
GE3 Computer Science
C and C ++ Lecture series for

B.SC 3rd semester by

Subhadip Mukherjee
Department of computer science

Kharagpur College

LECTURE 16



More C++ Concepts

• Operator overloading

• Friend Function 

• This Operator 

• Inline Function

2



Operator overloading

• Programmer can use some operator symbols to define special 
member functions of a class

• Provides convenient notations for object behaviors

3



Why Operator Overloading

4

int i, j, k; // integers

float m, n, p; // floats

k = i + j;

// integer addition and assignment

p = m + n;

// floating addition and assignment

The compiler overloads 

the + operator for built-in 

integer and float types by 

default, producing integer 

addition with i+j, and 

floating addition with m+n.

We can make object operation look like individual 
int variable operation, using operator functions 

Complex a,b,c;

c = a + b;



Operator Overloading Syntax

• Syntax is:

5

operator@(argument-list)

--- operator is a function

--- @ is one of C++ operator symbols (+, -, =, etc..)

Examples:

operator+

operator-

operator*

operator/



Example of Operator Overloading

class CStr 

{

char *pData;

int nLength;

public:

// …

void cat(char *s);

// …

CStr operator+(CStr str1, CStr str2);

CStr operator+(CStr str, char *s);

CStr operator+(char *s, CStr str);

//accessors

char* get_Data();

int get_Len(); 

};
6

void CStr::cat(char *s)

{

int n;

char *pTemp;

n=strlen(s);

if (n==0) return;

pTemp=new char[n+nLength+1];

if (pData)   

strcpy(pTemp,pData);

strcat(pTemp,s);

pData=pTemp;

nLength+=n;

}



The Addition (+) Operator

CStr CStr::operator+(CStr str1, CStr str2)

{

CStr new_string(str1);

//call the copy constructor to initialize an 
//entirely new CStr object with the first 
//operand

new_string.cat(str2.get_Data());

//concatenate the second operand onto the 
//end of new_string

return new_string;

//call copy constructor to create a copy of 
//the return value new_string

}

7

new_string

str1
strlen(str1)
strcat(str1,str2)
strlen(str1)+strlen(str2)



How does it work?
CStr first(“John”);

CStr last(“Johnson”);

CStr name(first+last);

8

CStr CStr::operator+(CStr str1,CStr str2) 

{

CStr new_string(str1);

new_string.cat(str2.get());

return new_string;

}

“John Johnson”

Temporary CStr object

Copy constructor

name



Implementing Operator Overloading

•Two ways:
• Implemented as member functions
• Implemented as non-member or Friend functions

• the operator function may need to be declared as a friend if it requires access to protected or 
private data

• Expression obj1@obj2 translates into a function call
• obj1.operator@(obj2), if this function is defined within class 

obj1
• operator@(obj1,obj2), if this function is defined outside the 

class obj1

9



Implementing Operator Overloading

1. Defined as a member function

10

class Complex {

...

public:

...

Complex operator +(const Complex &op) 

{

double real   = _real   + op._real,

imag = _imag + op._imag;

return(Complex(real, imag));

}

...

};

c = a+b;

c = a.operator+ (b); 



Implementing Operator Overloading

2. Defined as a non-member function

11

class Complex {

...

public:

...

double real() { return _real; }

//need access functions

double imag() { return _imag; }

...

};
Complex operator +(Complex &op1, Complex &op2) 

{

double real   = op1.real()   + op2.real(),

imag = op1.imag() + op2.imag();

return(Complex(real, imag));

}

c = a+b;

c = operator+ (a, b); 



Implementing Operator Overloading

3. Defined as a friend function

12

class Complex {

...

public:

...

friend Complex operator +(

const Complex &, 

const Complex &

);

...

};

Complex operator +(Complex &op1, Complex &op2) 

{

double real   = op1._real   + op2._real,

imag = op1._imag + op2._imag;

return(Complex(real, imag));

}

c = a+b;

c = operator+ (a, b); 



Ordinary Member Functions, Static Functions
and Friend Functions

1. The function can access the private part of the class definition
2. The function is in the scope of the class
3. The function must be invoked on an object

Which of these are true about the different functions?

13



What is ‘Friend’?

• Friend declarations introduce extra coupling between classes
• Once an object is declared as a friend, it has access to all non-public members as if 

they were public

• Access is unidirectional
• If B is designated as friend of A, B can access A’s non-public members; A cannot 

access B’s

• A friend function of a class is defined outside of that class's scope

14



More about ‘Friend’

•The major use of friends is
• to provide more efficient access to data members than 

the function call
• to accommodate operator functions with easy access to 

private data members

•Friends can have access to everything, which 
defeats data hiding, so use them carefully

•Friends have permission to change the internal state 
from outside the class. Always recommend use 
member functions instead of friends to change state

15



The “this” pointer 

• Within a member function, the this keyword is a pointer to the current 
object, i.e. the object through which the function was called

• C++ passes a hidden this pointer whenever a member function is called

• Within a member function definition, there is an implicit use of this pointer 
for references to data members

16

pData

nLength

this Data member reference Equivalent to

pData this->pData

nLength this->nLength

CStr object

(*this)



Overloading stream-insertion and 
stream-extraction operators

• In fact, cout<< or cin>> are operator overloading built in C++ standard 
lib of iostream.h, using operator "<<" and ">>"

• cout and cin are the objects of ostream and istream classes, 
respectively

• We can add a friend function which overloads the operator <<

17

friend ostream& operator<< (ostream &os, const Date &d);

ostream& operator<<(ostream &os, const Date &d)

{

os<<d.month<<“/”<<d.day<<“/”<<d.year;

return os;

}

…
cout<< d1;  //overloaded operator

ostream& operator<<(ostream &os, const Date &d)

{

os<<d.month<<“/”<<d.day<<“/”<<d.year;

return os;

}

…
cout<< d1;  //overloaded operator

cout  ---- object of ostreamcout  ---- object of ostream



Overloading stream-insertion and 
stream-extraction operators

• We can also add a friend function which overloads the 
operator >>

18

istream& operator>> (istream &in, Date &d) 

{

char mmddyy[9];

in >> mmddyy;

// check if valid data entered

if (d.set(mmddyy))   return in;

cout<< "Invalid date format: "<<d<<endl;

exit(-1);

}

friend istream& operator>> (istream &in, Date &d);

cin  ---- object of istream

cin >> d1;



Inline functions

•An inline function is one in which the function 
code replaces the function call directly.

• Inline class member functions
• if they are defined as part of the class definition, 
implicit

• if they are defined outside of the class definition, 
explicit, I.e.using the keyword, inline. 

• Inline functions should be short (preferable 
one-liners). 
• Why? Because the use of inline function results in 
duplication of the code of the function for each 
invocation of the inline function 

19



Example of Inline functions 
class CStr
{

char *pData;
int nLength;

…
public:
…
char *get_Data(void) {return pData; }//implicit inline function
int getlength(void);
…

};

inline void CStr::getlength(void) //explicit inline function
{

return nLength;
}

…

int main(void)
{

char *s;
int n;
CStr a(“Joe”);
s = a.get_Data();
n = b.getlength();

}  

20

Inline functions within class declarations

Inline functions outside of class declarations

In both cases, the compiler will insert the code 

of the functions get_Data() and getlength() 

instead of generating calls to these functions



Inline functions (II)

• An inline function can never be located in a run-time library since the 
actual code is inserted by the compiler and must therefore be known at 
compile-time.

• It is only useful to implement an inline function when the time which is 
spent during a function call is long compared to the code in the function. 

21



Thank You

22


