

primitive |

4

Rectangular Rectangle =90° 4

e g axb, y=90 1m, 2mm |

Square Square a=b, y=90° 4,4 mm

Hexagonal 60° rhombus | a=b, y=120° 6, 6mm, 3, 3m

: A_nother means 6[‘ classificati
primitive and centered-
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to a single regtangular' crystal system, There are s s
PIYME S8y Stemb sl two-dimensions—oblique, rectangular, square,
and hexagonal. This classification js of more wide use in three-
dimensional lattices.

o ° v
© ° o
° ) ) ° o
® ¥ o e o
(s) Oblique Lattice ; lu;tlbl}raarbltrary
7 - i »
>
b
----- P °
o
° ° ° o o @
{(b) Square Lattice : (c) Hexagonal Lattice :
la|=|b];y=90r [af=|b|;y=120
g 2
®
it ] { { I
b I [
I % 1
- —9 () Y I
)
|
!
Y [ o I
|
(d) Rectangular Lattice : ~ ° ﬁ__ — ==\
13 (| 6|; r=90°

(e) Centered Rectangular Lattice -

(Primitive cell 2 | #£Ib [ ys£90°

but| b (=) a—Db)(non-primitive ceil
ai#|b|; »y=90)

Fig. 9. Five two-dimensional Bravais lattic.es: Om.: [ie., (a)]- is
general lattice and the remaining four are special, resulting from thijs
general lattice as a result of the restrictions placed on the Iength. and
orientation of its translation vectors a, b by the Symmetry operations,

Now, since a crystal structure is formed by associating with
every lattice point a unit assembly or basis of atoms, the actual
crystal structure may not have the same point-group as does_ its
lattice ; it may have lower point symmetry. For example, it js
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g

h a square lattice to have only the q eid

. . ing all the operations 4 mm. In fact, jp g4
ti,°§';eti‘f‘;,'t3§“sty§m?§y of a crystal structure cl;.)mp];tdy’ we my!
consider two additional aspects : (1) th,;:‘re m?yth:rre)oén‘t- fymmetri
at more than one location in a uait cel’. d(u) 5] Xis symﬂ}etr’y
elements consisting of combined point an trefx'ns a 1:),1 Operatiop,.
The collection of all the symmetry elements o strtuc ure is calleg
the ‘space group’ and it gietermmqs the syrﬁxmg ry of a crysty]
structure completely. It is determined by t f? hfat‘)’a‘,s lattice apq |
by the type and location of the point-group 0 t ﬁ d;,s and other
symmetry elements within a unit cell. We can, therefore, also g,
that it specifies the repetitive pattern of symmetry elemen.ts of thy
structure. Through its symmetry elements, it determlqesu the
positions of structurally equivalent points within the unit cell,
For a crystal structure characterised by a particular space group, |
it is necessary that if any one point in tbe cell is occupied, g |
other equivalent points must also be occupied by identical atoms:
or molecules. ‘

There are seventeen possible distinct space groups in two-!
dimensions. |

possible for a crystal wit

Three-Dimensional Bravais lattices

In three dimensions the picture becomes complicated due to"
additional symmetry elements and due to the added dimensi-
onality itself. However, by employing arguments similar to those*
used in two-dimensional crystals, it is possible to show that there’
are 32 different three-dimensional point-groups permissible ina
three-dimensional crystal. We first discuss the symmetry elements
associated with these point-groups : :

1. Rotation axes. One-, two-, three-, four-, and six-fold rota-

tion axes denoted respectively by the symbols 1, 2, 3, 4 and 6 are
permissible. j

2, Reflection plane. Denoted by m. It is also known as
mirror plane.

3. Inversion centre. 1If a crystal structure is left invariant by
the operation r——r, where r is the vector position of an arbitrary
point in the crystal referred to a lattice point, it is said to possess|
a centre of inversion. This symmetry element implies that for eachy
point located at r relative to a lattice point there exists an identical]
point at —r. An inversion centre is denoted by 7. "

. 4. Roration inversion axes. 1If a crystal structure is left io=
variant by a rotation followed by an inversion about a lattice
ghrough which rotation axis passes, it is said to possess a rotation
inversion axis. This operation is also known as an impropet
rotation and the corresponding axis as an improper axis. Crystal
can possess one-, two-, there-, four-, and six-fold rotatiofs
inversion axes denoted by the symbols 7 3 (=m), 3,3, 6(=3P%

normal reflection plane). : SRR
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The thirty-two permitted crystal point groups require fourteen
different space lattices or Bravais lattices (after Bravais). These
are illustrated in figs. 10 by a convenient unit cell of each and
listed in table no. 2. The lattices are grouped into seven systems

TABLE NO. 2

FOURTEEN BRAVAIS LATTICES AND SEVEN
CRYSTAL SYSTEMS

—

Characteristic | Bravais lattice ; .. | Unit
Systems symmetry and its symbol Convegéﬁnt R cell'ﬁ Examples
elements . e specifi-
1y characteristics e tion
Triclinc None 1. Simple (P) axbyc a, b, c; |CuSO,
a#3#7¢90° 5 1 5SH,O,
KgCT307
: . CaSO,-
Mono- | One 2-fold 1. Simple (P) ' axbzc as brc: 2H O
clinic rotation axis ' 2 Base centered a=p=90°y Yy (gypsum)
| (C) borax
1. simple (P)
2. Base centered KNO,,
Three mutually (©) axbsc K.SO,,
Ortho- | perpendicular | 3. Body-centered | «a=8=7=90° | a, b, ¢ | «-S, Ga,
rhombic | 2-fold rotation ) (Orthorhomb) Fe,C
axes 4. Face-centered (cementite)
(F)
One 4 fold axis a=bxc B-Sn
Tetra- | and two 2-fold | 1. Simple (P) a=p=7=90° (white)
gonal | axes normal to | 2. Body center- Right square | a, c TiO,
the 4-fold axis ed (/) (prism) SnU,
: | 1. Simple (P) Au, Ag
Four 3-fold ro- | 2. Body-centered Cu
Cubic | tation axes I a=b=c a Fe, NaCl,
(cube diagonals'| 3. Face-centered a=B=y=90° ZnS,
(F) | diamond
1 a= b# c Sio,,
Hexa- | One 6-fold ro- | 1. Simple (P) a=120° : azc Zn, Cd
gonal | tation axis : ‘ p=7r==90 NiAs
‘ a=b=c As, Sb,
One 3-fold ro- a=p=y90° i, >
Trigonal| tation axis ' . Simple (R) | but < 120° a;a | calcite
. Had A 11 Simpigt (Right Prism) (CaCOy,)
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Fig. 10. The fourteen Bravais or space lattices illustrated b
Dtimitivq ce‘-lls Tke figure for hexagonal sy stem
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y conventional (= conven ‘ent) unit cells which are not always
_ also shows the relation of the primitive cell with the prism of
W“S’;‘%&F‘“&! Symmetry ,Whii-‘li"i,gx the conventional cell. el T e
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according to certain specifications about the lengths of edges and
angles bg:twcen them of a convenient unit cel gIt mi htg thca

at first sight that thcrg should be other possiblé Brave:i ] a’(ltp s ?
for example, one might cuggest in the tetragonal s st?:mmt:z ’
possibility of a face-centred type, However, such a lattiyce wo lde
upon choosing a different set of axes, be identical with the boud‘ ’
centered tetragonal lattice in which the side of the base of tl{-
unit cell 18 1/4/2 times what it is for the original lattice, Oth :
examples may be considered similarly. . i

There are 230 distinct space groups in three-dimensions.
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